Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Fields of Experts доклад

1 апреля 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Введение

Image priors Модели патчей

Fields of Experts

Модель Вывод Обучение

Приложения

Image denoising Image inpainting

Заключение

Fields of Experts

Введение

Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Постановка задачи

Получить модель априорных знаний об изображении (image prior):

 $p(\mathbf{x}), \quad \mathbf{x} -$ изображение

содержащую статистику реальных сцен. Например таких:

Fields of Experts

Введение

Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Где нужны image priors?

Задачи низкоуровневого зрения

- denoising
- inpainting
- super-resolution
- <u>►</u> ...
- Синтез текстур
- Коррекция карт глубины
- Оценка оптического потока
- Где нибудь еще?

Fields of Experts

Введение

Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Markov Random Field

Вероятностные модели структуры изображений обычно формулируются в виде MRF:

$$p(\mathbf{x}) = \frac{1}{Z} \exp\left\{-\sum_{k} U_k(\mathbf{x}_{(k)})\right\}$$

ション ふゆ アメリア メリア しょうくしゃ

Fields of Experts

Введение

Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Как правило

- однородной
- с парной системой соседства (pairwise)
- в качестве потенциалов робастная функция разности $U(x_i, x_j) = \rho(x_i x_j)$

Ограничения Pairwise MRF

В восстановлении сложных сцен такие MRF показывают разочаровывающие результаты...

- потенциалы выбираются вручную
- парная система соседства плохо моделирует пространственную структуру сложных изображений (по сути моделируется поведение первой производной на изображении)
- результат Yanover et al. (2006) показал, что причина плохого качества — бедность модели, а не методы оптимизации

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

High-order MRF

Никто не запрещал расширить систему соседства.

Fields of Experts

Введение Image priors

Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

High-order MRF

Вот например, Geman and Reynolds (1992) использовали вторые (и третие) производные на изображении.

Использовались клики размером 3×3 с потенциалами

$$U(\mathbf{x}_{(k)}) = \sum_{i=1}^{5} \rho(\mathbf{J}_{i}^{T} \mathbf{x}_{(k)}),$$

где \mathbf{J}_i — линейные фильтры производных.

Fields of Experts

Введение

Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Обучение MRF моделей

- Ручная настройка параметров модели (фильтров, потенциалов) утомительна и не приводит к желаемому результату.
- Модель FRAME (Zhu et al., 1998) для генерации текстур использовала high-order MRF. Идея схожа с FoE, однако FRAME для обучения использовала предустановленный набор линейных фильтров.
- Большинство обучающихся MRF моделей не нашли широкого применения, в основном из-за вычислительных затрат.

Цель авторов FoE: избавиться от ручной настройки чего-либо.

Fields of Experts

Введение

Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Анализ компонент

Небольшие изображения (патчи) могут кодироваться откликами линейных фильтров.

$$\mathbf{x} \in \mathbb{R}^n, \quad \mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{J}_i, \quad \alpha_i = \mathbf{J}_i^T \mathbf{x}$$

- РСА позволяет найти ортонормированный базис $\{\mathbf{J}_i\}$, однако компоненты α_i имеют далеко не Гауссоово распределение и не независимы.
- ICA ищет линейные компоненты с минимальной зависимостью, так что можно записать:

$$p(\mathbf{x}) \propto \prod_{i=1}^{n} p_i(\mathbf{J}_i^T \mathbf{x})$$

Sparse Coding (Olshausen and Field, 1996)

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Product of Experts

Идея PoE: представить многомерное распределение патча в виде произведения «экспертных» распределений, т. ч. каждый эксперт работает в подпространстве меньшей размерности.

$$p(\mathbf{x}; \Theta) = \frac{1}{Z(\Theta)} \prod_{i=1}^{n} \phi(\mathbf{J}_{i}^{T} \mathbf{x}; \alpha_{i})$$
$$\Theta = \{\theta_{1}, \dots, \theta_{n}\}, \quad \theta_{i} = (\mathbf{J}_{i}, \alpha_{i})$$

