Recent Advances on Generalization Bounds Part I

Konstantin Vorontsov

Computing Center RAS • Moscow Institute of Physics and Technology

4th International Conference on Pattern Recognition and Machine Intelligence (PReMI'11) Moscow, Russian Federation • June 27 – July 1, 2011

Structure

- Part I. Overview of Generalization Bounds June 27, 13:40–14:40 PReMI tutorial 4 (Γ-313)
 - VC, Occam Razor, Rademacher, and margin-based bounds
 - How these bounds can be used for learning algorithm design?
- Part II. Combinatorial Generalization Bounds June 27, 15:00–16:00 PReMI tutorial 4 (continued) (Γ-313)
 - Why complexity bounds are so loose (overestimated)?
 - How to obtain tight or even exact bounds?
 - Will they be useful?
- Part III. Tight Combinatorial Generalization Bounds for Threshold Conjunction Rules June 29, 11:00-11:20 PReMI session 4 (Γ-408)
 - A practical issue from Combinatorial Generalization Bounds

Contents of the Part I

Generalization bounds: notations and definitions

- Classification problem
- Generalization bounds
- Techniques and tools

2 Complexity bounds

- Vapnik-Chervonenkis bounds (PAC learning)
- Occam Razor bounds
- Rademacher complexity bounds

3 Margin-based bounds

- Margin-based classifiers
- Kernel Machine
- Weighted voting of classifiers

Generalization bounds: notations and definitions Complexity bounds Margin-based bounds Techniques and tools

Classification problem

 $\begin{aligned} X & -\text{ a set of } objects, \text{ usually } \mathbb{R}^n \\ Y & -\text{ a set of } class \text{ labels, usually } \{-1,+1\} \text{ or } \{1,\ldots,M\} \\ y \colon X \to Y - \text{ unknown } target \text{ function} \\ X^{\ell} &= \{(x_1,y_1),\ldots,(x_{\ell},y_{\ell})\} - training \text{ set, } y_i = y(x_i), i = 1,\ldots,\ell \end{aligned}$

Classification is a supervised learning problem: find a classifier $a: X \to Y$ from a given function set Athat *generalizes well*, that is approximates well a target ynot only on the training set X^{ℓ} but everywhere on X.

One must specify accurately:

- what means "approximate well"?
- what means "approximate everywhere on X"?

Probabilistic model of data

Let $X \times Y$ be a probability space with unknown distribution p(x, y)and observations $(x_i, y_i)_{i=1}^{\ell}$ be drawn independently from p

Define a binary loss function I(a, x), usually

$$I(a,x) = \begin{bmatrix} a(x) \neq y(x) \end{bmatrix} = \begin{cases} 1, & a(x) \neq y(x) \\ 0, & a(x) = y(x) \end{cases}$$

Empirical error (error rate, frequency of errors) of a classifier a

$$\nu(a, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} I(a, x_i)$$

Probability of error (generalization error) of a classifier a

$$P(a) = \mathsf{P}_{x}(I(a, x) = 1)$$

Classification problem Generalization bounds Techniques and tools

Empirical risk minimization

Learning algorithm μ is a function that takes a training sample X^{ℓ} and gives a classifier a^* from A:

$$a^* = \mu(X^\ell)$$

Empirical risk minimization (ERM) is a classical example of the learning algorithm:

$$a^* = rgmin_{a \in A}
u(a, X^\ell)$$

Unfortunately, ERM can lead to overfitting, when

 $\nu(a^*, X^\ell) \ll P(a^*)$

Generalization bounds: notations and definitions Complexity bounds Margin-based bounds Techniques and tools

Margin-based bounds Techniques and tools
How generalization bounds can help to reduce overfitting

