Министерство науки и высшего образования Российской Федерации «Московский физико-технический институт (государственный университет)» Физтех-школа прикладной математики и информатики Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

Гасанов Эльнур Эльдар оглы

Порождение пространства признаков в задачах анализа кортикограмм

03.03.01- Прикладные математика и физика

Выпускная квалификационная работа (бакалаврская диссертация)

Научный руководитель: д. ф.-м. н. Стрижов Вадим Викторович

Москва 2018 г.

Содержание

Введение

1	1 Постановка задачи, исходные гипотезы, алгоритмы отбора призна-					
	КОВ	6				
	1.1 Описание задачи, целеполагание	. 6				
	1.2 Построение локально аппроксимирующей модели	. 8				
	1.3 Метод частичных наименьших квадратов	. 9				
	1.4 Отбор признаков по решению задачи квадратичного программирован	ия 10				
	1.5 Регрессионный бустинг	. 11				
	1.6 Дерево принятия решений	. 12				
	1.7 SVM-регрессия	. 13				
	1.8 Нейронная сеть	. 14				
2	Вычислительные эксперименты	15				
	2.1 Модели PLS и QPFS	. 16				
	2.2 Нейросетевые модели	. 18				
3	Выводы	19				
\mathbf{C}	писок литературы	20				

 $\mathbf{4}$

Аннотация

Рассмотрена задача декодирования временного ряда физической активности по электрокортикограмме (ECoG). Используются алгоритмы частных наименьших квадратов (PLS) и метод отбора признаков по решению задачи квадратичной оптимизации (QPFS). Проверена гипотеза о статистической значимости учета перемещения зон возбуждения моторной коры головного мозга. В качестве выборки использованы открытые данные лаборатории адаптивного интеллекта BSI RIKEN.

Ключевые слова: декодирование временного ряда, электрокортикограмма, ECoG, метод частных наименьших квадратов, QPFS.

Введение

Актуальность темы. Задача декодирования временного ряда физической активности по сигналам, снятым с коры головного мозга, играет центральную роль при конструировании искуственных конечностей: от качества решения задачи зависит применимость устройства в реальных условиях.

Цель работы. Предложить локально аппроксимирующую модель перемещения зон возбуждения на поверхности коры головного мозга, учитывая пространственновременную структуру измерений.

Методы исследований. При построении алгоритма использовались элементы теории вероятности и математической статистики, методы преобразования сигналов. Для программной реализации разработанного алгоритма использовались среды MATLAB и Python 3.6.

Научная новизна. В задаче декодирования учтена информация про пространственное перемещение очагов возбуждения.

Практическая ценность. Доработан программный модуль, который

- по выборке строит модель декодирования временного ряда физической активности;
- визуализирует результаты.

Обзор литературы. В системах, основанных на нейро-компьютерном интерфейсе (НКИ) [1,2], анализ временных рядов электрической активности мозга человека позволяет понять его намерение о движениях. НКИ успешно использу.т в прикладных задачах, например, в управлении летающими дронам [3] и, движении курсором по экрану компьютера [4]. Ввиду того, что в нем не используются сигналы от периферической нервной системы, НКИ применяются при создании систем управления экзоскелетами, имеющих важное значение для людей с ограниченными возможностями [5].

НКИ может быть реализован несколькими способами. ЕЕG сигналы обеспечивают интерфейс без проведения операции, дешевы во внедрении [6]. Однако ЕЕG сиг-

налы имеют узкую ширину полосы частот, т.к. некоторые сигналы головного мозга поглощаются тканями человека (кровью, кожей и т.д.) [7]. Настройка НКИ на EEG сигналах требует много времени, такие НКИ обладают плохой пространственной локализацией [8], т.к. электроды удалены от коры головного мозга, где происходит активность. Инвазивный метод регистрации отдельных нейронов (SUA, single-unity active) позволяет получить высокоточные значения потенциалов электродов, однако НКИ, базирующиеся на SUA, требуют частой перекалибровки в виду постоянного ухудшения снимаемого сигнала [9]. НКИ на электрокортикограммах (ECoG) [10] лишены этих недостатков: в задачах декодировки движений обезьяны НКИ могут успешно применяться через несколько месяцев после настройки без серьезных ухудшений качества прогнозирования [11]. ЕСоG сигналы обладают существенно более широкой полосой частот, нежели EEG [7].

