Fast and Modular Regularized Topic Modeling

Denis Kochedykov (J.P.Morgan, USA-China) Murat Apishev (Moscow State University, Russia) Lev Golitsyn (Integrated Systems, Russia) Konstantin Vorontsov (MIPT, Russia)

The 21st Conference of Open Innovations Association FRUCT
Seminar on Intelligence, Social Media and Web
Helsinki, Finland • 6–10 November 2017

Contents

- 1 Theory
 - Probabilistic topic modeling
 - The additive regularization framework
 - The bag-of-regularizers
- 2 Implementation
 - BigARTM project
 - The modular technology for LEGO-style topic modeling
 - Benchmarking
- 3 Applications
 - Exploratory search
 - Topic detection and tracking in news
 - Dialog segmentation

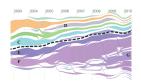
Topic modeling applications

exploratory search in digital libraries

personalized search in social media

multimodal search for texts and images

topic detection and tracking in news flows



navigation in big

dialog manager in chatbot intelligence

Example. Multilingual topic model of Wikipedia

216 175 of Russian-English parallel not-aligned articles.

Top 10 words and their probabilities p(w|t) in %:

topic #68				topic #79				
research	4.56	институт	6.03	goals	4.48	матч	6.02	
technology	3.14	университет	3.35	league	3.99	игрок	5.56	
engineering	2.63	программа	3.17	club	3.76	сборная	4.51	
institute	2.37	учебный	2.75	season	3.49	фк	3.25	
science	1.97	технический	2.70	scored	2.72	против	3.20	
program	1.60	технология	2.30	cup	2.57	клуб	3.14	
education	1.44	научный	1.76	goal	2.48	футболист	2.67	
campus	1.43	исследование	1.67	apps	1.74	гол	2.65	
management	1.38	наука	1.64	debut	1.69	забивать	2.53	
programs	1.36	образование	1.47	match	1.67	команда	2.14	

Assessors evaluated 396 topics from 400 as paired and interpretable.

Vorontsov, Frei, Apishev, Romov, Suvorova. BigARTM: Open Source Library for Regularized Multimodal Topic Modeling of Large Collections. AIST-2015.

Example. Multilingual topic model of Wikipedia

216 175 of Russian-English parallel not-aligned articles.

Top 10 words and their probabilities p(w|t) in %:

topic #88				topic #251				
opera	7.36	опера	7.82	windows	8.00	windows	6.05	
conductor	1.69	оперный	3.13	microsoft	4.03	microsoft	3.76	
orchestra	1.14	дирижер	2.82	server	2.93	версия	1.86	
wagner	0.97	певец	1.65	software	1.38	приложение	1.86	
soprano	0.78	певица	1.51	user	1.03	сервер	1.63	
performance	0.78	театр	1.14	security	0.92	server	1.54	
mozart	0.74	партия	1.05	mitchell	0.82	программный	1.08	
sang	0.70	сопрано	0.97	oracle	0.82	пользователь	1.04	
singing	0.69	вагнер	0.90	enterprise	0.78	обеспечение	1.02	
operas	0.68	оркестр	0.82	users	0.78	система	0.96	

Assessors evaluated 396 topics from 400 as paired and interpretable.

Vorontsov, Frei, Apishev, Romov, Suvorova. BigARTM: Open Source Library for Regularized Multimodal Topic Modeling of Large Collections. AIST-2015.

What is a "topic" in a text collection

Intuitively,

- Topic is a specific terminology of a particular domain area
- Topic is a set of terms that often co-occur in documents

More formally,

- topic is a probability distribution over terms (words, tokens): p(w|t) is the frequency of term w in topic t
- document profile is a probability distribution over topics: p(t|d) is the frequency of topic t in document d

When writing term w in document d author thought of topic t.

Topic model uncovers the set T of latent topics in a text collection.

