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Cross-validation functionals and their upper bounds
are considered that characterize the generalization per-
formance of learning algorithms. The initial data are
not assumed to be independent, identically distributed
(i.i.d.) or even to be random. The effect of localization
of an algorithm family is described, and the concept of
a local growth function is introduced. New perfor-
mance bounds for monotone classifiers are obtained,
which are nontrivial for small data sets and do not
depend on the family complexity.

The learning problem can be described as follows.
We are given an object space 

 

X

 

, an output space 

 

Y

 

, and
a set 

 

�

 

 of mappings from 

 

X

 

 to 

 

Y

 

, called algorithms.
There exists a target function 

 

y

 

*: 

 

X

 

 → 

 

Y

 

 not necessarily
in 

 

�

 

 whose values 

 

y

 

i

 

 = 

 

y

 

*(

 

x

 

i

 

)

 

 are known only on the
objects of a finite training set 

 

X

 

l

 

 = {

 

x

 

1

 

, 

 

x

 

2

 

, …, 

 

x

 

l

 

}

 

. It is
necessary to construct an algorithm 

 

a

 

*

 

 ∈ 

 

�

 

 satisfying
the local constraints 

 

a

 

*(

 

x

 

i

 

) = 

 

y

 

i

 

 (

 

i

 

 = 1, 2, …, 

 

l

 

) and the
universal constraints 

 

a

 

*

 

 ∈ 

 

�

 

u

 

, where the set of algo-
rithms 

 

�

 

u

 

 

 

⊆ 

 

�

 

 is determined by the specific features of
a particular problem [2]. The desired algorithm 

 

a

 

*

 

 must
approximate the target function 

 

y

 

*

 

 not only on the
objects of the training set but also on the entire set 

 

X

 

.
This requirement can be formalized by using various
quality functionals, some of which will be considered
below.

The frequency of errors made by an algorithm 

 

a

 

 ∈

 

�

 

 on a set 

 

X

 

p

 

 = {

 

x

 

1

 

, 

 

x

 

2

 

, …, 

 

x

 

p

 

} 

 

⊂ 

 

X

 

 is

where 

 

I

 

(

 

x

 

, 

 

y

 

)

 

 is an error indicator that takes a value of 1
if the output 

 

y

 

 is erroneous for object 

 

x

 

 and takes a value
of 0 otherwise. The error indicator is usually defined as
a function of the deviation of the output 

 

y

 

 from the cor-
rect output 

 

y

 

*(

 

x

 

)

 

, for example, 

 

I

 

(

 

x

 

, 

 

y

 

) = [

 

|

 

y

 

 – 

 

y

 

*(

 

x

 

)

 

|

 

 

 

≥

 

 

 

δ

 

]

 

for a given 

 

δ

 

 > 0. Here and below, square brackets are

ν a X p,( ) 1
p
--- I xi a xi( ),( ),

i 1=

p

∑=

 

used to denote a mapping of a logical result to a num-
ber: [False] = 0 and [True] = 1.

 

Definition 1.

 

 A learning method is a mapping 

 

µ

 

 that
takes an arbitrary finite training set 

 

X

 

l

 

 with given out-
puts 

 

Y

 

l

 

 = {

 

y

 

1

 

, 

 

y

 

2

 

, …, 

 

y

 

l

 

}

 

 to an algorithm 

 

a

 

 = 

 

µ

 

(

 

X

 

l

 

, 

 

Y

 

l

 

)

 

. The
method 

 

µ

 

 is also said to generate an algorithm 

 

a

 

 

 

from
the training set 

 

X

 

l

 

.

It is assumed that a learning method 

 

µ

 

 generates
algorithms by choosing them from a family of algo-
rithms 

 

A

 

 

 

⊆ 

 

�

 

u

 

. Assuming that 

 

y

 

*

 

 is fixed, we will use
the shortened notation 

 

µ

 

(

 

X

 

l

 

)

 

.

An algorithm 

 

a

 

 is called correct on a data set 

 

X

 

l

 

 if

 

ν

 

(

 

a

 

, Xl) = 0. A method µ is called correct on Xl if the
algorithm µ(Xl) is correct on Xl. In the general case, the
correctness of a method on a training set does not guar-
antee that the algorithm generated will perform well on
other data sets.

