Towards tight generalization bounds (combinatorial approach)

Konstantin Vorontsov

(vokov@forecsys.ru, http://www.ccas.ru/voron)

Computing Centre of Russian Academy of Sciences, Vavilova 40, 119991, Moscow, Russian Federation

Pattern Recognition and Image Analysis: New Information Technologies September, 14-20, 2008 Nizhny Novgorod, Russian Federation

Contents

Generalization bounds

- The probability of overfitting
- Vapnik-Chervonenkis bounds
- Data dependent bounds

VC bounds: measuring factors of overestimation

- Weak Probability Axiomatic (WPA)
- Vapnik-Chervonenkis bounds under WPA
- Causes of overestimation of the VC bound
- Empirical results

Splitting and similarity

- Overfitting of two-element set of classifiers
- Overfitting of chain of classifiers
- Conclusions

The probability of overfitting Vapnik-Chervonenkis bounds Data dependent bounds

Definitions and notation

Training sample: $X^{\ell} = \{x_i\}_{i=1}^{\ell} \subset \mathbb{X}$. Learning algorithm $\mu: X^{\ell} \mapsto a$, where $a \in A$ is a classifier. Binary loss function I(a, x) = [classifier a makes an error on x]. Binary loss vector of a classifier a on a sample X^{ℓ} : $\vec{a}(X^{\ell}) = (I(a, x_i))_{i=1}^{\ell}$ Frequency of errors of classifier a on a sample X^{ℓ} $\nu(\mathbf{a}, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} I(\mathbf{a}, x_i).$ Testing sample: $X^k = \{x_i\}_{i=1}^k \subset \mathbb{X}$. *Overfitting* of a learning algorithm μ with respect to X^{ℓ}, X^{k} : $\delta(\mu, X^{\ell}, X^{k}) = \nu(\mu(X^{\ell}), X^{k}) - \nu(\mu(X^{\ell}), X^{\ell}).$

Problem: obtain an upper bound of the *probability of overfitting* $P_{X^{\ell},X^{k}} \{ \delta(\mu, X^{\ell}, X^{k}) > \varepsilon \} \leq \eta(\varepsilon), \quad \eta(\varepsilon) - ?$

The probability of overfitting Vapnik-Chervonenkis bounds Data dependent bounds

Test set bound

Theorem (a form of the Law of Large Numbers)

For any fixed classifier a and any probability measure P over $X^{L} = X^{\ell} \cup X^{k}$ the observable frequency $\nu(a, X^{\ell})$ predicts the unknown frequency $\nu(a, X^{k})$:

$$\mathsf{P}_n\big\{\delta(a, X_n^\ell, X_n^k) \geqslant \varepsilon\big\} \leqslant H_L^\ell(\varepsilon),$$

 $H_{L}^{\ell}(\varepsilon) = \max_{m=0,...,L} \sum_{t=s_{0}}^{s(\varepsilon)} \frac{C_{m}^{t} C_{L-m}^{\ell-t}}{C_{L}^{\ell}} \text{ is an upper bound of the left tail of hypergeometric distribution, } s_{0} = (m-k)_{+}, \ s(\varepsilon) = \left\lfloor \frac{\ell}{L} (m-\varepsilon k) \right\rfloor.$

⊕ The bound is tight (moreover, an exact variant exists).
⊖ But it gives no recommendations for μ construction.

The probability of overfitting Vapnik-Chervonenkis bounds Data dependent bounds

Vapnik-Chervonenkis bounds [1968–1971]

For any set of classifiers A, any prob.measure P over $X^L = X^\ell \cup X^k$

$$\mathsf{P}_{X^{L}}\left\{\delta(\mu, X^{\ell}, X^{k}) > \varepsilon\right\} \leqslant \mathsf{P}_{X^{L}}\left\{\sup_{a \in A} \delta(a, X^{\ell}, X^{k}) > \varepsilon\right\} \leqslant$$
$$\leqslant \sum_{\vec{a} \in A(X^{L})} \mathsf{P}_{X^{L}}\left\{\delta(a, X^{\ell}, X^{k}) > \varepsilon\right\} \leqslant \Delta^{A}(L) \cdot \mathcal{H}_{L}^{\ell}(\varepsilon) \leqslant$$
$$(\text{if } \ell = k) \leqslant \Delta^{A}(L) \cdot 1.5 \ e^{-\varepsilon^{2}\ell},$$

 $A(X^{L}) = \{\vec{a}(X^{L}) \mid a \in A\} \text{ is a set of loss vectors induced by } A.$ $\Delta^{A}(L) = \max_{X^{L}} |A(X^{L})| \text{ is a shatter coefficient of the set } A,$ $\Delta^{A}(L) \leq 1.5 \frac{L^{h}}{h!}, \text{ where } h \text{ is the } VC\text{-dimension of the set } A.$

⊕ The bound leads to the Structural Risk Minimization method.
⊖ But it is highly overestimated and almost useless in practice.

