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Structure

Part I. Overview of Generalization Bounds
June 27, 13:40–14:40 PReMI tutorial 4 (Г-313)

VC, Occam Razor, Rademacher, and margin-based bounds
How these bounds can be used for learning algorithm design?

Part II. Combinatorial Generalization Bounds
June 27, 15:00–16:00 PReMI tutorial 4 (continued) (Г-313)

Why complexity bounds are so loose (overestimated)?
How to obtain tight or even exact bounds?
Will they be useful?

Part III. Tight Combinatorial Generalization Bounds
for Threshold Conjunction Rules
June 29, 11:00-11:20 PReMI session 4 (Г-408)

A practical issue from Combinatorial Generalization Bounds
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Classification problem

X — a set of objects, usually R
n

Y — a set of class labels, usually {−1,+1} or {1, . . . ,M}
y : X → Y — unknown target function
X ℓ = {(x1, y1), . . . , (xℓ, yℓ)} — training set, yi = y(xi ), i = 1, . . . , ℓ

Classification is a supervised learning problem:

find a classifier a : X → Y from a given function set A
that generalizes well, that is approximates well a target y
not only on the training set X ℓ but everywhere on X .

One must specify accurately:

what means “approximate well”?

what means “approximate everywhere on X ”?
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Probabilistic model of data

Let X ×Y be a probability space with unknown distribution p(x , y)
and observations (xi , yi )

ℓ
i=1

be drawn independently from p

Define a binary loss function I (a, x), usually

I (a, x) =
[
a(x) 6= y(x)

]
=

{

1, a(x) 6= y(x)

0, a(x) = y(x)

Empirical error (error rate, frequency of errors) of a classifier a

ν(a,X ℓ) =
1

ℓ

ℓ∑

i=1

I (a, xi )

Probability of error (generalization error) of a classifier a

P(a) = Px

(
I (a, x) = 1

)
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Empirical risk minimization

Learning algorithm µ is a function that takes a training sample X ℓ

and gives a classifier a∗ from A:

a∗ = µ(X ℓ)

Empirical risk minimization (ERM) is a classical example of the
learning algorithm:

a∗ = argmin
a∈A

ν(a,X ℓ)

Unfortunately, ERM can lead to overfitting, when

ν(a∗,X ℓ) ≪ P(a∗)
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How generalization bounds can help to reduce overfitting

There are two things to do:

1 to give an upper bound of the probability of error that holds
for any A, any p, any µ (and sometimes any X ℓ):

P(a∗) 6 P̂(a∗,X ℓ)

Two types of bounds exist:
P̂(a) — data-independent bound (usually very loose)
P̂(a,X ℓ) — data-dependent bound (most recent bounds)

2 to construct the learning algorithm µ that minimizes the
generalization error bound:

a∗ = µ(X ℓ) ≡ argmin
a∈A

P̂(a,X ℓ)
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Probably Approximately Correct (PAC) learning

Problem statement [Vapnik & Chervonenkis, 1969; Valiant, 1984]:
Given only A and ℓ, find a bound η(ε, ℓ,A) on the uniform

deviation of the error frequency from the error probability:

PX ℓ

(

P(a∗)− ν(a∗,X ℓ) > ε
)

6

PX ℓ

(

sup
a∈A

(
P(a)− ν(a,X ℓ)

)
> ε

)

6 η(ε,A, ℓ) — ?

Plus: it holds for any learning algorithm µ and any distribution p

Minus: it is a worst-case bound which can be very loose

The uniform convergence principle is an axiom in VC-theory,
PAC-learning theory, and Rademacher Complexity theory
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The inversion technique

If the bound has been obtained

PX ℓ

(

sup
a∈A

(
P(a)− ν(a,X ℓ)

)
> ε

)

6 η(ε,A, ℓ)

then, with probability at least 1− η for any classifier a ∈ A

P(a) 6 ν(a,X ℓ) + ε(η,A, ℓ),

where ε(η,A, ℓ) is the inverse function for η(ε,A, ℓ).