Consider several functionals that characterize the
generalization performance of a learning method out of
the training set.

1. The hold-out functional ν(µ(Xl), Xk) is the fre-
quency of errors on a given testing set Xk. A shortcom-
ing of this functional is that it fixes a generally arbitrary
partition of Xl ∪ Xk into a training and a testing set. If
the value of ν(µ(Xl), Xk) is sufficiently small, there is no

guarantee that ν(µ( ), ) will again be small for

another partition of the same set ( , ). Thus, vari-
ous partitions of the set should be taken into account
while the quality functional is constructed. In what fol-
lows, we assume that l and k are arbitrary fixed numbers
and L = l + k.

2. The complete cross-validation functional is
defined as

where ( , ), n = 1, 2, …, N, are all possible parti-
tions of XL into a training and a testing subset of length

l and k, respectively, and N = .

X1
l X1

k

X1
l X1

k

Qc
l k, µ XL,( ) 1

N
---- ν µ Xn

l( ) Xn
k,( ),

n 1=

N

∑=

Xn
l Xn

k

CL
l
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3. A complete cross-validation functional insensi-
tive to a minor fraction of errors ε  made on the testing
set, 0 ≤ ε < 1:

Theorem 1. The functionals  and  are

related by the two-sided bounds

4. A complete cross-validation functional insensi-
tive to minor deviations of the frequency of errors on
the testing set from the frequency of errors on the learn-
ing set:

If µ is a correct method on all subsets of length l,

then  coincides with . In the general case, they

are related by the inequality  ≤ .

5. Let X be a probability space, Xl and Xk be i.i.d.
random sets, and A be a given algorithm family. Vapnik
and Chervonenkis have proposed a probability func-
tional of uniform convergence of the error frequency on
two sets, for which in the case l = k they have obtained
the upper bound [1]

where ∆A(L) is the growth function of an algorithm
family A. It is defined as the number of different binary
vectors (β1, β2, …, βL), βi = I(xi, a(xi)) generated by all
possible algorithms a ∈ A on all sets XL. If A has a finite

VC-dimension h, then ∆A(L) ≤ 1.5 .

The complete cross-validation functionals ,

, and  will be called combinatorial. In contrast

to the probability functional , they depend on the
learning method and a particular set, which does not
need to be random. Under suitable probabilistic

Qε
l k, µ XL,( ) 1

N
---- ν µ Xn

l( ) Xn
k,( ) ε>[ ] .

n 1=

N

∑=

Qc
l k, Qε

l k,

εQε
l k, Qc

l k, ε + 1 ε–( )Qε
l k, .≤ ≤

Qν ε,
l k, µ XL,( )

=  
1
N
---- ν µ Xn

l( ) Xn
k,( ) ν µ Xn

l( ) Xn
k,( )– ε>[ ] .

n 1=

N

∑

Qε
l k, Qν ε,

l k,

Qν ε,
l k, Qε

l k,

Pν ε,
l k, A( ) P ν a Xk,( ) ν a Xl,( )–( )

a A∈
sup ε>{ }=

≤ 1.5∆A L( )e ε2
l– ,

Lh

h!
-----

Qc
l k,

Qε
l k, Qν ε,

l k,

Pν ε,
l k,

assumptions, we can proceed from combinatorial to
probability functionals by taking the expectation:

(1)

It follows that any upper bounds of combinatorial func-
tionals can easily be extended to the corresponding
probability functionals. Moreover, inequality (1)
implies that the Vapnik–Chervonenkis bound also holds

for .

It turns out that this bound, and even a stronger one,

is valid for (µ, XL) with arbitrary µ and XL. A
strengthening of the bound is associated with the effect
of localization of the growth function, which lies in the
fact that for a fixed set, only a finite part of A can be
obtained by learning, while the remaining algorithms
are not used.

Definition 2. The local algorithm family generated
by method µ  on a set XL is the set of algorithms

Definition 3. The local growth function (µ, XL)
of method µ on a set XL is the number of distinct binary
vectors (β1, β2, …, βL), βi = I(xi, a(xi)) generated by all

algorithms a ∈ (µ, XL).