There are two things to do:

 to give an upper bound of the probability of error that holds for any A, any p, any μ (and sometimes any X^ℓ):

$$P(a^*) \leqslant \hat{P}(a^*, X^\ell)$$

Two types of bounds exist: $\hat{P}(a) - \text{data-independent bound (usually very loose)}$ $\hat{P}(a, X^{\ell}) - \text{data-dependent bound (most recent bounds)}$

2 to construct the *learning algorithm* μ that minimizes the generalization error bound:

$$a^* = \mu(X^\ell) \equiv rg\min_{a \in A} \hat{P}(a, X^\ell)$$

Probably Approximately Correct (PAC) learning

Problem statement [Vapnik & Chervonenkis, 1969; Valiant, 1984]: Given only A and ℓ , find a bound $\eta(\varepsilon, \ell, A)$ on the *uniform deviation* of the error frequency from the error probability:

$$P_{X^{\ell}}\Big(P(a^{*}) - \nu(a^{*}, X^{\ell}) \ge \varepsilon\Big) \le$$
$$P_{X^{\ell}}\Big(\sup_{a \in A} (P(a) - \nu(a, X^{\ell})) \ge \varepsilon\Big) \le \eta(\varepsilon, A, \ell) - ?$$

Plus: it holds for any learning algorithm μ and any distribution p**Minus:** it is a worst-case bound which can be very loose

The uniform convergence principle is an axiom in VC-theory, PAC-learning theory, and Rademacher Complexity theory

Classification problem Generalization bounds Techniques and tools

The inversion technique

If the bound has been obtained

$$\mathsf{P}_{X^{\ell}}\Big(\sup_{a\in\mathcal{A}}(\mathsf{P}(a)-\nu(a,X^{\ell}))\geqslant\varepsilon\Big)\leqslant\eta(\varepsilon,\mathcal{A},\ell)$$

then, with probability at least $1-\eta$ for any classifier $a\in A$

$$P(a) \leqslant \nu(a, X^{\ell}) + \varepsilon(\eta, A, \ell),$$

where $\varepsilon(\eta, A, \ell)$ is the *inverse function* for $\eta(\varepsilon, A, \ell)$.

A new learning algorithm: try to minimize generalization error P(a)

$$a^* = rgmin_a \min_{A} \min_{a \in A} \left(
u(a, X^{\ell}) + \varepsilon(\eta, A, \ell) \right)$$

(differs from ERM by penalty $\varepsilon(\eta, A, \ell)$ and extra optimization by A)

Generalization bounds: notations and definitions Complexity bounds Margin-based bounds Techniques and tools

The binomial tail bound for one-classifier case

The empirical error of a fixed classifier a is distributed binomially:

$$\mathsf{P}ig(
u(a,X^\ell) = rac{s}{\ell} ig) = C^s_\ell p^s (1-p)^{\ell-s}, \;\; ext{where} \; p = P(a)$$

Binomial tail - exact bound, tedious inversion:

$$\mathsf{P}(P(a) - \nu(a, X^{\ell}) \ge \varepsilon) = \sum_{s=0}^{\ell p - \ell \varepsilon} C_{\ell}^{s} p^{s} (1 - p)^{\ell - s}$$

Chernoff's inequality — inflated bound, easier inversion:

$$\leq \exp(-\ell \operatorname{KL}(p - \varepsilon \| p))$$

where $KL(q||p) = q \ln \frac{q}{p} + (1 - q) \ln \frac{1 - q}{1 - p}$ is Kullback–Leibler divergence.

