Efficient approximability of the Euclidean Capacitated Vehicle Routing Problem with Time Windows and Splittable Demand

Michael Khachay ${ }^{1,2,3}$
joint work with Yuri Ogorodnikov ${ }^{1,2}$
${ }^{1}$ Krasovsky Institute of Mathematics and Mechanics
${ }^{2}$ Ural Federal University
${ }^{3}$ Omsk State Technical University

MMPR 2019
Moscow, Russia
November 26, 2019

Capacitated Vehicle Routing Problem (CVRP) :: Motivation

Practical applications

See, e.g. [Vehicle Routing. Problems, Methods and Applications (Toth, Vigo. 2014)].

The spheres of applications

- Oil, gas and fuel transportation
- Retail applications
- Waste collection and management
- Mail and Small package delivery
- Food distribution

Capacitated Vehicle Routing Problem (CVRP) :: Problem statement

CVRP

Instance:

- a complete edge-weighted digraph $G=(X \cup\{y\}, E, w)$
- each customer x_{i} has a unit demand
- each vehicle has the same capacity q
- any feasible route has the form

$$
R=y, x_{i_{1}}, \ldots, x_{i_{s}}, y, \text { where } s \leq q
$$

and the cost $w(R)=w\left(y, x_{i_{1}}\right)+w\left(x_{i_{1}}, x_{i_{2}}\right)+\ldots+w\left(x_{i_{s}}, y\right)$
Goal: to find a collection $S=\left\{R_{1}, \ldots, R_{b}\right\}$ of feasible routes visiting each customer exactly once and having the minimum total cost $w(S)=\sum_{j=1}^{b} w\left(R_{j}\right)$

Capacitated Vehicle Routing Problem with Time Windows and splittable demand (CVRPTW-SD) :: Problem statement

CVRPTW-SD

Instance:

- a complete edge-weighted digraph $G=(X \cup\{y\}, E, w)$
- a set $T=\left\{t_{1}, \ldots, t_{p}\right\}$ of mutually disjoint time windows, wlog. $t_{i} \preceq t_{j}$ for any $i \leq j$
- each vehicle has the same capacity q
- each customer x_{i} has a splittable demand $d\left(x_{i}\right)$ and should be visited at time window $T\left(x_{i}\right) \in T$

Capacitated Vehicle Routing Problem with Time Windows with splittable demand(CVRPTW-SD) :: Problem statement

CVRPTW-SD

Instance (ctd):

- A feasible route is an ordered pair $\mathcal{R}_{j}=\left(R_{j}, D_{j}\right)$, where
$R_{j}=y, x_{i_{1}}, \ldots, x_{i_{s}}, y$ is a closed tour in the graph G and the n-tuple
$D_{j}=\left(d_{1 j}, \ldots, d_{n j}\right)$ fulfills the time windows

$$
T\left(x_{i_{l}}\right) \preceq T\left(x_{i_{l+1}}\right), \quad(1 \leq l<s)
$$

and capacity

$$
\begin{array}{ll}
1 \leq d_{i_{l} j} \leq d_{i_{l}}, & (1 \leq l \leq s) \\
d_{i j}=0, & i \notin\left\{i_{1}, \ldots, i_{s}\right\} \\
\sum_{i=1}^{n} d_{i j} \leq q &
\end{array}
$$

constraints, where $d_{i j}$ is a part of the i customer covered by R_{j}.
The transportation cost is $w\left(R_{j}\right)=w\left(y, x_{i_{1}}\right)+w\left(x_{i_{1}}, x_{i_{2}}\right)+\ldots+w\left(x_{i_{s}}, y\right)$

Capacitated Vehicle Routing Problem with Time Windows with splittable demand(CVRPTW-SD) :: Problem statement

CVRPTW-SD

Goal: to find, for some $m \geq 1$, a minimum cost multi-cover $\mathcal{U}=\left(\mathcal{R}_{1}, \ldots, \mathcal{R}_{m}\right)$ of the graph G, satisfying the total customer demand, i.e.

