АПОСТЕРИОРНЫЕ АЛГОРИТМЫ В ЗАДАЧАХ ГЕОФИЗИЧЕСКОГО МОНИТОРИНГА

Воскобойникова Г. М., Кельманов А.В., Хайретдинов М.С. Институт вычислительной математики и математической геофизики СОРАН, Институт математики им. С.Л. Соболева СО РАН

10-я Международная конференция «Интеллектуальная обработка информации-2014» о. Крит, 4-11 октября 2014 г

Актуальность работы

Геофизический мониторинг ставит своей целью регулярное слежение за геодинамическими процессами и событиями в зонах подготовки и развития разрушительных природных и техногенных катастроф. Развитие и совершенствование методов геофизического мониторинга относится к числу приоритетных современных проблем. С ними напрямую связаны методы повышения точности оценивания параметров сейсмических и акустических волновых форм.

Цель работы:

- разработка и исследование помехоустойчивых алгоритмов совместного обнаружения и выделения сейсмических волновых форм, основанных на методах дискретной оптимизации;
- оценивание применимости и эффективности созданных программноалгоритмических средств для решения практических задач: нефтепромыслового бурения; сейсмического мониторинга в периоды лунно-солнечных приливов.

Постановка задачи определения координат события

$$\hat{\eta} = \eta(\gamma, \chi) + \varepsilon$$

 $\hat{\eta} = (\hat{n}_1, \dots, \hat{n}_N)^T$ — вектор времен пробега сейсмических волн, $\eta(\gamma, \chi)$ — *N*-мерный вектор вычисляемых времен пробега (теоретический годограф); *N* — число датчиков.

$$\varepsilon = (\varepsilon_1, ..., \varepsilon_N)^T$$
 – вектор невязок,
 $\chi = (x, y, z, v, t)^T$ – *m*-мерный вектор оцениваемых параметров,
 $\gamma = (\gamma_1, ..., \gamma_N)$ – матрица координат датчиков,

Распределение ошибок $\mathcal{E}_i = \hat{\eta}(\gamma_i, \chi) - \eta(\gamma_i, \chi), \quad i=1,...,N$

где $\varepsilon_i \in \Phi_{0,\sigma_i}^2$ – взаимно независимые случайные величины, $E\varepsilon_i = 0, E\varepsilon_i\varepsilon_j = \sigma_i^2\delta_{ij}, \sigma_i = \sigma(\vec{x}_i), \ \delta_{ij}, (i, j = \overline{1, N})$ –символ Кронекера

 $\sigma_{AZ}^2 = \sigma_{\eta}^2 F_1(\eta, \gamma), \sigma_R^2 = \sigma_{\eta}^2 F_2(\eta, \gamma)$ σ_{η}^2 – ошибка оценивания времен прихода, γ – вектор параметров, характеризующий геометрию расстановки сейсмической группы. Алгоритмы выделения и измерения параметров волновых форм

- Последовательный (on-line) подход ориентирован на отыскание решения задачи, оптимального лишь на текущий момент времени. (Малла С., Добеши И., Чуи К., Никифоров В.И., Рапопорт М.Б. и др.)
- Вейвлет-фильтрация сейсмических волн, позволяющая увеличивать соотношения энергий сигнала и шума. (С. Малла, И. Добеши и др.)
- Алгоритм авторегрессии проинтегрированного скользящего среднего (АРПСС). (Никифоров В.И. и др)
- Алгоритм обратной фильтрация Винера-Колмогорова (деконволюция), предназначенный для сжатия волнового импульса во времени путем приведения его к δ-образному импульсу.
- Апостериорный (off-line) подход помехоустойчивой обработки последовательностей волновых форм ориентирован на получение оптимального решения по всем накопленным данным. (Клигене Н.И., Дарховский Б.С., Кельманов А.В. и др.)

Алгоритм авторегрессии проинтегрированного скользящего среднего (АРПСС)

Пример вычисления времен вступлений волн от двух последовательных взрывов: вверху — вид решающей функции, внизу — искомая запись шума и двух волновых импульсов на его фоне. Апостериорные алгоритмы определения параметров волновых форм

в шумах.