Hoeffding's inequality — more inflated bound, trivial inversion:

$$\leq \exp(-2\ell\varepsilon^2)$$

Vapnik-Chervonenkis bound for finite set

Theorem (data-independent bound)

If A is a finite set of classifiers then for any $\varepsilon \in (0,1)$

$$\mathsf{P}\Big(\sup_{\mathbf{a}\in\mathcal{A}}\bigl(\mathsf{P}(\mathbf{a})-\nu(\mathbf{a},\mathsf{X}^\ell)\bigr)\geqslant\varepsilon\Big)\leqslant |\mathsf{A}|\cdot\exp\bigl(-2\ell\varepsilon^2\bigr)$$

Proof sketch: first, apply the *union bound*:

$$\mathsf{P}\Big(\sup_{a\in A}(\mathsf{P}(a)-\nu(a,X^{\ell}))\geqslant\varepsilon\Big)\leqslant \sum_{a\in A}\mathsf{P}\Big(\mathsf{P}(a)-\nu(a,X^{\ell})\geqslant\varepsilon\Big)$$

second, apply the one-classifier bound from the previous slide:

$$\leq |A| \cdot \exp\left(-2\ell\varepsilon^2\right)$$

Vapnik-Chervonenkis bound for infinite set

Theorem (data-independent bound)

If A is an arbitrary set of classifiers then for any $arepsilon\in(0,1)$

$$\mathsf{P}\Big(\sup_{a\in\mathcal{A}}(\mathsf{P}(a)-\nu(a,X^{\ell}))\geqslant\varepsilon\Big)\leqslant\Delta^{\mathcal{A}}(2\ell)\cdot\frac{3}{2}\exp(-\ell\varepsilon^{2})$$

where $\Delta^{A}(L)$ is the growth function of the set A.

Definition. The growth function $\Delta^A(L)$ of the set A is the maximal number of distinct L-dimensional binary vectors $\mathbf{a} = (I(a, x_1), \dots, I(a, x_L))$ induced by all classifiers $a \in A$ on a sample $X^L = (x_1, \dots, x_L)$

Informally, $\Delta^{A}(L)$ is a *complexity measure* of the set A.

Vapnik-Chervonenkis bounds (PAC learning) Occam Razor bounds Rademacher complexity bounds

Vapnik-Chervonenkis dimension

Definition: The VC-dimension of the set A is the maximal sample size h such that $\Delta^A(h) = 2^h$.

Theorem

If such h exists then
$$\Delta^{A}(L) \leq C_{L}^{0} + \cdots + C_{L}^{h} \leq \frac{3}{2} \frac{L^{h}}{h!}$$

Consider a two-class classification problem $Y = \{-1, +1\}$ and a set A of linear classifiers in *n*-dimensional object space $X = \mathbb{R}^n$:

$$\mathsf{a}(x) = \mathsf{sign}(w_1x^1 + \dots + w_nx^n), \quad x = (x^1, \dots, x^n) \in X.$$

Theorem

VCdim(A) = n

Vapnik-Chervonenkis bounds (PAC learning) Occam Razor bounds Rademacher complexity bounds

The inversion technique

VC-bound
$$P\left(\sup_{a \in A} (P(a) - \nu(a, X^{\ell})) \ge \varepsilon\right) \le \Delta \cdot \exp(-\ell \varepsilon^2)$$

gives with probability at least $1-\eta$

I

$$P(a) \leq \underbrace{\nu(a, X^{\ell})}_{\substack{\text{empirical} \\ \text{risk}}} + \underbrace{\sqrt{\frac{1}{\ell} \ln \Delta + \frac{1}{\ell} \ln \frac{1}{\eta}}}_{\substack{\text{complexity penalty}}}$$

VC-bound
$$P\left(\sup_{a\in A} (P(a) - \nu(a, X^{\ell})) \ge \varepsilon\right) \le \frac{3}{2} \frac{L^{h}}{h!} \cdot \frac{3}{2} \exp(-\ell \varepsilon^{2})$$

gives with probability at least $1-\eta$

$$P(a) \leq \underbrace{\nu(a, X^{\ell})}_{\substack{\text{empirical} \\ \text{risk}}} + \underbrace{\sqrt{\frac{h}{\ell} \ln\left(\frac{2e\ell}{h}\right) + \frac{1}{\ell} \ln\frac{4}{9\eta}}}_{\text{complexity penalty}}$$

Structural Risk Minimization (SRM)