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

• Фильтры \mathbf{J}_i обучаются \Rightarrow не нужно беспокоиться о независимости откликов.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Products of Experts

Несколько фильтров $5\times 5,$ полученных в результате обучения РоЕ на базе данных изображений:

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆○◆

Outline

Введение

lmage priors Модели патчей

Fields of Experts

Модель Вывод Обучение

Приложения

Image denoising Image inpainting

Заключение

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts

Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへぐ

FoE: Общий вид

FoE — однородная MRF высокого порядка с потенциалами PoE на кликах.

$$\mathbf{x} \in \mathbb{R}^{L imes M}; \quad \mathbf{x}_{(k)}, \, k = 1, \dots, K -$$
 клики

$$f(\mathbf{x}_{(k)}) = f_{\text{PoE}}(\mathbf{x}_{(k)}; \alpha_i) = \prod_{i=1}^{N} \phi(\mathbf{J}_i^T \mathbf{x}_{(k)}; \alpha_i)$$

3.7

$$p_{\text{FoE}}(\mathbf{x}; \Theta) = \frac{1}{Z(\Theta)} \prod_{k=1}^{K} \prod_{i=1}^{N} \phi(\mathbf{J}_{i}^{T} \mathbf{x}_{(k)}; \alpha_{i})$$

$$\Theta = \{\theta_1, ..., \theta_n\}, \quad \theta_i = (\mathbf{J}_i, \alpha_i)$$

 Θ — обучаемые параметры модели

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

(ロ)、

FoE: Энергетическая запись

$$\psi(\cdot; \alpha_i) = \log \phi(\cdot; \alpha_i) \quad \textit{log-expert}$$
$$p_{\text{FoE}}(\mathbf{x}; \Theta) = \frac{1}{Z(\Theta)} \exp \left\{-E_{\text{FoE}}(\mathbf{x}; \Theta)\right\}$$

$$E_{\text{FoE}}(\mathbf{x}; \Theta) = -\sum_{k=1}^{K} \sum_{i=1}^{N} \psi(\mathbf{J}_{i}^{T} \mathbf{x}_{(k)}; \alpha_{i})$$

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Особенности FoE

- Гибкость РоЕ.
- Моделируются зависимости между перекрывающимися патчами, т.к. параметры обучаются не на независимых патчах, а на изображениях.
- Инвариантность к сдвигу, т.к. MRF однородна.

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод

Обучение

Приложения Denoising Inpainting

Цветные изображения

- Преобразовать RGB в YCbCr, использовать каналы отдельно.
- McAuley et al. (2006) расширили подход авторов FoE для работы с цветными изображениями, используя клики 3 × 3 × 3 и 5 × 5 × 3.
- Изображения для обучения были преобразованы в YCbCr, использовался только Y-канал.

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Эксперты

Критерии выбора экспертов $\phi(y; \alpha)$:

- Гладкость по y и α: возможность использования градиентных методов вывода и обучения.
- Острота (kurtotic). Известно, что **J**^T**x** на реальных изображениях имеет «острое» маргинальное распределение.

Student-t

$$\phi_T(y;\alpha) = \left(1 + \frac{1}{2}y^2\right)^{-\alpha}$$

- тяжелые хвосты
- ▶ $\psi_T(y)$ не выпуклая

Charbonnier

$$\phi_C(y;\alpha,\beta) = e^{-\alpha\sqrt{\beta+y^2}}$$

- менее тяжелые хвосты
- ▶ $\psi_T(y)$ выпуклая
- хорошо сработало в других методах

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Вывод в FoE: МАР

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) \to \max_{\mathbf{x}}$$

- У точных методов, а также основанных на ВР нет шансов: сложная структура графа, большие клики.
- Зато удобно спускаться по градиенту $\log p(\mathbf{x}|\mathbf{y})$:

$$\nabla_{\mathbf{x}} \log p_{\text{FoE}}(\mathbf{x}; \Theta) = \sum_{i=1}^{N} \mathbf{J}_{-}^{(i)} * \psi'(\mathbf{J}^{(i)} * \mathbf{x}; \alpha_i)$$
(1)