Постановка задачи.

$$Y = (y_0, ..., y_{N-1}) = X + \Xi$$
 – наблюдаемый вектор

$$\begin{split} X &= \left(x_{0}, ..., x_{N-1}\right) \in \Re^{N} - \text{вектор с компонентами } x_{n} = \sum_{m=1}^{M} u_{n-n_{m}}\left(m\right), n = 0, ..., N-1, \\ \Xi &= \left(\varepsilon_{0}, ..., \varepsilon_{N-1}\right) \in \Phi_{0, \sigma^{2}I}. - \text{вектор шумовых компонент} \\ U_{m} &= \left(u_{0}\left(m\right), ..., u_{q-1}\left(m\right)\right), m = \overline{1, M} - \text{волновая форма} \qquad 0 < \sum_{i=0}^{q-1} u_{j}^{2}\left(m\right) < \infty, \end{split}$$

Условие квазипериодичности для моментов времени вступления волн $n_1, ..., n_M$

6

Необходимо:

по наблюдаемому вектору *Y* найти набор времен вступлений $n_1, ..., n_M$

Дискретные экстремальные задачи в геофизическом мониторинге

Задача 1: Дано: числовая последовательность $Y = (y_0, ..., y_{N-1})$ натуральные числа q, M, T_{\min} и T_{\max} . Найти: набор $(n_1, ..., n_M) \Box \Omega_M$ такой, что $G(n_1, ..., n_M) = \sum_{m=1}^M \sum_{k=0}^{q-1} y_{n_m+k}^2 \to \max$

Рассмотрим случай, когда $U_m = U = (u_0, ..., u_{q-1})$ для каждого m = 1, ..., M. Задача 2: Дано: числовая последовательность $Y = (y_0, ..., y_{N-1})$ натуральные числа q, M, T_{\min} и T_{\max} . Найти: набор $(n_1, ..., n_M) \Box \Omega_M$ такой, что

$$S(n_1,...,n_M) = \sum_{i=1}^M \sum_{k=0}^{q-1} u_k \left(u_k - 2y_{n_i+k} \right) \to \min x$$

Обе задачи 1 и 2 решаются методом динамического программирования, но с использованием различных рекуррентных формул. Задача 1 решается за время O(MN), а задача 2 – за время $O(N^2)$.

Задача 3: Дано: числовая последовательность $Y=(y_0,...,y_{N-1})$ натуральные числа q, M, T_{\min} и T_{\max} . Найти: набор $(n_1,...,n_M) \Box \Omega_M$ такой, что

$$G(n_1, ..., n_M) = \sum_{m=1}^{M} \sum_{j=1}^{M} \sum_{k=0}^{q-1} y_{n_m+k} y_{n_j+k} \to \max$$

Идея алгоритма состоит в следующем. Сначала находится решение задачи 1 при M=1 для начального участка последовательности Y, содержащего $T_{\max}-q+1$ элементов. Далее, используя этот набор, решаем задачу 2, положив $U = (y_{\hat{n}_1}, \dots, y_{\hat{n}_l+q-1})$ 7

Задача 1. Случай разных волновых форм

Логарифмическая функция максимального правдоподобия:

$$L(U, n_1, ..., n_M \mid Y, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left(y_n - \sum_{i=1}^M u_{n-n_i} \right)^2,$$

Экстремальная задача максимизации функции

$$G(n_1,...,n_M) = \sum_{m=1}^M \sum_{k=0}^{q-1} y_{n_m+k}^2 \to \max_{\Psi_M}$$

Начальные ограничения

$$\Psi_{M} = \{ (n_{1}, ..., n_{M}) : a \leq n_{1} \leq a^{+}; \\
T_{\min} \leq n_{m} - n_{m-1} \leq T_{\max} < \infty, m = 2, ..., M; a^{+} \in [a, b], b^{-} \in [a, b] \},$$

где a, a^+ , b^- , b – целые, а T_{\min} и T_{\max} – натуральные числа.