A new learning algorithm: try to minimize generalization error P(a)

a∗ = arg
a

min
A

min
a∈A

(

ν(a,X ℓ) + ε(η,A, ℓ)
)

(differs from ERM by penalty ε(η,A, ℓ) and extra optimization by A)
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The binomial tail bound for one-classifier case

The empirical error of a fixed classifier a is distributed binomially:

P
(
ν(a,X ℓ) = s

ℓ

)
= C s

ℓ p
s(1− p)ℓ−s , where p = P(a)

Binomial tail — exact bound, tedious inversion:

P
(
P(a)− ν(a,X ℓ) > ε

)
=

ℓp−ℓε
∑

s=0

C s
ℓ p

s(1− p)ℓ−s

Chernoff’s inequality — inflated bound, easier inversion:

6 exp
(
−ℓKL(p − ε‖p)

)

where KL(q‖p) = q ln q

p
+ (1− q) ln 1−q

1−p
is Kullback–Leibler divergence.

Hoeffding’s inequality — more inflated bound, trivial inversion:

6 exp
(
−2ℓε2

)
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Vapnik-Chervonenkis bound for finite set

Theorem (data-independent bound)

If A is a finite set of classifiers then for any ε ∈ (0, 1)

P
(

sup
a∈A

(
P(a)− ν(a,X ℓ)

)
> ε

)

6 |A| · exp
(
−2ℓε2

)

Proof sketch:
first, apply the union bound:

P
(

sup
a∈A

(
P(a)− ν(a,X ℓ)

)
> ε

)

6
∑

a∈A

P
(

P(a)− ν(a,X ℓ) > ε
)

second, apply the one-classifier bound from the previous slide:

6 |A| · exp
(
−2ℓε2

)
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Vapnik-Chervonenkis bound for infinite set

Theorem (data-independent bound)

If A is an arbitrary set of classifiers then for any ε ∈ (0, 1)

P
(

sup
a∈A

(
P(a)− ν(a,X ℓ)

)
> ε

)

6 ∆A(2ℓ) · 3

2
exp

(
−ℓε2

)

where ∆A(L) is the growth function of the set A.

Definition. The growth function ∆A(L) of the set A is
the maximal number of distinct L-dimensional binary vectors
a =

(
I (a, x1), . . . , I (a, xL)

)
induced by all classifiers a ∈ A

on a sample X L = (x1, . . . , xL)

Informally, ∆A(L) is a complexity measure of the set A.
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Vapnik-Chervonenkis dimension

Definition: The VC-dimension of the set A is the maximal sample
size h such that ∆A(h) = 2h.

Theorem

If such h exists then ∆A(L) 6 C 0
L + · · ·+ Ch

L 6
3

2

Lh

h!

Consider a two-class classification problem Y = {−1,+1} and
a set A of linear classifiers in n-dimensional object space X = R

n:

a(x) = sign(w1x
1 + · · ·+ wnx

n), x = (x1, . . . , xn) ∈ X .

Theorem

VCdim(A) = n
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The inversion technique

VC-bound P
(

sup
a∈A

(
P(a)− ν(a,X ℓ)

)
> ε

)

6 ∆ · exp
(
−ℓε2

)

gives with probability at least 1− η

P(a) 6 ν(a,X ℓ)
︸ ︷︷ ︸

empirical
risk

+

√

1

ℓ
ln∆ +

1

ℓ
ln

1

η
︸ ︷︷ ︸

complexity penalty

VC-bound P
(

sup
a∈A

(
P(a)− ν(a,X ℓ)

)
> ε

)

6
3

2

Lh

h!
· 3

2
exp

(
−ℓε2

)

gives with probability at least 1− η

P(a) 6 ν(a,X ℓ)
︸ ︷︷ ︸

empirical
risk

+

√

h

ℓ
ln

(
2eℓ

h

)

+
1

ℓ
ln

4

9η
︸ ︷︷ ︸

complexity penalty
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Structural Risk Minimization (SRM)

Given a system of nested subsets of increasing dimensions

A0 ⊂ A1 ⊂ · · · ⊂ Ah ⊂ · · ·

Find an optimal dimension h∗:

P(a) 6 min
a∈Ah

ν(a,X ℓ)

︸ ︷︷ ︸

empirical
risk minimization

+

√

h

ℓ
ln

(
2eℓ

h

)

+
1

ℓ
ln

4

9η
︸ ︷︷ ︸

complexity penalty

→ min
h

The main disadvantage of SRM approach:
VC-bound is very loose (overestimated)
Then, h∗ may be suboptimal (oversimplified)

Practitioners prefer to use Cross-Validation instead of the bound
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Two main reasons of the VC-bound looseness

The uniform deviation bound is highly overestimated when
most classifiers have a vanishing probability to be obtained by
the learning algorithm.