$$
\sum_{j=1}^{m} d_{i j}=d_{i}, \quad(1 \leq i \leq n)
$$

CVRP and CVRPTW-SD Related work

CVRP

- (G.Dantzig and J.Ramser, 1959) Introduced the CVRP problem
- (M.Haimovich and A.Rinooy Kan, 1985) First PTAS algorithm for $q=o(\log \log n)$
- (T.Asano et.al, 1996) Improving PTAS algorithm for $q=O(\log n / \log \log n)$
- (C.Adamaszek, and A.Czumaj, and A.Lingas, 2009) PTAS for k-tour cover problem on the plane for moderately large values of k
- (A.Das and C.Mathieu, 2015) Quasi-Polynomial Time Approximation Scheme (QPTAS) for the Euclidean plane with time complexity $n^{\log n^{O(1 / \epsilon)}}$
- (M.Khachay and R.Dubinin, 2016) First EPTAS for the CVRP in the Euclidean space of an arbitrary dimension $d>1$

CVRP and CVRPTW-SD Related work

CVRPTW

- (P.Toth and D.Vigo, 2014) Many efficient branch-and-cut methods and numerous heuristics
- (L.Song and H.Huang and H.Du, 2016) Extending QPTAS for CVRP to the case of finite number of non-intersecting time-windows with time complexity $n^{\log O(1 / \epsilon)} n$
- (M.Khachay, and Y. Ogorodnikov, 2018) Efficient PTAS for the Euclidean CVRP with Time Windows
- (M.Khachay, and Y. Ogorodnikov, 2018) Improved Polynomial Time Approximation Scheme for Capacitated Vehicle Routing Problem with Time Windows

Approximation schemes :: possible time complexities

(i) QPTAS: $O\left(n^{p o l y(\log n)^{O(1 / \varepsilon)}}\right)$
(ii) PTAS: $O\left(n^{\exp \left(\frac{1}{\varepsilon^{3}}\right)}\right)$
(iii) EPTAS: $O\left(\exp ^{\exp \frac{1}{\varepsilon^{4}}} \cdot n^{3}\right), O\left(n^{3}+\exp ^{1 / \varepsilon^{4}}\right)$
(iv) FPTAS: $O\left(\left(\frac{1}{\varepsilon}\right)^{10} \cdot n^{15}\right)=\operatorname{poly}\left(n, \frac{1}{\varepsilon}\right)$

CVRPTW-SD:: Our approximation scheme

The goal and main idea
Our goal: to develop a PTAS algorithm for the CVRPTW-SD on the Euclidean plane with $w\left(x_{i}, x_{j}\right)=\left\|x_{i}-x_{j}\right\|_{2}$
Our approach: combines

- the approach proposed by C.Adamaszek et al for the Euclidean CVRP
- QPTAS proposed by L.Song at el. for the Euclidean CVRPTW

CVRPTW-SD:: Our approximation scheme

The goal and main idea
Our goal: to develop a PTAS algorithm for the CVRPTW-SD on the Euclidean plane with $w\left(x_{i}, x_{j}\right)=\left\|x_{i}-x_{j}\right\|_{2}$
Our approach: combines

- the approach proposed by C.Adamaszek et al for the Euclidean CVRP
- QPTAS proposed by L.Song at el. for the Euclidean CVRPTW

The scheme :: main stages

- Preprocessing.
- Rounding.
- Instance decomposition onto white and gray subinstances.
- Blackboxing: applying Song's QPTAS for any white subinstance and the ITP heuristic for the grey ones.

Approximation scheme :: preliminaries

Lemma 1

For any instance of the $C V R P T W-S D$, such that $r_{1} \geq \ldots \geq r_{n}$, $r_{i}=\min \left\{w\left(y, x_{i}\right): y \in Y\right\}$, the following equation

$$
\mathrm{OPT} \geq \max \left\{\mathrm{TSP}^{*}(X \cup\{y\}), 2 r_{1}, \frac{2}{q} \sum_{i=1}^{n} d_{i} r_{i}\right\}
$$

is valid.