Оптимальный набор моментов времени вступления волновых форм находится по правилу:

$$\hat{\eta} = (\hat{n}_1, ..., \hat{n}_M) = Arg \max_{\eta} \sum_{m=1}^M \sum_{k=0}^{q-1} y_{n_m+k}^2,$$

Результаты численного моделирования апостериорного алгоритма для разных волновых форм (σ=0.7)

Среднеквадратическая погрешность = 9.2*10-3

Задача 2. Случай одинаковых волновых форм

Логарифмическая функция максимального правдоподобия:

$$L(U, n_1, ..., n_M \mid Y, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left(y_n - \sum_{i=1}^M u_{n-n_i} \right)^2,$$

 $\frac{\partial L}{\partial u_k} = 0, k = 0, ..., q - 1 \implies \hat{u}_k = \frac{1}{M} \sum_{i=1}^M y_{n_i+k}, k = 0, ..., q - 1$ - Оценка максимального правдоподобия для компонент

волновой формы U

Целевая функция:
$$S = \sum_{i=1}^{m} \sum_{k=0}^{q-1} \tilde{u}_k \left(\tilde{u}_k - 2y_{n_i+k} \right) \rightarrow \min_{\Omega_M}$$
.

Начальные
$$\begin{split} \Omega_{M} &= \{ \left(n_{1},...,n_{M} \right) \, \Big| \, 0 \leq n_{1} \leq T_{\max} - q - 1, N - T_{\max} - q \leq n_{M} \leq N - q - 1, \\ \text{ограничения} \\ q \leq T_{\min} \leq n_{i} - n_{i-1} \leq T_{\max}, i = \overline{2,M} \, \} \end{split}$$

Времена вступления волн и их число в последовательности :

$$\tilde{n}_0 = \underset{N-q \le n \le N-q+T_{\min}-1}{\operatorname{Arg min}} \left(S(n) + G(n) \right)$$
$$\tilde{n}_i = \operatorname{Ind}(\tilde{n}_{i-1}), i = 1, 2, \dots,$$

Оптимальный набор моментов времени вступления волновых форм находится по правилу:

$$\left(\tilde{n}_{1},...,\tilde{n}_{\tilde{M}},\tilde{M}\right) = \operatorname{Arg\,min}_{\Omega}\tilde{S}_{1}\left(n_{1},...,n_{M}\right) \implies \hat{u}_{k} = \frac{1}{\tilde{M}}\sum_{i=1}^{M} y_{\tilde{n}_{i}+k}, k = \overline{0,q-1}$$

Результаты численного моделирования апостериорного алгоритма

для одинаковых волновых форм (σ=0.7)

Среднеквадратическая погрешность =1.5*10-3

Среднеквадратическое уклонение = $1.5*10^{-2}$

Фрактальный подход для выделения волновых форм

Фрактальное представление волновых форм, связано с представлением их в виде двумерного изображения на плоскости "частота-время" с применением двумерного преобразования Фурье.

$$F(k_1,k_2) = \frac{1}{\sqrt{N_1N_2}} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1,n_2) e^{-j\frac{2\pi k_1n_1}{N_1}} \cdot e^{-j\frac{2\pi k_2n_2}{N_2}}$$

Задачи геофизического мониторинга

1. Мониторинг положения перемещающегося источника в скважине

Решение обратной задачи

 $\hat{\eta} = \eta(\gamma, \chi) + \varepsilon.$

Исходными параметрами для решения системы является вектор времен вступлений волн $\hat{\eta} = (\hat{n}_1, ..., \hat{n}_N)^T$ на сейсмоприемниках. Задача оценивания параметров вектора $\chi = (x, y, z, v, t)^T$ является частью регрессионного анализа, а ее решением служат оценки метода наименьших квадратов

$$\chi = \arg\min Q(\chi), \quad Q(\chi) = \sum_{i=1}^{N} \sigma_i^{-2} (\hat{n}_i - \eta(\gamma_i, \chi))^2$$

Для отыскания минимума функционала $Q(\chi)$ применяют итерационный метод Гаусса-Ньютона или его модификации, основанные на линейной аппроксимации функции регрессии в окрестности точки χ^k :

$$J(\gamma,\chi^k)\Delta\chi^k + \hat{\eta}(\gamma,\chi^k) - \eta + \varepsilon = 0,$$

где

$$J(\gamma, \chi) = \left(\frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_1}, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_2}, \dots, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_m}\right), \quad i = 1, \dots, n$$