В предлагаемом решении задачи декодирования временного сигнала признаки можно поделить на две группы. Первая группа состоит из скалограмм, построенных для каждого электрода с помощью вейвлет-преобразования с вейвлетом Морле [13]. Скалограмма - двумерный массив признаков в пространстве частота-время. Вторая группа признаков описывает пространственные параметры перемещения очага возбуждения (эпицентр возбуждения, его направление, дисперсию сигнала).

Основные алгоритмы, используемые для построения модели декодирования, есть методы наименьших частных квадратов (PLS) [19] и метод отбора признаков по решению задачи квадратичного программирования (QPFS) [20]. В работе [20] представлена сводная информация по качеству решения обсуждаемой задачи алгоритмами PLS и QPFS над пространством скалограмм.

В работе использованы открытые данные лаборатории адаптивного интеллекта BSI RIKEN [18].

5

1 Постановка задачи, исходные гипотезы, алгоритмы отбора признаков

1.1 Описание задачи, целеполагание

Заданы временные ряды напряжений электродов, расположенных на коре головного мозга, $s(t) \in \mathbb{R}^{N_{ch}}$, где N_{ch} - число каналов, и временные ряды $y(t) \in \mathbb{R}^3$ положений конечности объекта в трехмерном пространстве. Указанные временные ряды преобразуются в пару матриц (**X**, **Y**):

$$\mathbf{X} \in \mathbb{R}^{M \times (TFN_{ch}+C)}, \ \mathbf{Y} = [\mathbf{y}_1^{\mathsf{T}}, \dots, \mathbf{y}_M^{\mathsf{T}}]^{\mathsf{T}},$$

таких что $\mathbf{y}_m = y(t_m)$. Здесь T и F - количество временных промежутков и частот, использованных при построении скалограммы, по сути являются параметрами алгоритма построения скалограммы. M есть суммарное количество отсчетов времени. В задаче объект - отсчет времени t_m , признак - строка матрицы $\mathbf{X} =: \mathbf{x}_m$, ответ - \mathbf{y}_m . Каждый вектор \mathbf{x}_m представляет собой последовательно расположенные друг за другом векторизованные скалограммы - частотно-временные описания временного ряда $[s_n(t_m - \tau), \ldots, s_n(t_m)]$, построенные для разных электродов $n, n = 1, \ldots, N_{ch}$. В конце вектора \mathbf{x}_m располагается C чисел - параметры аппроксимирующей модели, характеризующего пространоственную структуру сигнала (см. подраздел «Построение локально аппроксимиующей модели»). В данной работе сигнал аппроксимируется гауссианой.

Задача состоит в определении положения маркера **Y** при заданном $\mathbf{x}_{\mathbf{m}}$, $m = 1, \ldots, M$. Предлагается решить задачу декодирования временного ряда с помощью линейной регрессии:

$$\mathbf{\hat{y}}_m = \mathbf{x_m}\mathbf{\hat{w}}_s$$

где $\mathbf{w} \in \mathbb{R}^{(TFN_{ch}+C) \times 3}$.

Через £ обозначим множество всех отчетов времени обучающей выборки, через € – контрольной выборки.

Пусть задана функция потерь $L: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}_+$. Определим эмпирический риск алгоритма:

$$\mathcal{Q}(\mathbf{w}) = \frac{1}{|\mathfrak{L}|} \sum_{t \in \mathfrak{L}} L(\mathbf{x_m} \mathbf{w}, \mathbf{y}_m).$$

Параметр $\mathbf{\hat{w}}$ линейной регрессии минимизирует эмпирический риск:

$$\mathbf{\hat{w}} = \mathop{\arg\min}_{\mathbf{w}\in\mathcal{W}} \mathcal{Q}(\mathbf{w})$$

Здесь \mathcal{W} пространство отобранных признаков. Для моделей LS_Boost, решающие деревья, SVM-регрессия и нейронные сети \mathcal{W} совпадает с исходным пространством признаков. При решении задачи методом отбора признаков по решению задачи квадратичного программирования или методом наименьших частичных квадратов упо-мянутое пространство признаков сужается.

