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Neural networks

What is neural net?

I parametric family f (x , θ), θ ∈ Θ

I with universal approximation properties

I differentiable

Deep Learning is Machine Learning!

Machine Learning is always about searching for function:

E(x ,y)∼Data Loss(f (x , θ), y)→ min
θ
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Neural networks

Building neural nets

Common way to build complex functions — composition:

f (x , θ) = f1(f2(f3(. . . )))

Chain rule gives us the derivative ∇f (x , θ)

Same works for functions of vectors!
Typical example:

fi (x , θ) ∈ {Ax , σ(x), . . . }

where σ — some element-wise nonlinear function.
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Neural networks

Typical example

Output:

I regression:
I just numbers
I parameters of distribution

I classification:

× just classes
I probabilities of classes
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Goals of deep learning

End-to-end learning
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Goals of deep learning

Automation is the goal!

In DL we are required to specify:

I net topology

I trial and error
I evolutionary methods
X AutoML

I regularization
I dropout
I batch normalization
X Bayesian neural nets

I optimization method
I use more or less universal

methods like Adam
X Meta-learning

I data representation
I ”stack more layers”
I ”we need to go deeper”
X ?!?
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Section 2

Considering data structure
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Pooling invariants
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Invariants

Translation invariance

Usually followed by:

I max pooling (one invariant is of a particular interest)
I other pooling options possible

I concatenation (for subtasks of same structure)
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Invariants

Convolutional neural network (CNN)

Resulting network:
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Convolutional neural network (CNN)
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Invariants

Augmentation
If you can’t consider invariants in architecture, enlarge your
dataset.
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Recurrent Neural Networks (RNN)

Sequences as input

Applying same idea:
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Recurrent Neural Networks (RNN)

Sequences as input

Naive approach:
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Recurrent Neural Networks (RNN)

Gradients problem

Problem:
Gradient is required to pass LN layers.

Chain rule says it’s multiplication of LN quantities.

I most absolute values < 1: vanishing gradients problem

I most absolute values > 1: exploding gradients problem
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Recurrent Neural Networks (RNN)

Recurrent units

Neuron
(e.g. σ(Axt))

Same idea applied
(redundant)

Recurrent neuron
(e.g. σ(A [xt , ht−1]))
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Recurrent Neural Networks (RNN)

Recurrent neural nets

X N + L layers for
gradient to pass!

? Was previous
option better at
something?
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Long Short-Term Memory (LSTM)

Memory

Consider writing to memory task, i. e. the following operation:

if need_to_write(x):

c = f(x)

How to express it in terms of computational graphs?

Memory update formula

ct = ft ◦ ct−1 + wt ◦ f (xt) wt , ft ∈ {0, 1}

where ◦ is element-wise multiplication.
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Long Short-Term Memory (LSTM)

Gates
wt , ft are also some functions of input! For example,

I[Axt > 0]

DL main rule: if something is not differentiable, make a smooth
(soft) version of it!
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Long Short-Term Memory (LSTM)

LSTM: recurrent neurons with memory.
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Long Short-Term Memory (LSTM)

LSTM: transforming data: c ′t = tanh(Ac [xt , ht−1])
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Long Short-Term Memory (LSTM)

LSTM: writing gate: wt = σ(Aw [xt , ht−1])
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Long Short-Term Memory (LSTM)

LSTM: ct = ft ◦ ct−1 + wt ◦ c ′t
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Long Short-Term Memory (LSTM)

LSTM: ht = rt ◦ ct
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Long Short-Term Memory (LSTM)

LSTM: full scheme
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Section 3

Data representation
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Word embeddings

Word embeddings
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Word embeddings

Embeddings can be:

I learned end-to-end

I learned separately via special algorithms like Word2Vec

I pre-trained (which is an example of transfer learning)
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Word embeddings

Embeddings demystified
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Encoder-decoder architectures

Autoencoder
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Encoder-decoder architectures

Autoencoder
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Encoder-decoder architectures

Possible usage
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Encoder-decoder architectures

”Deconvolution”?
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Encoder-decoder architectures

Transposed convolution
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Encoder-decoder architectures

Unpooling
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Examples
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Examples

Inside decoder for segmentation
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Examples

Machine translation
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Section 4

Generative models
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Stochastic models

Stochastic nodes:

Es∼p(s|x ,θ)f (s, θ)→ min
θ

Where used:

I Hard attention mechanisms

I Reinforcement learning

I Generative models
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Stochastic models

REINFORCE1

∇θEs∼p(s|x ,θ)f (s, θ) = Es∼p(s|x ,θ)f (s, θ)∇θ log p(s | x , θ) +

+ Es∼p(s|x ,θ)∇θf (s, θ)

Monte-Carlo estimation

≈ f (s, θ)∇θ log p(s | x , θ) +∇θf (s, θ), s ∼ p(s | x , θ)

X universal approach

× ”high variance”

1see proof in appendix
Sergey Ivanov (517) MSU
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Stochastic models

Reparametrization trick
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Variational AutoEncoder (VAE)

Sampler

Suppose we want to model data distribution p(x).
Problem: data space is usually too complex.