Решение обратной задачи восстановления источника

Вычислительная схема сингулярного разложения (*SVD*-разложении) состоит в разложении матрицы (4) на каждом шаге итерационного процесса в произведение трех матриц $J(X, \vec{\theta}^k) = U_k \Sigma_k V_k^T$, где U_k – ортогональная n х n матрица, V_k – ортогональная $m \ge m$ матрица, V_k – ортогональная $m \ge m$ матрица, Σ_k – диагональная $n \ge m$ матрица, имеющая структуру $\Sigma_k = \left(\frac{S_k}{0}\right)$, где S_k = diag($\rho_1, \rho_2, ..., \rho_m$) – диагональная матрица сингулярных чисел, упорядоченных по невозрастанию $\rho_i \ge \rho_{i+1}$. Метод предусматривает также проведение сингулярного анализа, состоящего в исключении нулевых сингулярных чисел и соответствующих им столбцов матриц U и V. Итерационный процесс в этом случае имеет вид:

$$\vec{\theta}^{k+1} = \vec{\theta}^k + V_k S_k^{-1} \vec{d}^k, \qquad k = 0, 1, 2, \dots,$$

где \vec{d}^k – вектор, состоящий из первых *m* компонент вектора $U_k^T \vec{y}(X, \vec{\theta}^k)$.

Взрывные сейсмограммы

Рис.15. Запись взрыва на глубине 120 м., расстановка III

Взаимодействие Гравитационных и сейсмических волновых полей-Выделение лунно-

солнечных приливов методом ВПЗ

Схематически представлена методика выделения 24-х и 12-ти часовых периодичностей лунно солнечных приливов на основе вычисления спектра фаз сейсмического волнового поля (график I), порождаемого мощным низкочастотным вибратором ЦВ-100 (В) в гармоническом

Мощные сейсмические виброисточники

Стационарный виброисточник ЦВ-100

Центробежный виброисточник ЦВ-100 дебалансного типа создает возмущающую силу амплитудой 100 тонн. Эффективный диапазон частот 5.5-8.5 Гц.

Передвижной виброисточник ЦВ-40

Передвижной центробежный виброисточник с амплитудой возмущающей силы 40 тонн, диапазон частот 6.25-11.23 Гц

Мониторинговые кореллотрассы и невязки времен вступлений сейсмических волн. Дальность 356 км.