Approximation scheme :: preliminaries

Lemma 1

For any instance of the $C V R P T W-S D$, such that $r_{1} \geq \ldots \geq r_{n}$, $r_{i}=\min \left\{w\left(y, x_{i}\right): y \in Y\right\}$, the following equation

$$
\mathrm{OPT} \geq \max \left\{\mathrm{TSP}^{*}(X \cup\{y\}), 2 r_{1}, \frac{2}{q} \sum_{i=1}^{n} d_{i} r_{i}\right\}
$$

is valid.
Introduce ρ and N

$$
\rho=\frac{r_{1} \varepsilon}{N}, \text { where } N=\sum_{i=1}^{n}\left\lceil\frac{d_{i}}{q}\right\rceil
$$

Lemma 2

Demand of all customers, for which $r_{i} \leq \rho$, can be serviced by routes of at most ε. OPT total cost.

Approximation scheme :: preliminaries

Lemma 1

For any instance of the $C V R P T W-S D$, such that $r_{1} \geq \ldots \geq r_{n}$, $r_{i}=\min \left\{w\left(y, x_{i}\right): y \in Y\right\}$, the following equation

$$
\mathrm{OPT} \geq \max \left\{\mathrm{TSP}^{*}(X \cup\{y\}), 2 r_{1}, \frac{2}{q} \sum_{i=1}^{n} d_{i} r_{i}\right\}
$$

is valid.

Lemma 2

Demand of all customers, for which $r_{i} \leq \rho$, can be serviced by routes of at most ε. OPT total cost.

Lemma 3

$$
w\left(S_{I T P}\right) \leq 2 \cdot\left(\frac{2}{q} \sum_{i=1}^{n} d_{i} r_{i}\right)+p w(H) \leq 2 \cdot\left(\frac{2}{q} \sum_{i=1}^{n} d_{i} r_{i}\right)+p \beta \cdot \mathrm{TSP}^{*}(X)
$$

Approximation scheme :: preliminaries

Trivial and non-trivial routes
We call a feasible route \mathcal{R} non-trivial, if it visits at least two distinct customers, i.e. $|X(\mathcal{R})|>1$. Otherwise, the route is called trivial.

Approximation scheme :: preliminaries

Trivial and non-trivial routes

We call a feasible route \mathcal{R} non-trivial, if it visits at least two distinct customers, i.e. $|X(\mathcal{R})|>1$. Otherwise, the route is called trivial.

Lemma 4 [Adamaszek, etc., 2009]
For any instance of the CVRP, there exists an optimum solution $\mathcal{S}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{m}\right\}$, such that, among its m routes, at most $|X|$ are non-trivial.

Approximation scheme :: preliminaries

Trivial and non-trivial routes

We call a feasible route \mathcal{R} non-trivial, if it visits at least two distinct customers, i.e. $|X(\mathcal{R})|>1$. Otherwise, the route is called trivial.

Lemma 4 [Adamaszek, etc., 2009]

For any instance of the CVRP, there exists an optimum solution $\mathcal{S}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{m}\right\}$, such that, among its m routes, at most $|X|$ are non-trivial.

Lemma 5

For any instance of the CVRPTW-SD, there exists an optimum solution $\mathcal{S}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{m}\right\}$ having at most T non-trivial routes, where T is the number of slots.

Approximation scheme

Preprocessing

Relabel the customers in the order $r_{1} \geq r_{2} \geq \ldots \geq r_{n}$, where $r_{i}=w\left(y, x_{i}\right)$. Then, given an $\varepsilon>0$, we set a tolerance threshold

$$
\rho=\frac{r_{1} \varepsilon}{N}, \text { where } N=\sum_{i=1}^{n}\left\lceil\frac{d_{i}}{q}\right\rceil
$$

and exclude all the customers x_{i}, for which $r_{i} \leq \rho$.