In practice, the distribution over classifiers

q(a) = P
(
µ(X ℓ) = a

)
, a ∈ A

is essentially nonuniform!

The union bound is highly overestimated when there are
a lot of similar classifiers.

In practice, this is usually the case!

Let us start with the first problem...
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Occam Razor bound

One can not know q(a) = P
(
µ(X ℓ) = a

)
, but one can make a shot.

Let p(a) be a normalized function — “prior” distribution over A.

Theorem (Occam Razor bound)

For any “prior” p(a) over A, for any η ∈ (0, 1), for all a ∈ A

P(a) 6 ν(a,X ℓ) +

√

1

ℓ
ln

1

p(a)
+

1

ℓ
ln

1

η
.

with probability at least 1− η.

Statement 1. If one guess well, p(a) = q(a), then this bound is
most tight.

Statement 2. Although it is still very overestimated because
only first of two reasons of looseness has been treated...
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Occam Razor bound: how to specify p(a)?

Example 1.
The uniform prior p(a) = 1

|A| gives the VC-bound:

P(a) 6 ν(a,X ℓ) +

√

1

ℓ
ln |A|+ 1

ℓ
ln

1

η
.

with probability at least 1− η. Nothing new...
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Occam Razor bound: how to specify p(a)?

Example 2.
Consider a two-class classification problem Y = {−1,+1} and
a set A of linear classifiers in n-dimensional object space X = R

n:

a(x) = sign(w1x
1 + · · ·+ wnx

n), x = (x1, . . . , xn) ∈ X .

The Gaussian prior: weights w ∈ R
n are independent,

with zero expectation, and equal variance σ2:

p(a) =
1

(σ
√
2π)n

exp
(

− 1

2σ2
‖w‖2

)

Substituting this prior into Occam Razor bound gives

P(a) 6 ν(a,X ℓ) +

√

n

ℓ
lnσ

√
2π +

‖w‖2
2ℓσ2

+
1

ℓ
ln

1

η
.
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Regularization

The minimization of the obtained bound

P(a) 6 ν(a,X ℓ) +

√

n

ℓ
lnσ

√
2π +

‖w‖2
2ℓσ2

+
1

ℓ
ln

1

η
→ min

w

can be considered as a nontrivial mixture of L0- and L2-regularization:

ν(a,X ℓ) → min
w

ERM

ν(a,X ℓ) + C0n → min
w

L0-regularization

ν(a,X ℓ) + C1

n∑

j=1

|wj | → min
w

L1-regularization

ν(a,X ℓ) + C2

n∑

j=1

w2
j → min

w
L2-regularization

Bound minimization leads to shrinkage and features selection.
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Two main reasons of the VC-bound looseness (revisited)

The uniform deviation bound is loose
when q(a) is essentially nonuniform distribution.

The union bound is loose
when there are a lot of similar classifiers.

Occam Razor bound treats the first problem.
Its main difficulty is to guess well the prior p(a).

Below we consider approaches which treat the second problem...

Further readings on Occam Razor bounds:

[1] Langford J. Quantitatively Tight Sample Complexity Bounds: Ph.D. thesis.
Carnegie Mellon Thesis. 2002.

[2] Langford J. Tutorial on practical prediction theory for classification. Journal

of Machine Learning Research. 2005. Vol. 6. Pp. 273–306.
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The notion of Rademacher Complexity

L : A× X → [−1,+1] — the real-valued bounded loss function
L (a, x) — the loss of a classifier a at the object x
a =

(
L (a, x1), . . . ,L (a, xℓ)

)
— loss vector of a classifier a.