Given a system of nested subsets of increasing dimensions

$$A_0 \subset A_1 \subset \cdots \subset A_h \subset \cdots$$

Find an optimal dimension h^* :

$$P(a) \leqslant \underbrace{\min_{a \in A_h} \nu(a, X^{\ell})}_{\substack{\text{empirical} \\ \text{risk minimization}}} + \underbrace{\sqrt{\frac{h}{\ell} \ln\left(\frac{2e\ell}{h}\right) + \frac{1}{\ell} \ln\frac{4}{9\eta}}_{\text{complexity penalty}} \to \min_{h}$$

The main disadvantage of SRM approach: VC-bound is very loose (overestimated) Then, h^* may be suboptimal (oversimplified)

Practitioners prefer to use Cross-Validation instead of the bound

Two main reasons of the VC-bound looseness

• The uniform deviation bound is highly overestimated when most classifiers have a vanishing probability to be obtained by the learning algorithm.

In practice, the distribution over classifiers

$$q(a) = \mathsf{P}(\mu(X^{\ell}) = a), \quad a \in A$$

is essentially nonuniform!

• The union bound is highly overestimated when there are a lot of similar classifiers.

In practice, this is usually the case!

Let us start with the first problem...

Occam Razor bound

One can not know $q(a) = P(\mu(X^{\ell}) = a)$, but one can make a shot. Let p(a) be a normalized function — "prior" distribution over A.

Theorem (Occam Razor bound)

For any "prior" p(a) over A, for any $\eta \in (0,1),$ for all $a \in A$

$${\sf P}({\sf a}) \leqslant
u({\sf a},X^\ell) + \sqrt{rac{1}{\ell}\lnrac{1}{p({\sf a})} + rac{1}{\ell}\lnrac{1}{\eta}}.$$

with probability at least $1 - \eta$.

Statement 1. If one guess well, p(a) = q(a), then this bound is most tight.

Statement 2. Although it is still very overestimated because only first of two reasons of looseness has been treated...

Occam Razor bound: how to specify p(a)?

Example 1. The uniform prior $p(a) = \frac{1}{|A|}$ gives the VC-bound:

$$P(a) \leqslant
u(a, X^\ell) + \sqrt{rac{1}{\ell} \ln |A| + rac{1}{\ell} \ln rac{1}{\eta}}.$$

with probability at least $1 - \eta$. Nothing new...

Occam Razor bound: how to specify p(a)?

Example 2.

Consider a two-class classification problem $Y = \{-1, +1\}$ and a set A of linear classifiers in *n*-dimensional object space $X = \mathbb{R}^n$:

$$a(x) = \operatorname{sign}(w_1x^1 + \cdots + w_nx^n), \quad x = (x^1, \ldots, x^n) \in X.$$

The Gaussian prior: weights $w \in \mathbb{R}^n$ are independent, with zero expectation, and equal variance σ^2 :

$$p(a) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \|w\|^2\right)$$

Substituting this prior into Occam Razor bound gives

$$P(a) \leqslant \nu(a, X^{\ell}) + \sqrt{\frac{n}{\ell} \ln \sigma \sqrt{2\pi} + \frac{\|w\|^2}{2\ell\sigma^2} + \frac{1}{\ell} \ln \frac{1}{\eta}}.$$

Regularization

The minimization of the obtained bound

$$P(a) \leqslant \nu(a, X^{\ell}) + \sqrt{\frac{n}{\ell} \ln \sigma \sqrt{2\pi} + \frac{\|w\|^2}{2\ell\sigma^2} + \frac{1}{\ell} \ln \frac{1}{\eta}} \rightarrow \min_{w}$$

can be considered as a nontrivial mixture of L_0 - and L_2 -regularization:

$$\begin{array}{ll}\nu(a, X^{\ell}) \rightarrow \min_{w} & \text{ERM}\\ \nu(a, X^{\ell}) + C_{0}n \rightarrow \min_{w} & L_{0}\text{-regularization}\\ \nu(a, X^{\ell}) + C_{1}\sum\limits_{j=1}^{n}|w_{j}| \rightarrow \min_{w} & L_{1}\text{-regularization}\\ \nu(a, X^{\ell}) + C_{2}\sum\limits_{j=1}^{n}w_{j}^{2} \rightarrow \min_{w} & L_{2}\text{-regularization}\end{array}$$

Bound minimization leads to shrinkage and features selection.