Problem setup

Given: a set of terms W, a set of documents D,

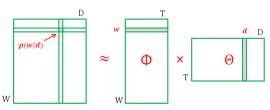
 $n_{dw} =$ how many times term w appears in document d

Find: parameters $\phi_{wt} = p(w|t)$, $\theta_{td} = p(t|d)$ of the topic model

$$p(w|d) = \sum_{t \in T} \phi_{wt} \theta_{td} = \sum_{t \in T} p(w|t)p(t|d).$$

subject to $\phi_{wt}\geqslant$ 0, $\sum_{w}\phi_{wt}=$ 1, $\theta_{td}\geqslant$ 0, $\sum_{t}\theta_{td}=$ 1.

This is a problem of nonnegative matrix factorization:



Well-posed and ill-posed problems in the sense of Hadamard (1923)

The problem is well-posed if

- a solution exists,
- the solution is unique,
- the solution is stable w.r.t. initial conditions.

Jacques Hadamard (1865–1963)

Matrix factorization is an *ill-posed* inverse problem.

If (Φ, Θ) is a solution, then (Φ', Θ') is also the solution:

- $\Phi'\Theta' = (\Phi S)(S^{-1}\Theta)$, where rank S = |T|
- $\mathscr{L}(\Phi', \Theta') = \mathscr{L}(\Phi, \Theta)$
- $\mathscr{L}(\Phi', \Theta') \leqslant \mathscr{L}(\Phi, \Theta) + \varepsilon$ for approximate solutions

Additional regularizing criteria should narrow the set of solutions.

ARTM — Additive Regularization of Topic Model

Maximum log-likelihood with additive combination of regularizers:

$$\sum_{d,w} n_{dw} \ln \sum_{t} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \rightarrow \max_{\Phi,\Theta}, \quad R(\Phi, \Theta) = \sum_{i=1}^{n} \tau_{i} R_{i}(\Phi, \Theta)$$

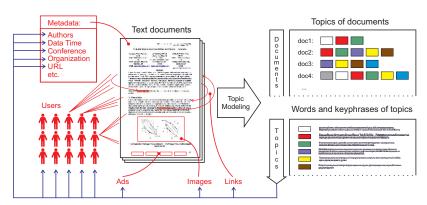
where τ_i are regularization coefficients.

EM-algorithm is a simple iteration method for solving the system

$$\begin{split} \text{E-step:} & \left\{ \begin{array}{l} p_{tdw} = \underset{t \in T}{\mathsf{norm}} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \underset{w \in W}{\mathsf{norm}} \left(\sum_{d \in D} n_{dw} p_{tdw} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right) \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(\sum_{w \in d} n_{dw} p_{tdw} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right) \\ \end{split} \end{split} \\ \end{split} \\ \text{where } \underset{t \in T}{\mathsf{norm}} x_t = \frac{\underset{s \in T}{\mathsf{max}\{x_t, 0\}}}{\sum_{s \in T} \underset{max\{x_s, 0\}}{\mathsf{max}\{x_s, 0\}}} \text{ is vector normalization.}$$

Multimodal Probabilistic Topic Modeling

Multimodal Topic Model finds topic distributions of terms p(w|t) and other modalities: p(author|t), p(time|t), p(category|t), p(tag|t), p(link|t), p(object-on-image|t), p(user|t), etc.



Multimodal extension of ARTM

 W^m is a vocabulary of tokens of m-th modality, $m \in M$.

Maximum multimodal log-likelihood with regularization:

$$\sum_{\mathbf{m} \in \mathbf{M}} \lambda_{\mathbf{m}} \sum_{d \in D} \sum_{w \in \mathbf{W}^{\mathbf{m}}} n_{dw} \ln \sum_{t} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \ \rightarrow \ \max_{\Phi, \Theta}$$

EM-algorithm is a simple iteration method for the system

E-step:
$$\begin{cases} p_{tdw} = \underset{t \in T}{\mathsf{norm}} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \underset{w \in \mathcal{W}^m}{\mathsf{norm}} \left(\sum_{d \in D} \lambda_{m(w)} n_{dw} p_{tdw} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right) \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(\sum_{w \in d} \lambda_{m(w)} n_{dw} p_{tdw} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right) \end{cases}$$

K. Vorontsov, O. Frei, M. Apishev, P. Romov, M. Suvorova, A. Ianina. Non-Bayesian additive regularization for multimodal topic modeling of large collections. 2015.