Definition 1. Local Rademacher complexity of the set A on X ℓ

R(A,X ℓ) = Eσ sup
a∈A

∣
∣
∣
∣

1

ℓ

ℓ∑

i=1

σiL (a, xi )

∣
∣
∣
∣
,

where σ1, . . . , σℓ are independent Rademacher random variables,
i. e. P(σi = −1) = P(σi = +1) = 1

2
.

Interpretation: If for any noise vector (σ1, . . . , σℓ) one can find
in A a highly covariated loss vector, then the set A is complex.

Definition 2. Rademacher complexity of the set A:

R(A) = EXR(A,X ℓ)
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Generalization bound via Rademacher Complexity

P̃(a) = EL (a, x) — expected loss

ν̃(a,X ℓ) = 1

ℓ

ℓ∑

i=1

L (a, xi ) — empirical loss

Theorem

With probability at least 1− η for all a ∈ A

P̃(a) 6 ν̃(a,X ) + 2R(A) +

√

1

2ℓ
ln

2

η

6 ν̃(a,X ) + 2R(A,X ) + 3

√

1

2ℓ
ln

2

η
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Most important properties of Rademacher Complexity

1 Relationship with the growth function:

R(A) 6
√

2

ℓ
ln∆A(ℓ)

2 For any sets of classifiers A, B and any constant c ∈ R

R(A ∪ B) 6 R(A) +R(B);

R(c · A) = |c | · R(A), c · A = {ca : a ∈ A};
R(A⊕ B) 6 R(A) +R(B), A⊕ B = {a+ b : a ∈ A, b ∈ B};

3 The convex hull of the set of loss vectors A has the same
Rademacher complexity as A:

R
{∑

a∈A

caa :
∑

a∈A

|ca| 6 1
}

= R(A).
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Properties of Rademacher Complexity

Rademacher Complexity being defined via covariance has a lot of
convenient algebraical properties.

Due to this fact Rademacher Complexity can be estimated for
nontrivial and practically useful sets of classifiers.

Below we consider two of them: kernel machines and boosting.

Further readings on Rademacher Complexity

[1] Bartlett P., Bousquet O., Mendelson S. Local rademacher complexities.
Vol. 33. Institute of Mathematical Statistics, 2005. P. 1497–1537.

[2] Boucheron S., Bousquet O., Lugosi G. Theory of classification: A survey
of some recent advances. ESAIM: Probability and Statistics. 2005. No. 9.
Pp. 323–375.
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Continuous approximations of threshold loss function

Consider a two-class classification problem Y = {−1,+1} and
a set A of classifiers a(x ,w) = sign f (x ,w).

For linear classifier in n-dimensional object space X = R
n:

f (x ,w) = w1x
1 + · · ·+ wnx

n = 〈xi ,w〉.

Definition. Margin of the object xi with a class label yi ∈ {−1, 1}

Mi (w) = yi f (xi ,w)

Mi (w) < 0 ⇐⇒ classifier a(x ,w) makes an error on xi .

From Empirical Risk Minimization to Approximated ERM:

ν(w ,X ℓ) =

ℓ∑

i=1

[
Mi (w) < 0

]
6 ν̃(w ,X ℓ) =

ℓ∑

i=1

L
(
Mi (w)

)
→ min

w
;

loss function L (M) is continuous, nonincreasing, nonnegative.
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Continuous approximations of threshold loss function

Frequently used loss functions L (M):

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

S

L
V    

E          

        Q

M

Q(M) = (1−M)2 — Fisher’s Discriminant;
V (M) = (1−M)+ — SVM;

S(M) = 2(1 + e
M)−1 — sigmoidal ANN;

L(M) = log2(1 + e
−M) — Logistic Regression;

E (M) = e
−M — AdaBoost.

Konstantin Vorontsov www.ccas.ru/voron Recent Advances on Generalization Bounds – Part I



Generalization bounds: notations and definitions
Complexity bounds

Margin-based bounds

Margin-based classifiers
Kernel Machine
Weighted voting of classifiers

Approximation and Regularization of the Empirical Risk

Many practical learning algorithms are based on both
Approximation and Regularization of the Empirical Risk, e. g.

ν̃(w ,X ℓ) + C‖w‖2 → min
w

;

This can be justified from generalization bounds.

Theorem

Let A be a set of linear classifiers, loss function is bounded

[M<0] 6 L (M) 6 Lmax and has a Lipschitz constant λ.