1. sample z from noise distribtuion, e. g.
N (0, I )

2(a). transform noise using neural net to object
x = f (z , θ)

2(b). sample x ∼ p(x | z , θ)
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Variational AutoEncoder (VAE)

z contains all information about interdependencies!
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Generative Adversarial Networks (GAN)

I most genius idea of our
decade

:) universal approach!

:( adversarial training is
unstable
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APPENDIX
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APPENDIX

REINFORCE proof

REINFORCE derivation pt.1

∇θEs∼p(s|x ,θ)f (s, θ) =

∇θ
∫
s

p(s | x , θ)f (s, θ)ds =

=
{ }

=

∫
s

∇θ (p(s | x , θ)f (s, θ)) ds =

=

∫
s

∇θp(s | x , θ)f (s, θ)ds +

∫
s

p(s | x , θ)∇θf (s, θ)ds =

=

∫
s

∇θp(s | x , θ)f (s, θ)ds + Es∼p(s|x ,θ)∇θf (s, θ) = . . .
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REINFORCE proof

REINFORCE derivation pt.2

. . . =

∫
s

∇θp(s | x , θ)f (s, θ)ds + Es∼p(s|x ,θ)∇θf (s, θ) =

=

∫
s

p(s | x , θ)∇θ log p(s | x , θ)f (s, θ)ds + Es∼p(s|x ,θ)∇θf (s, θ) =

= Es∼p(s|x ,θ)∇θ log p(s | x , θ)f (s, θ) + Es∼p(s|x ,θ)∇θf (s, θ)
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REINFORCE proof

REINFORCE derivation pt.2

Log-derivative trick
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. . . =

∫
s

∇θp(s | x , θ)f (s, θ)ds + Es∼p(s|x ,θ)∇θf (s, θ) =
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∫
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VAE proof

VAE: notation

Suppose we have:

I p(z) — some fixed distribution

I pθ(x | z) — distribution with parameters θ

I qφ(z | x) — approximation of pθ(z | x) (which is intractable
for us) with parameters φ

By definition, pθ(x) =
∫
z
pθ(x | z)p(z)dz is a function of θ and is

also intractable.
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VAE proof

VAE: Treating latent variables

For arbitrary qφ(z | x):

log pθ(x) =

log pθ(x)

∫
z

qφ(z | x)dz =

∫
z

qφ(z | x) log pθ(x)dz =

=

∫
z

qφ(z | x) log
pθ(x)pθ(z | x)

pθ(z | x)
dz =

∫
z

qφ(z | x) log
pθ(x , z)

pθ(z | x)
dz =

=

∫
z

qφ(z | x) log
pθ(x , z)qφ(z | x)

pθ(z | x)qφ(z | x)
dz
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VAE proof

Split into summation of three components:

log pθ(x) =

∫
z

qφ(z | x) log
pθ(x | z)

qφ(z | x)
dz +

+

∫
z

qφ(z | x) log
p(z)

qφ(z | x)
dz +

+

∫
z

qφ(z | x) log
qφ(z | x)

pθ(z | x)
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VAE proof

KL-divergence

For two distributions p(ξ), q(ξ) with shared domain:

KL(p(ξ) ‖ q(ξ)) :=

∫
ξ

p(ξ) log
p(ξ)

q(ξ)
dξ ≥ 0

log pθ(x) = data term Ez∼qφ(z|x) log pθ(x | z)−
−prior coherence KL(qφ(z | x) ‖ p(z)) +

+approximation error KL(qφ(z | x) ‖ pθ(z | x))
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VAE proof

VAE justification

Variational lower bound

log pθ(x) ≥ Ez∼qφ(z|x) log pθ(x | z)− KL(qφ(z | x) ‖ p(z))

For every θ there is qφ(z | x) so that inequality turns into equality
(when qφ(z | x) = pθ(z | x) almost everywhere) ⇒ optimization of
log pθ(x) is equivalent to optimization of lower bound.
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For every θ there is 2 qφ(z | x) so that inequality turns into equality
(when qφ(z | x) = pθ(z | x) almost everywhere)

⇒ optimization of
log pθ(x) is equivalent to optimization of lower bound.

2if q is a model of enough capacity, i. e. can model any distribution
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