Two main reasons of the VC-bound looseness (revisited)

- The uniform deviation bound is loose when q(a) is essentially nonuniform distribution.
- The union bound is loose when there are a lot of similar classifiers.

Occam Razor bound treats the first problem. Its main difficulty is to guess well the prior p(a).

Below we consider approaches which treat the second problem...

Further readings on Occam Razor bounds:

[1] *Langford J.* Quantitatively Tight Sample Complexity Bounds: Ph.D. thesis. Carnegie Mellon Thesis. 2002.

[2] Langford J. Tutorial on practical prediction theory for classification. Journal of Machine Learning Research. 2005. Vol. 6. Pp. 273–306.

The notion of Rademacher Complexity

 $\mathscr{L}: A \times X \to [-1, +1]$ — the real-valued bounded loss function $\mathscr{L}(a, x)$ — the loss of a classifier *a* at the object *x* **a** = $(\mathscr{L}(a, x_1), \dots, \mathscr{L}(a, x_\ell))$ — *loss vector* of a classifier *a*.

Definition 1. Local Rademacher complexity of the set A on X^{ℓ}

$$\mathcal{R}(A, X^{\ell}) = \mathsf{E}_{\sigma} \sup_{a \in A} \left| \frac{1}{\ell} \sum_{i=1}^{\ell} \sigma_i \mathscr{L}(a, x_i) \right|,$$

where $\sigma_1, \ldots, \sigma_\ell$ are independent Rademacher random variables, i. e. $P(\sigma_i = -1) = P(\sigma_i = +1) = \frac{1}{2}$.

Interpretation: If for any noise vector $(\sigma_1, \ldots, \sigma_\ell)$ one can find in A a highly covariated loss vector, then the set A is complex.

Definition 2. Rademacher complexity of the set A:

$$\mathcal{R}(A) = \mathsf{E}_X \mathcal{R}(A, X^\ell)$$

Ĩ

Vapnik-Chervonenkis bounds (PAC learning) Occam Razor bounds Rademacher complexity bounds

Generalization bound via Rademacher Complexity

$$\tilde{P}(a) = \mathsf{E}\mathscr{L}(a, x) - \text{expected loss}$$
$$\tilde{\nu}(a, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathscr{L}(a, x_i) - \text{empirical loss}$$

Theorem

With probability at least $1 - \eta$ for all $a \in A$

$$\mathcal{P}(a) \leqslant \tilde{\nu}(a, X) + 2\mathcal{R}(A) + \sqrt{\frac{1}{2\ell} \ln \frac{2}{\eta}}$$

 $\leqslant \tilde{\nu}(a, X) + 2\mathcal{R}(A, X) + 3\sqrt{\frac{1}{2\ell} \ln \frac{2}{\eta}}$

Most important properties of Rademacher Complexity

Relationship with the growth function:

$$\mathcal{R}(\mathcal{A}) \leqslant \sqrt{rac{2}{\ell} \ln \Delta^{\mathcal{A}}(\ell)}$$

② For any sets of classifiers A, B and any constant $c \in \mathbb{R}$

$$\begin{aligned} \mathcal{R}(A \cup B) &\leqslant \mathcal{R}(A) + \mathcal{R}(B); \\ \mathcal{R}(c \cdot A) &= |c| \cdot \mathcal{R}(A), \qquad c \cdot A = \{c\mathbf{a} \colon a \in A\}; \\ \mathcal{R}(A \oplus B) &\leqslant \mathcal{R}(A) + \mathcal{R}(B), \quad A \oplus B = \{\mathbf{a} + \mathbf{b} \colon a \in A, \ b \in B\}; \end{aligned}$$