Regularizers for the interpretability of topics

background

Smoothing background topics $B \subset T$:

$$R(\Phi, \Theta) = \beta_0 \sum_{t \in B} \sum_{w} \beta_w \ln \phi_{wt} + \alpha_0 \sum_{d} \sum_{t \in B} \alpha_t \ln \theta_{td}$$

Sparsing subject domain topics $S = T \setminus B$:

$$R(\Phi, \Theta) = -\beta_0 \sum_{t \in S} \sum_{w} \beta_w \ln \phi_{wt} - \alpha_0 \sum_{d} \sum_{t \in S} \alpha_t \ln \theta_{td}$$

decorrelated

Making topics as different as possible:

$$R(\Phi) = -\frac{\tau}{2} \sum_{t,s} \sum_{w} \phi_{wt} \phi_{ws}$$

interpretable

Making topics more interpretable by combining the above regularizers

Many Bayesian PTMs can be reinterpreted as regularizers in ARTM

hierarchy

Hierarchical links between topics t and subtopics s:

$$R(\Phi, \Psi) = \tau \sum_{t \in T} \sum_{w \in W} n_{wt} \ln \sum_{s \in S} \phi_{ws} \psi_{st}.$$

temporal

Topics dynamics over the modality of time intervals i:

$$R(\Phi) = -\tau \sum_{i \in I} \sum_{t \in T} |\phi_{it} - \phi_{i-1,t}|.$$

regression

Linear predictive model $\hat{y}_d = \langle v, \theta_d \rangle$ for documents:

$$R(\Theta, v) = -\tau \sum_{d \in D} \left(y_d - \sum_{t \in T} v_t \theta_{td} \right)^2.$$

n of topics

Sparsing p(t) for topic selection:

$$R(\Theta) = -\tau \sum_{t \in T} \frac{1}{|T|} \ln p(t), \quad p(t) = \sum_{d} p(d)\theta_{td}.$$

Special cases of the multimodal topic modeling

supervised

The modalities of classes or categories for text classification and categorization.

multilanguage

The modalities of languages with translation dictionary $\pi_{uwt} = p(u|w,t)$ for the $k \to \ell$ language pair:

$$R(\Phi, \Pi) = \tau \sum_{u \in W^k} \sum_{t \in T} n_{ut} \ln \sum_{w \in W^\ell} \pi_{uwt} \phi_{wt}$$

graph

The modality of graph vertices v with doc sets D_v :

$$R(\Phi) = -\frac{\tau}{2} \sum_{(u,v) \in E} S_{uv} \sum_{t \in T} n_t^2 \left(\frac{\phi_{vt}}{|D_v|} - \frac{\phi_{ut}}{|D_u|} \right)^2.$$

geospatial

The modality of geolocations g with proximity $S_{gg'}$:

$$R(\Phi) = -\frac{\tau}{2} \sum_{g,g' \in G} S_{gg'} \sum_{t \in T} n_t^2 \left(\frac{\phi_{gt}}{n_g} - \frac{\phi_{g't}}{n_{g'}}\right)^2$$

Beyond the "bag-of-words" restrictive hypothesis

The modalities of *n*-grams, collocations, named entities

The modality of *n*-grams after SyntaxNet preprocessing

Modeling co-occurrence data n_{uv} for biterms (u, v):

$$R(\Phi) = \tau \sum_{u,v} n_{uv} \ln \sum_{t} n_{t} \phi_{ut} \phi_{vt}$$

segmentation

E-step regularization affecting p(t|d, w) distributions for segmentation and sentence topic models

BigARTM: open source for fast modular topic modeling

BigARTM features:

- Parallel + online + multimodal + regularized Topic Modeling
- Out-of-core one-pass processing of large text collections
- Built-in library of regularizers and quality measures

BigARTM community:

- Open-source https://github.com/bigartm (discussion group, issue tracker, pull requests)
- Documentation http://bigartm.org

BigARTM license and programming environment:

- Freely available for commercial usage (BSD 3-Clause license)
- Cross-platform Windows, Linux, Mac OS X (32 bit, 64 bit)
- Programming APIs: command-line, C++, and Python

Why BigARTM simplifies topic modeling for applications

Stages	Bayesian Inference for PTMs		ARTM			
Requirements analysis:	Requirements analysis		Requirements analysis			
Model formalization:	Generative model design		predefined criteria	user-defined criteria		
Model inference:	Bayesian inference for the		One regularized EM-algorithm			
	generative model (VI, GS, EP)		for any combination of crite			
Model implementation:	Researchers coding (Matlab, Python, R)		Production code (C++)			
Model evaluation:	Researchers coding (Matlab,		predefined	user-defined		
	Python, R)		measures	measures		
Deployment:	Deployment		Deployment			
	not unified stages :::	::: unified stages :::				

Bayesian modeling requires maths and coding at each stage.

ARTM introduces the modular LEGO-style technology, packing each our requirement into a ready-to-use unified building block.

Benchmarking BigARTM vs. Gensim and Vowpal Wabbit

• 3.7M articles from Wikipedia, 100K unique words

		T	= 50	T = 200		
	procs	time, m	perplexity	time, m	perplexity	
BigARTM	1	42	5117	83	3347	
BigARTM async	1	25	5131	53	3362	
VowpalWabbit	1	50	5413	154	3960	
Gensim	1	142	4945	637	3241	
BigARTM	4	12	5216	26	3520	
BigARTM async	4	7	5353	16	3634	
Gensim	4	88	5311	315	3583	
BigARTM	8	8	5648	15	3929	
BigARTM async	8	5	6220	10	4309	
Gensim	8	88	6344	288	4263	

D.Kochedykov, M.Apishev, L.Golitsyn, K.Vorontsov Fast and Modular Regularized Topic Modelling. FRUCT ISMW, 2017.

Mining ethnical discourse in social media

Goal: find topics about inter-ethnic relations using 300 ethnonyms as seed words or modality

The bag-of-regularizers:

$$\mathcal{L}\left(\bigoplus_{\Theta} \bigoplus_{\Theta} \right) + R\left(\bigoplus_{\square} \right) + R\left(\bigoplus_{\square} \right)$$

$$+ R\left(\bigoplus_{\square} \right) + R\left(\bigoplus$$

Result: the number of ethnically relevant topics augmented from 45 for baseline model (LDA) to 83 for ARTM.

Apishev, Koltcov, Koltsova, Nikolenko, Vorontsov. Additive regularization for topic modeling in sociological studies of user-generated text content. 2016.

Exploratory search in tech news

Goal: exploratory search by long text queries in digital libraries and tech news.

The bag-of-regularizers:

$$\mathscr{L}\left(\begin{array}{|c|c|} & & & \\ \hline \Phi & \Theta \\ \end{array} \right) + R\left(\begin{array}{|c|c|} & & & \\ \hline & & & \\ \hline \end{array} \right) + R\left(\begin{array}{|c|c|} & & & \\ \hline & & & \\ \hline \end{array} \right) + R\left(\begin{array}{|c|c|} & & & \\ \hline & & & \\ \hline \end{array} \right) \rightarrow \max$$

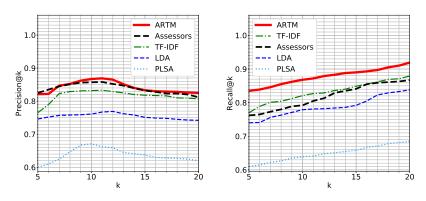
Results:

- Precision and Recall augmented +8% on Habrahabr.ru and TechCrunch.com tech news collections.
- Precision and Recall are comparable with assessors' quality.
- The topic-based search engine instantly performs the work that people typically complete in about 30 minutes.

A.lanina, K.Vorontsov. Multi-objective topic modeling for exploratory search in tech news. AINL, 2017.

Precision and Recall: comparison against baselines

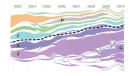
TechCrunch.com text collection, 760K documents Precision and Recall at top k search result positions



A.lanina, K.Vorontsov. Multi-objective topic modeling for exploratory search in tech news. AINL, 2017.