Для оценки качества построенных моделей используется средняя корреляция Пирсона на контрольной выборке **C**

$$\operatorname{corr}(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{3} \sum_{j=1}^{3} \frac{\sum_{i \in \mathcal{C}} \left(\mathbf{y}_{i}^{j} - \overline{\mathbf{y}}^{j} \right) \left(\hat{\mathbf{y}}_{i}^{j} - \overline{\hat{\mathbf{y}}}^{j} \right)}{\sqrt{\sum_{i \in \mathcal{C}} \left(\mathbf{y}_{i}^{j} - \overline{\mathbf{y}}^{j} \right)^{2} \sum_{i \in \mathcal{C}} \left(\hat{\mathbf{y}}_{i}^{j} - \overline{\hat{\mathbf{y}}}^{j} \right)^{2}}}$$

1.2 Построение локально аппроксимирующей модели

Вектор $\mathbf{x}_{\mathbf{m}}$, представляющий собой описание *i*-ого объекта, состоит из двух частей. Первая часть есть векторизованная скалограмма, построенная для момента времени t_i . Вторая часть содержит информацию о простраственных характеристиках сигнала (координатах очага возбуждения, скорости перемещения очага, дисперсию сигнала).

Для построения скалограммы по временному ряду $[s_n(t_m - \tau), \ldots, s_n(t_m)]$ используется вейвлет-преобразование с вейвлетом Морле:

$$[W_{\psi} \ s_n](a, t') = \frac{1}{|a|} \sum_{t \in [t_m - \tau, t_m]} \psi\left(\frac{t - t'}{a}\right) s_n(t)$$

где ψ - вейвлет Морле, a - параметр растяжения. Параметр растяжения имеет прямую связь с частотой анализируемого сигнала f_w :

$$a = \frac{f_c \cdot f_s}{f_w}$$

где $f_c = 0.8125$ Гц - центральная частота для вейвлета Морле, f_s - частота дискретизации сигнала.

Зафиксируем произвольный момент времени t_i . Пусть (x_1^j, x_2^j) - координаты j-ого электрода, $f(x_1^j, x_2^j)$ показание напряжения на j-ом электроде в зафиксированный момент времени. Сигнал предлагается аппроксимировать функцией Гаусса.

$$f(\overline{x}, D, a, b, c, m_1, m_2) = D \cdot e^{-\frac{c(x_1 - m_1)^2 - 2b(x_1 - m_1)(x_2 - m_2) + a(x_2 - m_2)^2}{2(ac - b^2)}}$$

Параметры m_1, m_2, a, b, c модели определяются по формулам:

$$m_{1} = \frac{\sum_{j} x_{1}^{j} \cdot f(x_{1}^{j}, x_{2}^{j})}{\sum_{j} f(x_{1}^{j}, x_{2}^{j})}; m_{2} = \frac{\sum_{j} x_{2}^{j} \cdot f(x_{1}^{j}, x_{2}^{j})}{\sum_{j} f(x_{1}^{j}, x_{2}^{j})};$$
$$a = \frac{\sum_{j} (x_{1}^{j} - m_{1})^{2} \cdot f(x_{1}^{j}, x_{2}^{j})}{\sum_{j} f(x_{1}^{j}, x_{2}^{j})}; c = \frac{\sum_{j} (x_{2}^{j} - m_{2})^{2} \cdot f(x_{1}^{j}, x_{2}^{j})}{\sum_{j} f(x_{1}^{j}, x_{2}^{j})};$$
$$b = \frac{\sum_{j} (x_{1}^{j} - m_{1})(x_{2}^{j} - m_{2}) \cdot f(x_{1}^{j}, x_{2}^{j})}{\sum_{j} f(x_{1}^{j}, x_{2}^{j})};$$

Для оценки параметра масштаба D медианное значение вектора показаний напряжений делится на $e^{-\frac{c(x_1-m_1)^2-2b(x_1-m_1)(x_2-m_2)+a(x_2-m_2)^2}{2(ac-b^2)}}$, где x_1, x_2 - координаты электрода, показание напряжения которого есть медианное.

1.3 Метод частичных наименьших квадратов

Параметры скалограмм, рассматриваемые как признаки временного ряда в указанный промежуток времени, обладают мультиколлинеарностью, т.к. сигналы с соседних электродов зависимы друг от друга. Метод частичных наименьших квадратов (PLS) состоит в итеративном снижении размерности пространства признаков таким образом, чтобы ковариация между старыми и новыми признаками была максимальной.