The convex hull of the set of loss vectors A has the same Rademacher complexity as A:

$$\mathcal{R}\left\{\sum_{a\in A}c_a\mathbf{a}\colon \sum_{a\in A}|c_a|\leqslant 1
ight\}=\mathcal{R}(A).$$

Properties of Rademacher Complexity

Rademacher Complexity being defined via covariance has a lot of convenient algebraical properties.

Due to this fact Rademacher Complexity can be estimated for nontrivial and practically useful sets of classifiers.

Below we consider two of them: kernel machines and boosting.

Further readings on Rademacher Complexity

[1] Bartlett P., Bousquet O., Mendelson S. Local rademacher complexities. Vol. 33. Institute of Mathematical Statistics, 2005. P. 1497–1537.

[2] Boucheron S., Bousquet O., Lugosi G. Theory of classification: A survey of some recent advances. ESAIM: Probability and Statistics. 2005. No. 9. Pp. 323–375.

Continuous approximations of threshold loss function

Consider a two-class classification problem $Y = \{-1, +1\}$ and a set A of classifiers a(x, w) = sign f(x, w).

For linear classifier in *n*-dimensional object space $X = \mathbb{R}^n$:

$$f(x,w) = w_1 x^1 + \cdots + w_n x^n = \langle x_i, w \rangle.$$

Definition. *Margin* of the object x_i with a class label $y_i \in \{-1, 1\}$

$$M_i(w) = y_i f(x_i, w)$$

 $M_i(w) < 0 \iff$ classifier a(x, w) makes an error on x_i .

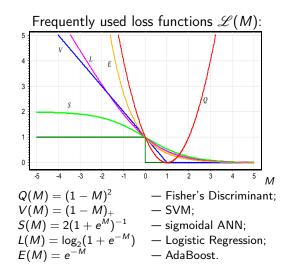
From Empirical Risk Minimization to *Approximated ERM*:

$$\nu(w, X^{\ell}) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \tilde{\nu}(w, X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

loss function $\mathscr{L}(M)$ is continuous, nonincreasing, nonnegative.

Margin-based classifiers Kernel Machine Weighted voting of classifiers

Continuous approximations of threshold loss function



Approximation and Regularization of the Empirical Risk

Many practical learning algorithms are based on both Approximation and Regularization of the Empirical Risk, e.g.

$$\tilde{\nu}(w, X^{\ell}) + C \|w\|^2 \rightarrow \min_{w};$$

This can be justified from generalization bounds.

Theorem

Let A be a set of linear classifiers, loss function is bounded $[M<0] \leq \mathcal{L}(M) \leq \mathcal{L}_{max}$ and has a Lipschitz constant λ . Then with probability at least $1 - \eta$ for all $a \in A$

$$P(a) \leqslant \tilde{\nu}(w, X^{\ell}) + 2\lambda \mathcal{R}(A, X^{\ell}) + \mathscr{L}_{\max} \sqrt{\frac{2}{\ell} \ln \frac{1}{\eta}}$$

Rademacher Complexity bound for Kernel Machines

Consider a kernel based linear classifier

$$a(x,w) = \operatorname{sign}\left(\sum_{i=1}^{\ell} w_i K(x_i,x) - w_0\right),$$

Theorem

If w is bounded in a sense of the norm
$$\|w\|_{K}^{2} = \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} w_{i}w_{j}K(x_{i}, x_{j}) \leq B^{2}, \text{ then}$$
$$\mathcal{R}(A, X^{\ell}) \leq \frac{2B}{\ell} \sqrt{\sum_{i=1}^{\ell} K(x_{i}, x_{i})}$$

Interpretation: $||w||_{\mathcal{K}} \leq B$ is a data-dependent regularization. Learning algorithm: minimize $||w||_{\mathcal{K}}$ until $\tilde{\nu}(a, X^{\ell})$ grow.