The local growth function does not exceed ∆A(L)

and is bounded above by , while ∆A(L) ≤ 2L.

Definition 4. The incorrectness degree of method µ
on a set XL is the maximum frequency of errors made
on all training subsets of length l:

If µ is correct on all subsets of length l, then  = 0.

In what follows, we use the shortened notation , ,

and , with the arguments (µ, XL) dropped.

Theorem 2. For any µ and XL,

(2)

where  = , with m ranging

from  to k + σl, and with s ranging from

max{0, m – k} to min .

EQc
l k, µ XL,( ) P I µ Xl( ) x,( ) 1={ } ,=

EQε
l k, µ XL,( ) P ν µ Xl( ) Xk,( ) ε>{ } ,=

EQν ε,
l k, µ XL,( )

=  P ν µ Xl( ) Xk,( ) ν µ Xl( ) Xl,( ) ε>–{ } Pν ε,
l k, A( ).≤

EQν ε,
l k,

Qν ε,
l k,

AL
l µ XL,( ) µ Xn

l( )   n 1 2 … N , , , = { } , N C L
l

 .= =

∆L
l

AL
l

CL
l

σL
l µ XL,( ) ν µ Xn

l( ) Xn
l,( ).

n 1 2 … N, , ,=
max=

σL
l

∆L
l AL

l

σL
l

Qν ε,
l k, µ XL,( ) ∆L

l µ XL,( ) Γ L
l ε σL

l,( ),⋅<

Γ L
l ε σ,( )

Cm
s CL m–

l s–

CL
l

--------------------
s

∑
m

max

εk

l
L
--- m εk–( ) σl,
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 will be referred to as a combinatorial
factor.

Corollary 1. The bound given by (2) is not decreas-

ing with respect to σ, since  is not decreasing
with respect to σ. The least value is reached at σ = 0,
when the method is correct:

Corollary 2. For l = k and any (µ, XL), the quality

functional  satisfies the Vapnik–Chervonenkis
bound up to the replacement of the growth function of
the entire family by a local growth function:

(3)

Note that there is no reason to take the same value
for l and k, except for the convenience of estimating

. That is why we consider the general case of arbi-
trary l and k.

This result means that learning performance can be
described not only in terms of probability theory, but
also in terms of set-depending combinatorial func-
tionals based the idea of complete cross-validation.
Bound (3) is valid for an arbitrary set, which is not nec-
essarily random and independent.

In probability theory, independence means the
invariance of the probability measure under all permu-
tations of the elements in a set. In combinatorial setting,
instead of the independence of a set, it is sufficient to
assume the invariance of the quality functional under
all permutations of a set (the symmetry of the func-
tional). Note that all of the combinatorial functionals
introduced above are symmetric. This constraint is
much weaker, because it is imposed on the quality func-
tional used rather than on the initial data. Thus, the
nature of bound (3) is purely combinatorial and is
implied by the discrete nature of an error indicator
I(x, y) and by the symmetry of the quality functional.

For combinatorial functionals, one can derive
tighter bounds depending on the properties of a specific
set. In particular, the effect of localization of the growth
function can be taken into account in such bounds. By
virtue of (1), the probability functional of uniform con-
vergence of frequencies can be considered an upper
bound for the complete cross-validation functional. The
accuracy in this bound is lost because of the redundant
requirement of uniform convergence.

The ratio of the right- to left-hand sides of (3) can be
represented as

Γ L
l ε σ,( )

Γ L
l ε σ,( )

Γ L
l ε 0,( )