Topic detection and tracking in news for media planning

Goal: the development of an interpretable hierarchical temporal dynamic topic model of the news flow.



The bag-of-regularizers:

$$\begin{split} & \mathcal{L}\left(\bigoplus_{\Theta}^{\text{PLSA}} \right) + R\left(\bigoplus_{\Theta}^{\text{interpretable}} \right) + R\left(\bigoplus_{\Theta}^{\text{hierarchy}} \right) + R\left(\bigoplus_{\Theta}^{\text{temporal}} \right) \\ & + R\left(\bigoplus_{\Theta}^{\text{multimodal}} \right) + R\left(\bigoplus_{\Theta}^{\text{n-gram}} \right) + R\left(\bigoplus_{\Theta}^{\text{multilanguage}} \right) + R\left(\bigoplus_{\Theta}^{\text{sentiment}} \right) \to \max \end{split}$$

Results: ... (ongoing project)

Scenario analysis of call center records

Goals:

 determine typical scenarios of dialogues between operators and customers

- elaborate the quantitative measure of how well operator works
- provide online tips for help operator handle customer's objections

The bag-of-regularizers:

$$\begin{split} \mathscr{L}\left(\bigoplus_{\Theta}^{\mathsf{PLSA}} \right) + R\left(\bigoplus_{\square}^{\mathsf{interpretable}} \right) + R\left(\bigoplus_{\square}^{\mathsf{segmentation}} \right) + R\left(\bigoplus_{\square}^{\mathsf{n-gram}} \right) \\ + R\left(\bigoplus_{\square}^{\mathsf{syntax}} \right) + R\left(\bigoplus_{\square}^{\mathsf{sentence}} \right) + R\left(\bigoplus_{\square}^{\mathsf{dialog}} \right) \to \mathsf{max} \end{split}$$

Result: the quality of segmentation augmented from 40% for baselines to 75% for ARTM

Brief summary

- ARTM is a non-Bayesian regularization framework for PTM
- ARTM gives the easy way to formalize and combine PTMs
- ARTM makes it easier to understand and explain PTMs
- ARTM originates the modular "LEGO-style" PTM technology
- BigARTM: open source implementation of ARTM
- Ongoing projects: news, call-center dialogs, bank transactions.

http://bigartm.org

Welcome to use and make contributions!

References

- K. Vorontsov. Additive regularization for topic models of text collections. Doklady Mathematics, 2014.
- [2] K. Vorontsov, A. Potapenko. Additive regularization of topic models. Machine Learning, 2015.
- [3] K. Vorontsov, O. Frei, M. Apishev, P. Romov, M. Suvorova, A. Ianina. Non-bayesian additive regularization for multimodal topic modeling of large collections. CIKM, 2015.
- [4] K. Vorontsov, A. Potapenko, A. Plavin. Additive regularization of topic models for topic selection and sparse factorization. SLDS, 2015.
- [5] K. Vorontsov, O. Frei, M. Apishev, P. Romov, M. Suvorova. BigARTM: Open source library for regularized multimodal topic modeling of large collections. AIST, 2015.
- [6] O.Frei, M.Apishev. Parallel non-blocking deterministic algorithm for online topic modeling. AIST, 2016.
- [7] M.Apishev, S.Koltcov, O.Koltsova, S.Nikolenko, K.Vorontsov. Additive regularization for topic modeling in sociological studies of user-generated text content. MICAI, 2016.
- [8] N. Chirkova, K. Vorontsov. Additive regularization for hierarchical multimodal topic modeling. JMLDA, 2016.
- [9] A.lanina, L.Golitsyn, K.Vorontsov. Multi-objective topic modeling for exploratory search in tech news. AINL, 2017.
- [10] A.Potapenko, A.Popov, K.Vorontsov. Interpretable probabilistic embeddings: bridging the gap between topic models and neural networks. AINL, 2017.
- [11] D. Kochedykov, M. Apishev, L. Golitsyn, K. Vorontsov Fast and Modular Regularized Topic Modelling, FRUCT ISMW, 2017.