Основная идея метода PLS (partial least squares) заключается в проекции исходного пространства признаков X в такое пространство меньшей размерности, чтобы ковариация между новыми признаками и вектором ответов была максимальной. Метод поясняется следующим разложением матриц признаков и ответов:

$$\mathbf{X} = \mathbf{T}\mathbf{P}^{\intercal} + \mathbf{E}$$
$$\mathbf{Y} = \mathbf{U}\mathbf{Q}^{\intercal} + \mathbf{F}$$

где $\mathbf{X} \subset \mathbb{R}^{n \times m}$, $\mathbf{Y} \subset \mathbb{R}^{n \times p}$. Матрицы \mathbf{T} и \mathbf{U} размера $n \times l$ есть проекции \mathbf{X} и \mathbf{Y} соответственно. Матрицы \mathbf{P} и \mathbf{Q} есть ортогональные проецирующие матрицы, размеров $m \times l$ и $p \times l$ соответственно. Матрицы \mathbf{E} и \mathbf{F} - матрицы ошибок, которые предполагаются независимыми и нормально распределенными.

1.4 Отбор признаков по решению задачи квадратичного программирования

Пусть матрица $Q \in \mathbb{R}^{(TFN_{ch}+C)\times(TFN_{ch}+C)}$, вектор $b \in \mathbb{R}^{TFN_{ch}+C}$. Проблема отбора признаков может быть сформулирована как задача квадратичного программирования (quadratic programming feature selection, QPFS):

$$\mathbf{a} = \underset{\mathbf{a} \in \{0,1\}^N}{\arg\min} (\mathbf{a}^\mathsf{T} \mathbf{Q} \mathbf{a} - \mathbf{b}^\mathsf{T} \mathbf{a}),$$

где q_{ij} указывает на степень скоррелированности признаков *i* и *j*:

$$q_{ij} = |corr(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j)|$$

Аналогично, *b_i* указывает на степень релевантности признака *i* и считается следующим образом:

$$b_i = \frac{1}{3} \sum_{j=1}^{3} |\operatorname{corr}(\boldsymbol{\chi}_i, \mathbf{y}^j)|.$$

Указанная выше задача ищет равновесие между скоррелированностью признаков и их важностью в задаче определения положения маркера. Решение оптимизационной задачи определяет, какие признаки должны учитываться в конечном алгоритме.

1.5 Регрессионный бустинг

Пусть задано множество объектов и ответов $\{\mathbf{x}_i, y_i\}_{i=1}^N$, и требуется определить оптимальную композицию $F(\mathbf{x}) = \sum_{j=1}^M \rho_j h(\mathbf{x}, \mathbf{a}_j)$ для решения задачи восстановления регрессии, где $\rho_j \in \mathbb{R}$ определяется вес *j*-ого алгоритма, задаваемого некоторым параметром \mathbf{a}_j . Пошаговый подход к решению данной задачи с использованием квадратичной функции потерь определяет алгоритм LS Boost.

1
$$F_0(\mathbf{x}) = \overline{y}$$

2 for $m := 1$ to M do
3 $| \widetilde{y_i} = y_i - F_{m-1}(x_i), i = 1, N$
4 $(\rho_m, \mathbf{a}_m) = \arg \min_{\rho, \mathbf{a}} \sum_{i=1}^{N} [\widetilde{y_i} - \rho h(\mathbf{x_i}, \mathbf{a})]^2$
5 $| F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_m h(\mathbf{x}, \mathbf{a})$
6 end

1.6 Дерево принятия решений

Дерево принятия решений для задачи восстановления регрессии использует в качестве меры неопределенности множества объектов U функцию

$$\Phi(\mathbf{U}) = \min_{y \in Y} \frac{1}{|\mathbf{U}|} \sum_{x_i \in U} (y - y_i)^2$$

Значения в терминальных вершинах суть МНК-решение:

$$y_v = \frac{1}{|\mathbf{U}|} \sum_{x_i \in U} y_i \tag{(*)}$$

При обучении дерева алгоритм принимает решение о необходимости дальнейшего ветвления на основании значения функции $Gain(f, \mathbf{U})$, f обозначает признак, по которому предлагается ветвить дерево, D_v есть множество возможных значений признака f, $\mathbf{U}_{\mathbf{k}} = \{x \in U \mid f(x) = k\}$:

$$\operatorname{Gain}(f, \mathbf{U}) = \Phi(\mathbf{U}) - \sum_{k \in D_v} \frac{|\mathbf{U}_k|}{|\mathbf{U}|} \Phi(\mathbf{U}_k)$$