19

Мониторинг лунно-солнечных приливов-кореллотрассы. R=355 км

5							Konono	TD20011 2	17 256	0.00000	Kana Ka	MEQUOUTO	V5 D -	275km				/
сдвиг		24		-			Корело	трассы 2	17 - 250	o c nonpai			x5. K =	S75km				сигл для S
	Sum	23	40 · · · · · · · · · · ·	40		0-0 4 11	***			****	****		-		***			10.07
	Sum	ec 22		4			***			****			-		****			10.86
2.48	· 256	21	it the set	di a a ĝijniji						ed-rest de seri de			In the second second	den Hillistenis	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		14-14-14-14-14-14	4 269
2 48	255	20	where and	بالأمر ببادي	the station of the	Land and Rel.	وبديالالد مراله	فيشاعه فأفية	والاعتدادا وال	Las and sale	مربع بر المربع المراجع المراجع المربع	يد مرادان ويرايش	all a stated	List and her	Hat the	inging services	alulai dalamasini	2 972
2.46	253	10	grant and a	and the	elle als Belle Rile	hear of ha	an an islina an island. Bhu un islina an isl	kall a kaj an al	ine alder die	A	a an	in the second state of		Ann markes	te a balance and balance	and a day from	-Lulu - Lulu - Lulu - Lulu	2.572
2.40	205	19	a strategy a				WHITE STATE	and and a		a verdete fing		AND A CONTRACTOR						3.364
2.48	• 251•	18			• 4 4 • • • 8 • • •		albitet-t-a-t		ath the de	·····						111 419 44 - 9 + - 1	1991E119 10 91 11 19	• 7.328
2.48	249	17	Healthin Hill			****		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					-1910	Trift Fritt	i delinit tibete			3.927
1.34	243	16	***	******		i frank einer filte	201 4/10/10-0-11/4		****		#****	***	the state		++-+ >+++++++++		48. mile (11)/10-14	3.248
1.34	241	15		ie sin the			ife eige deit em t			g-andih-ihia				all the state of the	handleigigig a vi	Maintentaipee		3 .444
1.34	• 239·	14	-)+=++ + =+ } +=	****			****	\$~\$}ee=	***	\$1-#-\$=\$ \$ \$\$	-	-	***	***	 	• 5.09
1.32	237	13		-	-			****	-	****		in the second	-				***	3.607
1.34	235	12	distantin to the	In the state	A Distantion	4. 4. Hitel			1 11 dilitém	din - tilm site		and the set of						3.253
0	232	11			ntfefeithe-t			4.444.4		8-18-11-1-1	Min 4441-0444	- in frei in in		weile He	davabl udin u	i billindi ibi		4.061
0	231	10	Lat Lines	i in a lund	ant an Alert		And dealers		und de la suin	المعادية المعاد	-	in succession of the sector		ALL MAN ANNUL	unas a children	and the bulk same	. det it die der it.	3 644
2 24	220	a	Indeside .	. Jadenak	Alexandra a	A 4140		and a standard of	in the second by		in al an a su a		All hale.	And in the solution	lan dat milita a	and distant at a		4 002
2.24	229	9	and the second second		Above a starter of			A 11 - 11	ar magnunga Roman anka		Herefen ist unsell.	All All	den der	in the state	vijera i se	an gundenter an		4.002
2.24	• 227•	8			hub-te eve Hit		a tim dan tit after af	inin a diladi	in an	Linus facility	Alatin de d'alati	and the second second	1		Ability annuli	a distant dista	ef einde nadel an en en de	4.671
2.22	· 225·	7		+ - +++ \$	• ••••• ••• ••• • • • •		\$1-\$1 1-1-\$1		1 4-12\$\$ }~+++	MQ 44 184-4	1999					- 40 1111 (1011	·····	6.923
2.26	·223	6	*****	*****	************		****			ter fristenst	Ha-+ ++++++	n en ei fifer ift	****			-++++++++++++	****	4.313
2.24	222	5		****	***	** **	*****	+-++++ + ++++	***				**	****			***	3.121
2.24	· 221	4	****	***	****	•++-++++++++++++++++++++++++++++++++++	et-uit muth	H+ \$++ ++++	***	\$10111\$100 · · \$1	****	uifen eines stade	***	•++ • + • +++•	+		= ====== ==== === === === ===	4.799
2.24	220	3	i dini				-) 111 - (1 1			*****	with to still \$4		e ferreten	*****		m#ini	2.324
2.24	219	2			-								····	-	-4			2.608
2.26	· 217•	1		-					-						Billas met	e tibulis a	ingin (ens. if) alage - ti	5.198
										1		1 17 4 171 1	4	Luibit.				
		(о	10	20	30	40	50	60	70	80	90	100	110	120	130	140 1	50

Блок-схема основных этапов функционирования апостериорных

Заключение. Основные результаты работы

- Предложены и исследованы более точные по сравнению с известными апостериорные алгоритмы, основанные на методах дискретной оптимизации и фрактальном подходе, для совместного помехоустойчивого обнаружения и оценивания моментов времен вступления квазипериодических волновых форм в задачах геофизического мониторинга.
- 2. Разработана и внедрена новая методика решения актуальных проблем геофизического мониторинга с применением предложенных алгоритмов, включая задачи локации скважинного источника при нефтеразведочном бурении, оценивания геоэкологических рисков для окружающей социальной среды от массовых мощных взрывов с учетом воздействия метеофакторов.
- 3. Получены закономерности направленного распространения акустических колебаний инфранизкого диапазона частот в зависимости от метеоусловий, расстояния "источник-приемник" с помощью численного моделирования и анализа данных экспериментальных исследований.
- 4. Создано программное обеспечение для проведения численного моделирования и обработки экспериментальных данных.

Спасибо за внимание!