Rademacher Complexity bound for Kernel Machines

Learning algorithm: minimize $||w||_{\mathcal{K}}$ until $\tilde{\nu}(a, X^{\ell})$ grow.

Learning algorithm as an optimization problem: data-dependent and kernel-dependent regularization:

$$\sum_{i=1}^{\ell} \mathscr{L}(M_{i}(w)) + \underbrace{\frac{2}{\ell} \sqrt{\sum_{i=1}^{\ell} \sum_{j=1}^{\ell} w_{i}w_{j}K(x_{i}, x_{j})}}_{\text{regularization term (complexity penalty)}} \sqrt{\sum_{i=1}^{\ell} K(x_{i}, x_{i})} \rightarrow \min_{w}$$

Note: regularization term may be nontrivial... in contrast with usual $||w||^2$ or L_p -norms

Weighted voting of classifiers

Weighted voting of classifiers (*boosting*, *bagging*, etc.):

$$a(x) = \operatorname{sign} \sum_{t=1}^{T} w_t b_t(x), \quad w_t \ge 0,$$

where $b_t(x)$ are base classifiers of VC-dimension h.

 $b_t(x)$ can be learned independently (bagging) or subsequently (boosting). It is no matter for generalization!

From the property $\mathcal{R}(\operatorname{conv} A) = \mathcal{R}(A)$ one obtain

$$\mathcal{R}(\mathsf{conv}\mathcal{A}) \leqslant \sqrt{rac{2h}{\ell} \ln rac{\ell e}{h}},$$

where h is VC-dimension of the set of base classifiers.

Margin-based classifiers Kernel Machine Weighted voting of classifiers

Generalization bound for weighted voting

Theorem

For any a with probability at least $1 - \eta$

$$P(a) \leq \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) + 2\lambda \sqrt{\frac{2h}{\ell} \ln \frac{\ell e}{h}} + \mathscr{L}_{\max} \sqrt{\frac{2}{\ell} \ln \frac{1}{\eta}}.$$

Conclusions for weighted voting learning algorithms:

- a great variety of loss functions $\mathscr{L}(M)$ can be used;
- generalization of weighted voting does not depend on T;
- boosting maximizes margins *M_i* effectively, then minimizing the first term of the bound;
- one can use very simple base classifiers

Further reading

Further readings on margin-based generalization bounds

[1] *Koltchinskii V., Panchenko D.* Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics. 2002. Vol. 30, No. 1. Pp 1–50.

[2] Boucheron S., Bousquet O., Lugosi G. Theory of classification: A survey of some recent advances. ESAIM: Probability and Statistics. 2005. No. 9. Pp. 323–375.

Margin-based classifiers Kernel Machine Weighted voting of classifiers

Conclusion (Part I)

- Generalization bounds give optimization problems to construct learning algorithms with better performance.
- Typically, this is ERM Approximation + Regularization.
- The better performance is not always successfully attained because of the looseness of the bounds.
- There are two reasons for the looseness:
 - nonuniform splitting of the set of classifiers;
 - similarity of classifiers.
- None of recent generalization bounds can treat both problems.

To be continued in 20 minutes...

We will consider a *combinatorial approach*, the first approach in Learning Theory that takes into account both splitting and similarity of a classifier set and can give exact generalization bounds.

Margin-based classifiers Kernel Machine Weighted voting of classifiers

Questions?

Konstantin Vorontsov vokov@forecsys.ru http://www.ccas.ru/voron

www.MachineLearning.ru/wiki (in Russian):

- Участник:Vokov
- Слабая вероятностная аксиоматика
- Расслоение и сходство алгоритмов (виртуальный семинар)