Рекурсивный алгоритм обучения устроен следующим образом:

1 Функция TreeGrowing(\mathbf{U}) \mapsto корень дерева v2 if выполнен критерий остановки then вернуть новый лист, взяв y_v по формуле (*) 3 4 end 5 найти признак наиболее выгодный для ветвления: $f_v = \arg \max_f \operatorname{Gain}(f, \mathbf{U})$ 6 if $Gain(f, \mathbf{U}) < G_0$ then вернуть новый лист, взяв y_v по формуле (*) 7 s end 9 создать внутренную вершину v с функцией f_v 10 for $k \in D_v$ do $\mathbf{U}_{\mathbf{k}} := \{ x \in U \mid f(x) = k \}$ 11 $S_v(k) = \text{TreeGrowing}(\mathbf{U}_k)$ 1213 end 14 return v

1.7 SVM-регрессия

Введём функцию потерь:

$$L'(y(x) - t) = \begin{cases} 0 & |y(x) - t| < \varepsilon \\ |y(x) - t| - \varepsilon & \text{иначе} \end{cases}$$

Регрессия, восстановленная методом опорных векторов, есть решение задачи минимизации функции:

$$C\sum_{i=1}^{N} L(y(x_i) - y_i) + \frac{1}{2}||w||^2$$

1.8 Нейронная сеть

На рис. 1 представлена схема двухслойной нейронной сети: на вход подаются величины x_1, \ldots, x_D , на выходе y_1, \ldots, y_K .

Пусть

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

Пусть определена нелинейная функция активации $h : \mathbb{R} \longrightarrow \mathbb{R}$. Тогда $z_j = h(a_j)$. Значения выходных маркеров определяются по формуле:

$$y_k = \sum_{j=1}^M w_{kj}^{(2)} z_j + w_{k0}^{(2)}.$$

Рис. 1: Схема двухслойной нейронной сети.

Источник: Bishop, Machine Learning and Pattern Recognition, 2006

2 Вычислительные эксперименты

Данные были взяты с сайта лаборатории BSI RIKEN (Япония) [18]. Проводились эксперименты над обезьянами (обезьяны A и K), на коре головного мозга каждой были установлены датчики, считывающие напряжение в конкретной точке (см. 2 и 3). Данные считывались с частотой 1КГц. Также на левом запястье каждого объекта был установлен датчик, определяющий положение запястья с течение времени. Эксперименты длились порядка четверти часа.

Рис. 2: Схемы экспериментов и расположения электродов на коре головного мозга испытуемых [11].

Рис. 3: Пример временных рядов напряжений, считыемых с первых 10 датчиков, и изменения положения датчика на запястье с течением времени [20]

2.1 Moдели PLS и QPFS.

Алгоритмы PLS и QPFS были протестированы на вышеуказанных данных. Обучение велось на промежутке времени от 5 до 650 секунды эксперимента, время от 650 до 950 секунды было выделено для тестов. В таблице ниже указаны средние корреляции со стандартным отклонением моделей на холд-аут выборке для исходного (векторизованный набор скалограмм для каждого отсчета времени) и модифицированного (дополнение исходного пространства пространственно-временным описание сигнала) признаковых пространств. Обучение проводилось пять раз, как при кроссвалидации, однако тестирование проводилось на холд-аут выборке. Значение корреляций усредняется. Алгоритм QPFS работал нестабильно в модифицированном признаковом пространстве.