Approximation scheme

Rounding

We introduce the accuracy dependent grid induced by the circles centered at the depot y of radii

$$
\rho_{i}=\rho\left(1+\frac{\varepsilon}{q}\right)^{i}, 0 \leq i \leq\left\lceil\log _{1+\frac{\varepsilon}{q}} N / \varepsilon\right\rceil
$$

Divide circles into sectors of $\left\lceil\frac{2 \pi q}{\varepsilon}\right\rceil$ angle, and move clients to the nearest location. We call locations the obtained intersection points between rays and circles. To any location, we assign p slots.

Approximation scheme

Rounding

We introduce the accuracy dependent grid induced by the circles centered at the depot y of radii

$$
\rho_{i}=\rho\left(1+\frac{\varepsilon}{q}\right)^{i}, 0 \leq i \leq\left\lceil\log _{1+\frac{\varepsilon}{q}} N / \varepsilon\right\rceil
$$

Divide circles into sectors of $\left\lceil\frac{2 \pi q}{\varepsilon}\right\rceil$ angle, and move clients to the nearest location. We call locations the obtained intersection points between rays and circles. To any location, we assign p slots.

The total number of slots:
$\Theta\left(p \cdot\left(\frac{q}{\varepsilon}\right)^{2} \log \frac{N}{\varepsilon}\right)$

Approximation scheme

Lemma 6

The proposed reduction changes the cost of any solution by at most $\varepsilon \cdot$ OPT.

Approximation scheme

Lemma 6

The proposed reduction changes the cost of any solution by at most $\varepsilon \cdot$ OPT.

Sketch of the proof

It is easy to verify, that

$$
\|x-l\|_{2} \leq p_{1}+p_{2} \leq r(x) \alpha / 2+\left(\rho_{i+1}-\rho_{i}\right) / 2 .
$$

Therefore, $\|x-l\|_{2} \leq r(x) \frac{\varepsilon}{q}$. It can be seen, that the total change of routes does not exceed

$$
\varepsilon \cdot \frac{2}{q} \sum_{i=1}^{n} d_{i} r_{i} \leq \varepsilon \cdot \mathrm{OPT},
$$

by Lemma 1 .

Instance decomposition

Instance partition to rings

(i) Partition the enclosing disk (of radius r_{1}) to rings, such that each ring (except maybe the most inner one) consists of $k=\left\lceil\log _{1+\frac{\varepsilon}{q}} \frac{5}{\varepsilon}\right\rceil$ consecutive circles
(ii) For the positive integer $a=\lceil(20 p \beta+4) / \varepsilon\rceil$ and some number $b \in\{0, \ldots, a-1\}$, starting from the outer one, color all the rings obtained in white and gray, such that the ring K_{i} is colored gray, if $i \equiv b(\bmod a)$.

Instance decomposition

Ring width :: lower bound

For any ring $K, r_{\text {out }}=r_{\text {in }}(1+\varepsilon / q)^{k}$, where $k=\left\lceil\log _{1+\frac{\varepsilon}{q}} \frac{5}{\varepsilon}\right\rceil$. Then, for its width $W(K)$,

$$
\begin{array}{r}
W(K)=r_{i n}\left(\left(1+\frac{\varepsilon}{q}\right)^{k}-1\right) \geq r_{i n}\left(\left(1+\frac{\varepsilon}{q}\right)^{\log _{1+\frac{\varepsilon}{q}} \frac{5}{\varepsilon}}-1\right) \\
=r_{i n}\left(\frac{5}{\varepsilon}-1\right) \geq 2 r_{i n} \frac{2}{\varepsilon}
\end{array}
$$

i.e.

$$
2 r_{i n} \leq \frac{\varepsilon}{2} \cdot W(K)
$$

Instance decomposition

White families

By $\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{\alpha}$ and $\operatorname{OPT}\left(\mathfrak{F}_{i}\right)$ we denote the maximal (by inclusion) families of white consecutive rings and the optimum value of the CVRPTW-SD subinstance induced by slots located in rings of the family \mathfrak{F}_{i}, respectively.