Then with probability at least 1− η for all a ∈ A

P(a) 6 ν̃(w ,X ℓ) + 2λR(A,X ℓ) + Lmax

√

2

ℓ
ln

1

η
.
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Rademacher Complexity bound for Kernel Machines

Consider a kernel based linear classifier

a(x ,w) = sign

( ℓ∑

i=1

wiK (xi , x)− w0

)

,

Theorem

If w is bounded in a sense of the norm

‖w‖2K =
ℓ∑

i=1

ℓ∑

j=1

wiwjK (xi , xj) 6 B2, then

R(A,X ℓ) 6
2B

ℓ

√

ℓ∑

i=1

K (xi , xi ) .

Interpretation: ‖w‖K 6 B is a data-dependent regularization.
Learning algorithm: minimize ‖w‖K until ν̃(a,X ℓ) grow.

Konstantin Vorontsov www.ccas.ru/voron Recent Advances on Generalization Bounds – Part I



Generalization bounds: notations and definitions
Complexity bounds

Margin-based bounds

Margin-based classifiers
Kernel Machine
Weighted voting of classifiers

Rademacher Complexity bound for Kernel Machines

Learning algorithm: minimize ‖w‖K until ν̃(a,X ℓ) grow.

Learning algorithm as an optimization problem:
data-dependent and kernel-dependent regularization:

ℓ∑

i=1

L
(
Mi (w)

)

︸ ︷︷ ︸

approximated ERM

+
2

ℓ

√
√
√
√

ℓ∑

i=1

ℓ∑

j=1

wiwjK (xi , xj)

√

ℓ∑

i=1

K (xi , xi )

︸ ︷︷ ︸

regularization term (complexity penalty)

→ min
w

Note: regularization term may be nontrivial...
in contrast with usual ‖w‖2 or Lp-norms
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Weighted voting of classifiers

Weighted voting of classifiers (boosting, bagging, etc.):

a(x) = sign
T∑

t=1

wtbt(x), wt > 0,

where bt(x) are base classifiers of VC-dimension h.

bt(x) can be learned independently (bagging) or subsequently
(boosting). It is no matter for generalization!

From the property R(convA) = R(A) one obtain

R(convA) 6

√

2h

ℓ
ln

ℓe

h
,

where h is VC-dimension of the set of base classifiers.
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Generalization bound for weighted voting

Theorem

For any a with probability at least 1− η

P(a) 6
ℓ∑

i=1

L
(
Mi (w)

)
+ 2λ

√

2h

ℓ
ln

ℓe

h
+ Lmax

√

2

ℓ
ln

1

η
.

Conclusions for weighted voting learning algorithms:

a great variety of loss functions L (M) can be used;

generalization of weighted voting does not depend on T ;

boosting maximizes margins Mi effectively, then minimizing
the first term of the bound;

one can use very simple base classifiers
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Further reading

Further readings on margin-based generalization bounds

[1] Koltchinskii V., Panchenko D. Empirical margin distributions and bounding
the generalization error of combined classifiers. The Annals of Statistics. 2002.
Vol. 30, No. 1. Pp 1–50.

[2] Boucheron S., Bousquet O., Lugosi G. Theory of classification: A survey

of some recent advances. ESAIM: Probability and Statistics. 2005. No. 9.

Pp. 323–375.
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Conclusion (Part I)

Generalization bounds give optimization problems to construct
learning algorithms with better performance.

Typically, this is ERM Approximation + Regularization.

The better performance is not always successfully attained
because of the looseness of the bounds.

There are two reasons for the looseness:
— nonuniform splitting of the set of classifiers;
— similarity of classifiers.

None of recent generalization bounds can treat both problems.

To be continued in 20 minutes...

We will consider a combinatorial approach, the first approach in
Learning Theory that takes into account both splitting and
similarity of a classifier set and can give exact generalization bounds.
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Questions?

Konstantin Vorontsov
vokov@forecsys.ru

http://www.ccas.ru/voron

www.MachineLearning.ru/wiki (in Russian):

Участник:Vokov

Слабая вероятностная аксиоматика

Расслоение и сходство алгоритмов (виртуальный семинар)
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