Объект	۸	Количество компонент			
	Алгоритмы	10	25	200	500
0595V	PLS	0.254 ± 0.005	0.269 ± 0.01	0.282 ± 0.01	0.32 ± 0.01
0525K	QFPS	0.236 ± 0.017	0.249 ± 0.012	0.28 ± 0.031	0.29 ± 0.05
05971/	PLS	0.414 ± 0.006	0.401 ± 0.006	0.323 ± 0.005	0.24 ± 0.02
0527K	QFPS	0.268 ± 0.006	0.254 ± 0.01	0.247 ± 0.016	0.29 ± 0.018
06091/	PLS	0.585 ± 0.328	0.675 ± 0.167	0.271 ± 0.005	0.265 ± 0.01
0002K	QFPS	0.104 ± 0.015	0.067 ± 0.067	0.126 ± 0.117	0.218 ± 0.121
0116 4	PLS	0.174 ± 0.004	0.207 ± 0.003	0.196 ± 0.005	0.164 ± 0.013
0110A	QFPS	0.234 ± 0.002	0.237 ± 0.003	0.247 ± 0.008	0.264 ± 0.014
11974	PLS	0.348 ± 0.221	0.228 ± 0.011	0.466 ± 0.159	0.111 ± 0.09
1127A	QFPS	0.241 ± 0.005	0.23 ± 0.022	0.294 ± 0.023	0.082 ± 0.06
0101 4	PLS	0.108 ± 0.005	0.138 ± 0.003	0.208 ± 0.006	0.19 ± 0.006
0121A	QFPS	0.206 ± 0.009	0.225 ± 0.016	0.247 ± 0.013	0.236 ± 0.006
06114	PLS	0.246 ± 0.001	0.267 ± 0.003	0.274 ± 0.014	0.238 ± 0.009
0011A	QFPS	0.256 ± 0.001	0.264 ± 0.016	0.292 ± 0.007	0.292 ± 0.006

Таблица 1: Результаты вычислительных экспериментов для исходного признакового пространства

Объект	Алгоритмы	Количество компонент			
		10	25	200	500
OFDEV	PLS	0.26 ± 0.06	0.275 ± 0.01	0.281 ± 0.01	0.32 ± 0.01
0525K	QFPS	-	-	-	-
05971/	PLS	0.42 ± 0.007	0.401 ± 0.004	0.331 ± 0.009	0.237 ± 0.024
0527K	QFPS	-	-	-	-
06091/	PLS	0.226 ± 0.124	0.262 ± 0.145	0.209 ± 0.117	0.138 ± 0.077
0002K	QFPS	-	-	-	-
0116 4	PLS	0.004 ± 0.004	0.006 ± 0.004	0.005 ± 0.004	0.005 ± 0.004
0110A	QFPS	-	-	-	-
11074	PLS	0.341 ± 0.148	0.377 ± 0.001	0.25 ± 0.007	0.205 ± 0.114
112(A	QFPS	-	-	-	-
0191 4	PLS	0.091 ± 0.048	0.112 ± 0.05	0.168 ± 0.094	0.154 ± 0.086
0121A	QFPS	-	-	-	-
0611 4	PLS	0.01 ± 0.002	0.008 ± 0.003	0.004 ± 0.003	0.005 ± 0.004
U011A	QFPS	_	_	_	_

Таблица 2: Результаты вычислительных экспериментов для модифицрованного признаквого пространства

2.2 Нейросетевые модели

Аналогичные эксперименты были проделаны для моделей SVM-регрессия, нейронная сеть, решающие деревья и регрессионный бустинг. Обучение проводилось один раз на обучающей выборке. Результаты экспериментов для исходного и модифицированного признаковых пространств приведены в таблицах ниже.

data	SVM-p	neural network	РД	lsboost
$0525\mathrm{K}$	0.2448 ± 0.0084	0.3171 ± 0.0369	0.1624 ± 0.018	0.2240 ± 0.0132
$0527 \mathrm{K}$	0.1335 ± 0.0083	0.2350 ± 0.0401	0.1314 ± 0.0219	0.2023 ± 0.0271
0602K	0.2351 ± 0.1166	0.3176 ± 0.2635	0.1775 ± 0.1353	0.289 ± 0.18223
0116A	0.067 ± 0.0373	0.0295 ± 0.0226	0.0226 ± 0.0162	0.0545 ± 0.0246
1127A	0.0985 ± 0.0799	0.0784 ± 0.0243	0.0368 ± 0.03435	0.0595 ± 0.0157
0121A	0.0374 ± 0.0327	0.0607 ± 0.0336	0.0191 ± 0.015	0.0384 ± 0.0195
0611A	0.0331 ± 0.0215	0.0345 ± 0.0236	0.0153 ± 0.0136	0.0215 ± 0.0185

Таблица 3: Результаты вычислительных экспериментов на нейросетевых моделях при использовании исходного признакового пространства.