Instance decomposition

White families

By $\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{\alpha}$ and $\operatorname{OPT}\left(\mathfrak{F}_{i}\right)$ we denote the maximal (by inclusion) families of white consecutive rings and the optimum value of the CVRPTW-SD subinstance induced by slots located in rings of the family \mathfrak{F}_{i}, respectively.

Lemma 7

For any white-gray coloring of rings obtained by the following rules:
(i) any monochromatic pair of the adjacent rings is white,
(ii) the outer ring is white as well,
the following equation

$$
\sum_{i=1}^{\alpha} \mathrm{OPT}\left(\mathfrak{F}_{i}\right) \leq\left(1+\frac{\varepsilon}{2}\right) \mathrm{OPT}
$$

is valid.

Instance decomposition

Inspired by paper Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41(1), 153180 (1994)

Let $\mathcal{U}=\left\{\mathcal{R}_{1}, \ldots \mathcal{R}_{m}\right\}$ be an arbitrary optimum solution of the initial rounded instance of the CVRPTW-SD.

Instance decomposition

Take any route \mathcal{R} from the solution \mathcal{U} and shortcut onto
$\mathcal{R}_{g}(1), \mathcal{R}_{g}(2), \ldots, \mathcal{R}_{g}(l)$ subroutes

Sketch of the proof

(i) Transformation results by the one step for the single route is increasing of the transportation cost by at most $4 \cdot r_{i n} \cdot l \leq 2 l \cdot \varepsilon / 2 \cdot W(K) \leq \varepsilon / 2 \cdot w(\mathcal{R} \cap K)$
(ii) The total cost increasing caused by such a transformation for the single route \mathcal{R} does not exceed $\frac{\varepsilon}{2} \cdot \sum_{j=1}^{\alpha} w\left(\mathcal{R} \cap K_{j}\right)$,
(iii) The total cost of the obtained routes is at most $w(\mathcal{U})+\frac{\varepsilon}{2} \sum_{i=1}^{m} \sum_{j=1}^{\alpha} w\left(\mathcal{R}_{i} \cap K_{j}\right) \leq(1+\varepsilon / 2) w(\mathcal{U})$.

Instance decomposition

Lemma 8
Let $K_{1}, \ldots, K_{\alpha}$ be the gray rings. Then,

$$
\sum_{i=1}^{\alpha} \operatorname{TSP}^{*}\left(K_{i}\right) \leq(1+\pi \varepsilon) \mathrm{TSP}^{*}
$$

Instance decomposition

Lemma 8

Let $K_{1}, \ldots, K_{\alpha}$ be the gray rings. Then,

$$
\sum_{i=1}^{\alpha} \mathrm{TSP}^{*}\left(K_{i}\right) \leq(1+\pi \varepsilon) \mathrm{TSP}^{*}
$$

Instance decomposition

Lemma 8

Let $K_{1}, \ldots, K_{\alpha}$ be the gray rings. Then,

$$
\sum_{i=1}^{\alpha} \mathrm{TSP}^{*}\left(K_{i}\right) \leq(1+\pi \varepsilon) \mathrm{TSP}^{*}
$$

Instance decomposition

Lemma 8

Let $K_{1}, \ldots, K_{\alpha}$ be the gray rings. Then,

$$
\sum_{i=1}^{\alpha} \mathrm{TSP}^{*}\left(K_{i}\right) \leq(1+\pi \varepsilon) \mathrm{TSP}^{*}
$$

Instance decomposition

Lemma 8

Let $K_{1}, \ldots, K_{\alpha}$ be the gray rings. Then,

$$
\sum_{i=1}^{\alpha} \mathrm{TSP}^{*}\left(K_{i}\right) \leq(1+\pi \varepsilon) \mathrm{TSP}^{*}
$$