くしゃ 本面 そうせん ほう うめんろ

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Максимум правдоподобия

$$\arg\max_{\Theta} p_{\text{FoE}}(X|\Theta), \quad X = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(D)}\}\$$

$$\log p(X|\Theta) = -\sum_{i=1}^{D} E(\mathbf{x}^{(i)}|\Theta) - D\log Z(\Theta)$$

- Решение в явном виде не выражается
- Минимизировать log-likelihood не удобно из-за нормировочной константы
- Зато максимизация правдоподобия эквивалентна минимизации KL

Fields of Experts

Введение Image priors Модели патчей Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Минимум KL

Обозначим: p^0 — распределение данных X, p^i_{θ} — распределение, полученное на *i*-том шаге МСМС. p^{∞} — истинное распределение $p(x|\theta)$, $p^n_{\theta} \xrightarrow[n \to \infty]{} p^{\infty}_{\theta}$ $\operatorname{KL}(p^0 || p^{\infty}_{\theta}) \to \min$

$$\operatorname{KL}(p^{0}||p_{\theta}^{\infty}) = \sum_{\mathbf{x}\in X} p^{0}(\mathbf{x}) \log p^{0}(\mathbf{x}) - \sum_{\mathbf{x}\in X} p^{0}(\mathbf{x}) \log p_{\theta}^{\infty}(\mathbf{x}) =$$
$$= -H(p^{0}) - \langle \log p_{\theta}^{\infty} \rangle_{p_{0}} \to \min_{\theta}$$
$$\langle \log p_{\theta}^{\infty} \rangle_{p_{0}} \to \max_{\theta}$$
$$\delta \theta_{i} = \eta \left[\left\langle \frac{\partial E}{\partial \theta_{m}} \right\rangle_{p_{\theta}^{\infty}} - \left\langle \frac{\partial E}{\partial \theta_{m}} \right\rangle_{p^{0}} \right]$$
(2)

●●● ● ● ● ● ● ● ● ● ● ● ● ●

Fields of Experts

Image priors Модели патчей Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Введение

Contrastive Divergence Learning

$$CD_n \to \min_{\theta}$$
$$CD_n = KL(p^0 || p_{\theta}^{\infty}) - KL(p_{\theta}^n || p_{\theta}^{\infty})$$

~~

$$\frac{\partial \mathrm{CD}_{n}}{\partial \theta_{m}} = \left\langle \frac{\partial E}{\partial \theta_{m}} \right\rangle_{p^{0}} - \left\langle \frac{\partial E}{\partial \theta_{m}} \right\rangle_{p^{n}_{\theta}} + \frac{\partial p^{n}_{\theta}}{\partial \theta_{m}} \frac{\partial \mathrm{KL}(p^{n}_{\theta} \| p^{\infty}_{\theta})}{\partial p^{n}_{\theta}} \quad (3)$$
$$\delta \theta_{i} = \eta \left[\left\langle \frac{\partial E}{\partial \theta_{m}} \right\rangle_{p^{n}_{\theta}} - \left\langle \frac{\partial E}{\partial \theta_{m}} \right\rangle_{p^{0}_{\theta}} \right]$$

 На каждой итерации градиентного спуска производится n итераций MCMC

Fields of Experts

Введение Image priors Модели патчей Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Обучение FoE

- Авторы обучали модель с кликами 3×3 и 5×5 на изображениях 15×15
- Обучающая выборка: 20000 патчей, случайно выбранных из изображений базы Berkley Segmentation Benchmark
- Выборка разбита на пачки по 200 изображений, на каждой итерации используются данные только из одной, случайно выбранной пачки (стохастический градиентный спуск)
- 5000 итераций спуска CD₁, гибридный метод Монте-Карло.
- ► Занимает много времени: Intel Pentium D, 3.2 GHz 3 × 3: 8 часов 5 × 5: 24 часа