CL εk–
l

CL
l

------------------ k
L
--- 

 
εk

.≤=

Qν ε,
l k,

Qν ε,
l k, µ XL,( ) 1.5∆L

l µ XL,( )e ε2
l–< 1.5∆A

L( )e ε2
l– .≤

Γ L
l

∆ A( ) 1.5e ε2
l–⋅

Qν ε,
l k,----------------------------------

∆ A( )
∆L

l
------------ 1.5e ε2

l–

Γ L
l

-----------------
∆L

l Γ L
l

Qν ε,
l k,------------.⋅ ⋅=

In each of the fractions, the numerator is an upper
bound on the denominator. Three factors on the right-
hand side of the equality describe the respective three
basic causes of overestimated probability bounds for
learning performance. The first cause is that the effect
of localization is neglected. The complexity of the finite

algorithm subfamily  resulting from learning can be
considerably lower than the complexity of the entire
family A. The second cause is associated with the rela-
tive error in the exponential bound for the combinato-
rial factor, which noticeably increases with l, in contrast
to the absolute error. The third cause is the error in the
decomposition of the complete cross-validation func-

tional into the product of the local growth function 

and the combinatorial factor .

A promising approach to improving the accuracy of
bounds is to give up the complexity characteristics of an
algorithm family. Bounds of this kind are known for
stable algorithms [5] and convex hulls of classifiers [4].
We consider one more case, when the target function is
a priori known to be monotone or nearly monotone.
Practical significance of monotone classifiers is dis-
cussed in [6]. Methods for designing monotone algo-
rithms on finite sets are considered in [3] for classifica-
tion and regression problems.

Consider a classification problem in which X is a
partially ordered set, Y = {0, 1}, the error indicator is
given by I(x, y) = |y*(x) – y|, and a learning method µ
chooses algorithms from the set A of all monotone map-
pings of X to Y.

Definition 5. The nonmonotonicity degree of a set
XL is the lowest frequency of errors made by monotone
algorithms on XL:

A set XL is called monotone if xi ≤ xj implies yi ≤ yj

for all i, j = 1, 2, …, L. A set is monotone if and only if
δ(XL) = 0. If a method µ generates algorithms with the
minimum frequency of errors on the training set in the
class of all monotone functions A, then that method is
correct on any monotone set [3].

Definition 6. The upper and lower wedges of an
object xi ∈  XL are the respective sets

The wedge cardinality wi = | (xi)| characterizes
the depth to which xi is embedded in the class it belongs
to. The smaller the cardinality wi , the nearer the object
to the boundary of the class. For boundary objects,

AL
l

∆L
l

Γ L
l

δ XL( ) ν a XL,( ).
a A∈
min=

W0 xi( ) xk XL
  x i x k and y k 0= <∈{ } ,=  

W

 

1

 

x

 

i

 

( )

 

x

 

k

 

X

 

L   x k x i and y k 1= <∈{ } .=

Wyi
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w

 

i

 

 = 0. If a monotone algorithm makes an error on 

 

x

 

i

 

, it
also makes an error on all objects of 

 

(

 

x

 

i

 

)

 

. The proof
of the following theorem relies heavily on this fact.

 

Theorem 3.

 

 

 

If 

 

µ

 

 generates an algorithm with the
minimum frequency of errors made on the training set
in the class of all monotone functions and if the non-
monotonicity degree

 

 of 

 

X

 

L

 

 is equal to

 

 

 

δ

 

, 

 

then

 

(4)

 

Corollary 3.

 

 

 

The bound does not monotonically
decrease in

 

 

 

δ

 

 

 

and is minimal at 

 

δ

 

 = 0 

 

when the set is
monotone and 

 

µ

 

 is correct

 

:

The bound obtained, in contrast to complexity
bounds, never exceeds unity. The largest value of 1 is
reached when 

 

w

 

i

 

 = 0 for all 

 

i

 

 = 1, 2, …, 

 

L

 

. This is the
case where both classes consist of pairwise incompara-
ble objects and the set splits into two antichains. The
smallest value is reached when the set is monotone and
linearly ordered. The number of wedges of cardinality

 

w

 

 then does not exceed 2 for all w = 1, 2, …, k, whence

 ≤ .

The VC-dimension of the class of monotone classi-
fiers is infinite, since there are exactly 2L dichotomies

for a set of length L consisting of pairwise incompara-
ble elements. Thus, the Vapnik–Chervonenkis classical
theory fails to give performance bounds in this case. It
is well known [6] that the effective VC-dimension of
the class of monotone functions does not exceed the
length of the maximal antichain in XL. Bound (4) is
much sharper, especially for small size sets.
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