Instance decomposition

Sketch of the proof of Lemma 8

(i) The upper bound for the cost $w(H(K))$ of the constructed cycle $H(K)$

$$
\begin{aligned}
w(H(K)) & \leq w(E(K)) \leq w_{e x t}(K)+4 \pi \cdot r_{i n} \\
& \leq w_{\text {ext }}(K)+\pi \varepsilon \cdot W(K) \leq w_{e x t}(K)+\pi \varepsilon \cdot w(H \cap K)
\end{aligned}
$$

(ii) The final bound for the all gray rings

$$
\sum_{i=1}^{\alpha} \operatorname{TSP}^{*}\left(K_{i}\right) \leq \sum_{i=1}^{\alpha} w\left(H\left(K_{i}\right)\right) \leq(1+\pi \varepsilon) \mathrm{TSP}^{*}
$$

Instance decomposition

N.B.

Lemma 8 is valid for an arbitrary white-gray coloring. In particular, for the case, when each family \mathfrak{F} contains only a single ring

Lemma 9

Let $\operatorname{TSP}^{*}\left(K_{i}\right)$ be the optimum value for the Euclidean TSP instance enclosed in the ring K_{i}. Then, the following equation holds:

$$
\sum_{i=1} \operatorname{TSP}^{*}\left(K_{i}\right) \leq 10 \cdot \operatorname{TSP}^{*}
$$

Instance decomposition

Lemma 9

Let $\operatorname{TSP}^{*}\left(K_{i}\right)$ be the optimum value for the Euclidean TSP instance enclosed in the ring K_{i}. Then, the following equation holds:

$$
\sum_{i=1} \operatorname{TSP}^{*}\left(K_{i}\right) \leq 10 \cdot \mathrm{TSP}^{*}
$$

Sketch of the proof of Lemma 9

We obtain the following equation for two alternative colorings

$$
\begin{aligned}
& \sum_{i=1}^{k} \operatorname{TSP}^{*}\left(K_{i}\right)=\sum_{i \equiv 0} \operatorname{TSP}_{(\bmod 2)}\left(K_{i}\right)+\sum_{i \equiv 1(\bmod 2)} \operatorname{TSP}^{*}\left(K_{i}\right) \\
& \leq 2(1+\pi \varepsilon) \mathrm{TSP}^{*}+\mathrm{TSP}^{*}\left(K_{1}\right) \leq 2(1+\pi \varepsilon) \mathrm{TSP}^{*}+\mathrm{TSP}^{*} \leq 10 \cdot \mathrm{TSP}^{*},
\end{aligned}
$$

since $\varepsilon<1$.

Instance decomposition

Lemma 10. Total cost of the ITP solutions
There exists a number $b \in\{1, \ldots, a\}$, such that the total cost of all ITP solutions for the subinstances enclosed in the gray rings is at most $\frac{\varepsilon}{2} \cdot$ OPT.

Instance decomposition

Lemma 10. Total cost of the ITP solutions

There exists a number $b \in\{1, \ldots, a\}$, such that the total cost of all ITP solutions for the subinstances enclosed in the gray rings is at most $\frac{\varepsilon}{2}$. OPT.

Sketch of the proof of Lemma 10
Indeed,

$$
w\left(S_{\text {ITP }}(K)\right) \leq 2 \cdot \frac{2}{q} \sum_{x \in X_{\text {slots }}(K)} d(x) r(x)+p \beta \cdot \operatorname{TSP}^{*}(K)
$$

Instance decomposition

Lemma 10. Total cost of the ITP solutions

There exists a number $b \in\{1, \ldots, a\}$, such that the total cost of all ITP solutions for the subinstances enclosed in the gray rings is at most $\frac{\varepsilon}{2} \cdot$ OPT.