data	SVM-p	neural network	РД	lsboost
0525K	0.2425 ± 0.0917	0.3063 ± 0.1963	0.1624 ± 0.1343	0.2400 ± 0.1353
0525K	0.1368 ± 0.0937	0.2313 ± 0.2045	0.1315 ± 0.1478	0.1816 ± 0.1634
0602K	0.2246 ± 0.1340	0.3745 ± 0.2596	0.1749 ± 0.1333	0.3064 ± 0.1593
0116A	0.063 ± 0.019	0.016 ± 0.021	0.025 ± 0.013	0.02 ± 0.011
1127A	0.216 ± 0.004	0.028 ± 0.024	0.019 ± 0.011	0.024 ± 0.026
0121A	0.03 ± 0.037	0.01 ± 0.003	0.022 ± 0.017	0.02 ± 0.023
0611A	0.061 ± 0.032	0.048 ± 0.038	0.02 ± 0.009	0.035 ± 0.018

Таблица 4: Результаты вычислительных экспериментов на нейросетевых моделях при использовании модифицированного признакового пространства.

3 Выводы

В работе предложена модель декодирования временного ряда, учитывающая пространственно - временную структуру измерений. Были проведены эксперименты для 6 различных алгоритмов, создано программное обеспечение для декодирования временного ряда физической активности по электрокортикограмме. Гипотеза о значимом повышении качества декодирования при учете перемещения зон возбуждения моторной коры головного мозга не подтвердилась.

Список литературы

- Mikhail A. Lebedev, Miguel A.L. Nicolelis. Brainmachine interfaces: past, present and future// Trends in Neurosciences, Vol.29
- Schalk et al. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System// IEEE Transactions on biomedical engineering, vol. 51, no. 6. 2004
- [3] Bin He, Bryan Baxter, Bradley J Edelman, Christopher C Cline, and Wenjing W Ye. Noninvasive brain-computer interfaces based on sensorimotor rhythms// Proceedings of the IEEE, 103(6), 2015
- [4] Schalk et al. Two-dimensional movement control using electrocorticographic signals in humans// Journal of neural engineering, 5, 2008
- [5] J. d. R. Millan et al. Combining Brain Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges // Frontiers in neuroscience, vol. 4, 2010.
- [6] S.G. Mason, A. Bashashati, M. Fatourechi, K.F. Navarro, G.E. Birch. A comprehensive survey of brain interface technology designs // Annals of biomedical engineering, vol. 35, no. 2, 2007
- [7] J. Adam Wilson, Elizabeth A. Felton, P. Charles Garell, Gerwin Schalk, and Justin C. Williams. ECoG Factors Underlying Multimodal Control of a Brain Computer Interface // IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, 2006
- [8] W. J. Freeman, M. D. Holmes, B. C. Burke, and S. Vanhatalo. Spatial spectra of scalp EEG and EMG from awake humans // Clin. Neurophysiol., vol. 114, 2003
- Chestek C.A et al. Singleneuron stability during repeated reaching inmacaquepremotor cortex // Journal of Neuroscience, 27, 2007
- [10] E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran. A braincomputer interface using electrocorticographic signals in humans // Journal of neural engineering, vol. 1, no. 2, 2004
- [11] Zenas C. Chao, Yasuo Nagasaka and Naotaka Fujii. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys // Frontiers in neuroengineering, vol.3, 2010

- [12] Laura Dipietro, Angelo M. Sabatini, Paolo Dario. A Survey of Glove-Based Systems and Their Applications // IEEE Transactions on systems, man, and cybernetics-Part C: applications and reviews, vol. 38, no. 4. 2008
- [13] Марпл С.Л. Цифровой спектральный анализ и его приложения, 1990
- [14] J. Kubanek, K. J. Miller, J. G. Ojemann, J. R. Wolpaw, G. Schalk Decoding flexion of individual fingers using electrocorticographic signals in humans // Journal of Neural Engineering, vol.6, 2009
- [15] Карасиков М.Е., Стрижов В.В. Классификация временных врядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016
- [16] Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. Т. 1, по. 11
- [17] de Jong, S. SIMPLS: An alternative approach to partial least squares regression // Chemometrics and Intelligent Laboratory Systems, vol. 18, no. 3
- [18] "http://neurotycho.org/expdatalist/listview?from=&to=&task=36&monkey= All&author=All"
- [19] Wold S., Sjöström M., Eriksson L. PLS-regression: a basic tool of chemometrics // Chemometrics and Intelligent Laboratory Systems. 58 (2), 2001
- [20] Motrenko A., Strijov V. Multi-way Feature Selection for ECoG-based Brain-Computer Interface //