Параметры расстановки и результаты вычислений

CKI 9(3) 2)	ЗАЖИНА СТЬЕ: АБОЙ: ТАЛЕНИИ	N= 100 X= X= EX= 5 ЗАБОЯ	.00 34 1.047 =	Y= Y= EY= 3.20	.00 3.18 1.821 ГЕОЛЕ	Z= ЕZ: ЗИЧ	101.54 = 1.649 ЕСКИЙ А	- V= - EV: - V=	3.22(= .00(VT = 96) E 20 202	FM= 3 СИГМЕ 9 ЧИСЛО	J= IN	.190 .46 'ЕРАШИЙ=	5
Ι	ТОЧКА	I	Х	I	Y	I	ВРЕМЯ	I	PACCT	I	AJUMYT	Ι	НЕВЯЗКА	Ι
 I			97.404		51.507		46.039	0	148.995	_	27.87		231	 I
Ι	10	1	06.237		56.200		48.386	50	156.461		27.88		202	Ι
Ι	9	1	15.069		60.892		51.080	0	164.195		27.89		.090	Ι
Ι	8	1	23.901		65.585		53.369	0	172.163		27.89		095	Ι
Ι	7	1	32.733		70.278		56.057	0	180.334		27.90		.055	Ι
Ι	1	1	41.566		74.978		58.455	0	188.685		27.91		140	Ι
Ι	2	1	46.477		66.254		58.904	0	189.323		24.34		.111	Ι
Ι	3	1	51.388		57.531		59.042	0	190.487		20.81		113	Ι
Ι	4	1	56.299		48.807		59.780	0	192.165		17.34		.104	Ι
Ι	5	1	61.210		40.084		60.408	0	194.345		13.96		.055	Ι
Ι	6	1	66.122		31.361		61.048	0	197.011		10.69		133	Ι

Автоматизированная локация сейсмического источника

Анногация. Предложена автоматизированная технология локации разного типа сейсмических источников - промышленных взрывов, вибраторов и др. — на фоне сейсмических шумов. Эффективность предложенного подхода иллюстрируется на ряде примеров.

$$\begin{split} \mathbf{g}_{\mathrm{N}} &= \left(\mathbf{g}_{\mathrm{N-1}} + \Delta \mathbf{g}\right)^{+}, \\ \mathbf{g}_{0} &= \mathbf{0}; \\ \Delta \mathbf{g}_{\mathrm{N}} &= \mathbf{F}\left(\mathbf{\Phi}_{1}, ..., \mathbf{\Phi}_{\mathrm{p}}; \sigma_{\varepsilon}^{2}\right) \\ \mathbf{X}_{\mathrm{t}} &= \mathbf{\Phi}_{1}^{(i)} \mathbf{X}_{\mathrm{t-1}} + ... + \mathbf{\Phi}_{\mathrm{p}}^{(i)} \mathbf{X}_{\mathrm{t-p}} + \varepsilon_{\mathrm{t}} \end{split}$$

Здесь: (g)⁺ = max(0,g); Ф₁,..., Ф_p – коэффициенты авторегрессии порядка р; ф₁,..., ф_q – коэффициенты скользящего среднего; ε_N – независимая гауссовская случайная последовательность; σ_ε² – дисперсия случайных значений ряда x_i; При этом правило подачи сигнала о разладке:

 $t_p = inf \{t: g_N > h\},$ где h – пороговый уровень.

Измерение времен вступлений волн алгоритмом АРПСС

Сравнительный анализ вычисления времен вступления волн с помощью апостериорного алгоритма и алгоритма вейвлет-фильтрации

Сигнал / шум	Среднеквадратическая погрешность времен вступления $\delta_{_M}(\sigma)(ext{cek})$						
	Апостериорный алгоритм	Алгоритм вейвлет-фильтрации					
		с пороговым обнаружителем.					
10	2.2 [*] 10 ⁻⁴	1.1*10 ⁻²					
5	5.5 [*] 10 ⁻⁴	$1.2^{+10^{-2}}$					
3	1.5 [*] 10 ⁻³	1.6*10-2					
2.5	3.3 *10 ⁻³	1.8*10-2					
2	5.7 [*] 10 ⁻³	2.3 [*] 10 ⁻²					
1.7	7.9 [*] 10 ⁻³	2. 4 [*] 10 ⁻²					
1.4	9.2 [*] 10 ⁻³	2.6*10-2					
1.25	1.6*10-2	2.8 *10 ⁻²					
1.1	3.1*10-2	3.6*10-2					
1	5.2*10-2	5.3 [*] 10 ⁻²					

Решение обратной задачи

$\hat{\eta} = \eta(\gamma, \chi) + \varepsilon.$

Исходными параметрами для решения системы является вектор времен вступлений волн $\hat{\eta} = (\hat{n}_1, ..., \hat{n}_N)^T$ на сейсмоприемниках. Задача оценивания параметров вектора $\chi = (x, y, z, v, t)^T$ является частью регрессионного анализа, а ее решением служат оценки метода наименьших квадратов

$$\chi = \arg\min Q(\chi), \quad Q(\chi) = \sum_{i=1}^{N} \sigma_i^{-2} (\hat{n}_i - \eta(\gamma_i, \chi))^2$$