Sketch of the proof of Lemma 10

Therefore, by Lemmas 2, 9,1

$$
\begin{gathered}
\sum_{b=0}^{a-1} \sum_{i \equiv b} w\left(S_{\mathrm{ITP}}\left(K_{i}\right)\right) \leq 2 \cdot \frac{2}{q} \sum_{x \in \mathfrak{S} K} d(x) r(x)+p \beta \cdot \sum_{i=1}^{k} \operatorname{TSP}^{*}\left(K_{i}\right) \\
\leq 2 \cdot \mathrm{OPT}+10 p \beta \cdot \mathrm{TSP}^{*} \leq(2+10 p \beta) \mathrm{OPT}
\end{gathered}
$$

Hence, there exists b, such that

$$
\sum_{i \equiv b} w\left(S_{\operatorname{ITP}}\left(K_{i}\right)\right) \leq \frac{2+10 p \beta}{a} \mathrm{OPT} \leq \frac{\varepsilon}{2} \mathrm{OPT}
$$

Main Result and blackboxing

From Lemmas 7 and 10 we have

Theorem 1

For any $\varepsilon \in(0,1)$, the proposed decomposition provides
$(1+\varepsilon)$-approximate solution for the initial rounded CVRPTW-SD instance.

Main Result and blackboxing

From Lemmas 7 and 10 we have

Theorem 1

For any $\varepsilon \in(0,1)$, the proposed decomposition provides $(1+\varepsilon)$-approximate solution for the initial rounded CVRPTW-SD instance.

Blackboxing

(i) For the white subinstances we will use Song's QPTAS [Song, 2016]
(ii) For the gray subinstances we will use the ITP heuristic

Time complexity bounds

Theorem 2

Time complexity of the proposed scheme is

$$
O(I \cdot \mathcal{K}(p, q, \varepsilon)+n \log n)
$$

where

$$
I=O\left(\frac{\varepsilon}{p} \frac{\log \frac{N}{\varepsilon}}{\log \frac{1}{\varepsilon}}\right), \text { here } N=\sum_{i=1}^{n}\left\lceil\frac{d_{i}}{q}\right\rceil
$$

and

$$
\mathcal{K}(p, q, \varepsilon)=\left(\sigma_{w}^{2} q\right)^{\left(\log \left(\sigma_{w}^{2} q\right)\right)^{O(1 / \varepsilon)}}+\left(\sigma_{g}^{2} q\right)^{3}
$$

and

$$
\sigma_{w}=O\left(\frac{(p q)^{2}}{\varepsilon^{3}} \cdot \log \frac{1}{\varepsilon}\right)
$$

and

$$
\sigma_{g}=O\left(\frac{p q^{2}}{\varepsilon^{2}} \cdot \log \frac{1}{\varepsilon}\right)
$$

Time complexity bounds

Corollary 1

For any fixed $\varepsilon \in(0,1)$, the running time of the proposed scheme does not exceed $O(n \log N)$, if $p=\Omega(1), q=\Omega(1)$, and

$$
\max \{p, q\} \leq 2^{\log ^{\delta} n}
$$

for some $\delta=O(\varepsilon)$.

Time complexity bounds

Corollary 1

For any fixed $\varepsilon \in(0,1)$, the running time of the proposed scheme does not exceed $O(n \log N)$, if $p=\Omega(1), q=\Omega(1)$, and

$$
\max \{p, q\} \leq 2^{\log ^{\delta} n}
$$

for some $\delta=O(\varepsilon)$.

Corollary 2

For any fixed p and q the proposed scheme is EPTAS with time complexity $O\left(\left(\frac{1}{\varepsilon^{8}}\right)^{\left(\log \frac{1}{\varepsilon}\right)^{O(1 / \varepsilon)}} \cdot \log N+n \log n\right)$.

Conclusion and future work

Conclusion

(i) Perhaps, first approximation scheme for CVRP with time windows and splittable demand
(ii) For any fixed $\varepsilon \in(0,1)$ and the total customer demand D, the scheme finds a $(1+\varepsilon)$-approximate solution of the problem in time $O(n \log D)$ any time, when $\max \{p, q\} \leq 2^{\log ^{\delta} n}$ for some $\delta=O(\varepsilon)$
(iii) for any fixed capacity q and the number p of time windows, the proposed scheme is EPTAS

Future work

(i) Extension to an arbitrary finite dimension of Euclidean space
(ii) Extension for the non-splittable demand

Thank you for your attention!