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Outline

Введение

lmage priors Модели патчей

Fields of Experts

Модель Вывод Обучение

Приложения Image denoising Image inpainting

Заключение

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения

Denoising Inpainting

Заключение

Image denoising

$$\begin{split} p(\mathbf{x}) &= p_{\mathrm{FoE}}(\mathbf{x}) \\ \mathbf{y} &= \mathbf{x} + \varepsilon, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2) \\ p(\mathbf{y}|\mathbf{x}) \propto \prod_{k=1}^{L \cdot M} \exp\left(-\frac{1}{2\sigma^2}(y_k - x_k)^2\right) \\ \nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y}) &= \omega \cdot \left[\sum_{i=1}^{N} \mathbf{J}_{-}^{(i)} * \psi'(\mathbf{J}^{(i)} * \mathbf{x}; \alpha_i)\right] + \frac{1}{\sigma^2}(\mathbf{y} - \mathbf{x}) \end{split}$$

 ω > 0 регулирует «силу» приора по сравнению с правдоподобием, может быть обучено по проверочной выборке. В реализации авторов, выбирается по σ.

Fields of Experts

атчей Experts

ния

Введение Image priors

Image denoising: сравнение результатов

Оригинал

Зашумленное ($\sigma = 25$)

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Image denoising: сравнение результатов

FoE

Portilla et al. method

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Image denoising: сравнение результатов

on-local means

non-linear diffusion

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

FoE

Portilla et al.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Image denoising: результаты FoE

$\sigma = 15$, PSNR: 30.22 dB

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

くしゃ (四)・(日)・(日)・(日)

Image denoising: результаты FoE

$\sigma=25$, PSNR: 27.04 dB

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

・ロト ・ 「「・・」、・」、・「「・・」、

Image inpainting

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

くしゃ (中)・(中)・(中)・(日)・

Image inpainting

$$p(\mathbf{y}|\mathbf{x}) = \prod_{k=1}^{L \cdot M} p(y_k|x_k),$$
$$p(y_k|x_k) = \begin{cases} 1, & k \in \mathcal{M} \\ \delta(y_k - x_k), & k \notin \mathcal{M} \end{cases}$$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \eta \mathbf{M} \left[\sum_{i=1}^{N} \mathbf{J}_{-}^{(i)} * \psi'(\mathbf{J}^{(i)} * \mathbf{x}^{(t)}; \alpha_i) \right]$$

 $\mathcal{M}-$ мн-во пикселей, помеченых для заполнения

${f M}$ — соответствующая бинарная маска

 Такой метод не подходит для заполнения сложных текстур

Fields of Experts

Введение Image priors Модели патчей Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Image inpainting: сравнение методов I

Зарисованное текстом

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

・ロ・・母・・母・・ ゆ・・

Image inpainting: сравнение методов I

Предложенный метод с применением FoE (PSNR 29.06dB)

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Image inpainting: сравнение методов I

Bertalmío et al. (PSNR 27.56dB)

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Image inpainting: сравнение методов II

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Original

Image inpainting: сравнение методов II

Предложенный метод с применением FoE

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへぐ

Image inpainting: сравнение методов II

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Bertalmío et al.

Image inpainting: результаты FoE

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Image inpainting: результаты FoE

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

Outline

Введение

lmage priors Модели патчей

Fields of Experts

Модель Вывод Обучение

Приложения

Image denoising Image inpainting

Заключение

Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting

Заключение

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Недостатки и пути развития

- Фильтры 5 × 5 достаточно малы, чтобы описывать текстурированные области. Небольшое увеличение фильтров (эксперимент 7 × 7) не особо помогает. Значительное увеличение затратно.
 - \blacktriangleright Сэмплы из $p_{\rm FoE}({f x})$ не выглядят натуральными.
 - Размытые области еще сильнее размываются, шум на текстурах убирается не полностью.
- Модель зависит от масштаба изображений (у конкурентов, кстати, не зависит).

• Размер клик можно было бы настраивать автоматически.

 Градиентный вывод применим не всегда, нужны исследования техник вывода для high-order MRF. Fields of Experts

Введение Image priors Модели патчей

Fields of Experts Модель Вывод Обучение

Приложения Denoising Inpainting