Для отыскания минимума функционала $Q(\chi)$ применяют итерационный метод Гаусса-Ньютона или его модификации, основанные на линейной аппроксимации функции регрессии в окрестности точки χ^k :

$$J(\gamma,\chi^k)\Delta\chi^k + \hat{\eta}(\gamma,\chi^k) - \eta + \varepsilon = 0,$$

где

$$J(\gamma, \chi) = \left(\frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_1}, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_2}, \dots, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_m}\right), \quad i = 1, \dots, n$$

Метод Качмажа

$$\begin{split} \theta_{j}^{(k+1)} &= \theta_{j}^{k} + a_{ij} \frac{\left(\sigma_{ij}^{2}\right)^{k}}{\sigma_{ui}^{2} + \sum_{k=1}^{m} a_{ij}^{2} \left(\sigma_{ij}^{2}\right)^{k}} \mathcal{A}t_{i}^{k} \ , \ a_{ij} = \frac{\partial \eta_{i}\left(\vec{\theta}, \nu, X\right)}{\partial \theta_{j}} \\ \Delta t_{i}^{k} &= t_{i} - \eta_{i}\left(\vec{\theta}^{k}, \nu, X\right) \\ \begin{pmatrix} \sigma_{ij}^{2} \end{pmatrix}^{k} \ - \text{дисперсия оценки неизвестного параметра} \, \theta_{j} \\ \text{ на шаге k} \\ \sigma_{iu}^{2} \ - \text{дисперсия оценок известных параметров (t)} \\ \begin{pmatrix} \sigma_{ij}^{2} \end{pmatrix}^{(k+1)} &= \left(\sigma_{ij}^{2}\right)^{k} \\ 1 - \frac{\left(\sigma_{ij}^{2}\right)^{k}}{\sigma_{ui}^{2} + \sum_{k=1}^{m} a_{ij}^{2} \left(\sigma_{ij}^{2}\right)^{k}} \\ \end{pmatrix} \end{split}$$

Расстановка IIa-IIb

СКВАЖИНА N= 100 УСТЬЕ: X= .00 Y= .00 ЗАБОЙ: X=-.34, Y=3.18, Z=101.54, V=3.22, FM=.190, EX=1.047, EY=1.821 EZ = 1.649 EV =.0000 геодезический азимут = 96.02 число итераций = 5

Точка	Х (град)	Ү (град)	Время (мсек)	Расстояние (м)	Азимут (град)	Невязка (мсек)
11	97.404	51.507	46.039	148.995	27.87	0.231
10	106.237	56.200	48.386	156.461	27.88	0.202
9	115.069	60.892	51.080	164.195	27.89	0.090
8	123.901	65.585	53.369	172.163	27.89	0.095
7	132.733	70.278	56.057	180.334	27.90	0.055
1	141.566	74.978	58.455	188.685	27.91	0.140
2	146.477	66.254	58.904	189.323	24.34	0.111
3	151.388	57.531	59.042	190.487	20.81	0.113
4	156.299	48.807	59.780	192.165	17.34	0.104
5	161.210	40.084	60.408	194.345	13.96	0.055
6	166.122	31.361	61.048	197.011	10.69	0.133

Фрактальная размерность

Понятие фрактальной размерности (ФР) выведено из результатов эмпирических исследований Ричардсона,

 $L(\delta) = \delta^{D}$, или D=log δ /log L(δ)

где

- *L* геометрическая длина
- δ масштаб измерения (детальность объекта)

D – фрактальная размерность.

Пример вычисления времен вступлений волн от двух последовательных взрывов: вверху – вид решающей функции, внизу – искомая запись шума и двух волновых импульсов на его фоне.

Алгоритм авторегрессии проинтегрированного скользящего среднего (АРПСС)

Сейсмоакустические эффекты землетрясения в Кузбассе 19.06.2013 г.

Запись землетрясения в г. Белово, Кемеровская обл. Точка регистрации: пос. Ключи, г. Новосибирск. Дата регистрации: 19.06.2013, время GMT.