The causes of overestimation: the recent understanding

- The «worst case» bound does not take into account:
 - peculiarities of the data X^L ;
 - peculiarities of the learning algorithm μ .
- The *effect of splitting* (or *localization*): the worse classifier is, the less is a chance that it would be obtained from learning. The set A is split into data-dependent subsets.
- The «union bound» $P(S_1 \cup \cdots \cup S_{\Delta}) \leq P(S_1) + \cdots + P(S_{\Delta})$, is loose when events $S_d = \{\delta(a_d, X^{\ell}, X^k) > \varepsilon\}$ are similar.
- The exponent factor $e^{-\varepsilon^2 \ell}$ is also an upper bound.

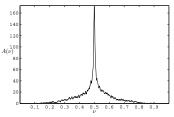
The probability of overfitting Vapnik-Chervonenkis bounds Data dependent bounds

40 years ago: the problem remains open

- Uniform convergence [Vapnik, Chervonenkis, 1968]
- Theory of learnable (PAC-learning) [Valiant, 1982]
- Data-dependent bounds [Haussler, 1992; Bartlett, 1998]
- Connected function classes [Sill, 1995]
- Similar classifiers VC bounds [Bax, 1997]
- Self-bounding learning algorithms [Freund, 1998]
- Microchoice bounds [Langford, Blum, 2001]
- Algorithmic stability [Bousquet, Elisseeff, 2002]
- Algorithmic luckiness [Herbrich, Williamson, 2002]
- Shell bounds [Langford, 2002]
- PAC-Bayes bounds [McAllester, 1999; Langford, 2005]

The probability of overfitting Vapnik-Chervonenkis bounds Data dependent bounds

Shell bounds: main ideas



- Most classifiers $a \in A$ are concentrated near to $\nu(a, X^L) = 0.5$
- Only classifiers from the left tail of the histogram have chances to be choused by ERM: ν(a, X^ℓ_n) → min c A
- The bound is too complicated, requires Monte-Carlo simulation, and not tight enough in practice.

John Langford. Quantitatively Tight Sample Complexity Bounds. PhD (Carnegie Mellon). 2002.

The probability of overfitting Vapnik-Chervonenkis bounds Data dependent bounds

Similar classifiers VC bounds: main ideas

Theorem

Suppose the set of loss vectors $\{\vec{a}(X^L) \mid a \in A\}$ is clusterized with the Hamming distance on S clusters, each of the radius r. Then

 $\mathsf{P}_{X^{L}}\left\{\delta(\mathbf{a}, X^{\ell}, X^{k}) > \varepsilon + \mathbf{r}/\ell\right\} \leqslant \mathbf{S} \cdot H_{L}^{\ell}(\varepsilon).$

- If A is separating hyperplanes, then $S = \Delta^A(L)/(2r+1)$.
- Optimization over *r* (open problem: how *r* depends on the dimension of the object space *X*?)
- The bound is not tight, even after optimization over r.

Bax E. Similar Classifiers and VC Error Bounds. CalTech-CS-TR97-14, June 1997. citeseer.ist.psu.edu/bax97similar.html

The probability of overfitting Vapnik-Chervonenkis bounds Data dependent bounds

Connected function classes

Definition

The set A is *connected* if for any $\vec{a} \in A(X^L)$ with probability 1 exists $\vec{a}_1 \in A(X^L)$ such that Hamming distance $\|\vec{a} - \vec{a}_1\| = 1$.

- SVM, two layer ANN, RBF, etc. are connected.
- Theorem: if A is connected, then

$$\mathsf{P}_{X^{L}}\left\{\delta(\mathbf{a}, X^{\ell}, X^{k}) > \varepsilon\right\} \leqslant \frac{1}{\sqrt{\pi L}} \Delta^{A}(L) \cdot H_{L}^{\ell}(\varepsilon).$$

• The bound is not tight. It differs a little from the VC bound.

Sill J. Monotonicity and Connectedness in Learning Systems. PhD thesis, CalTech, 1998.

Sill J. Generalization Bounds for Connected Function Classes. 1995. http://citeseer.ist.psu.edu/127284.html

Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results

Motivation for measuring factors of overestimation

- Ultimate aim (OPEN PROBLEM) to obtain tight and useful bounds.
- Immediate aim (DONE see below) to understand the causes of overestimation by comparing them quantitatively in experiments on real data sets
- Problem:

Standard probabilistic techniques used to obtain bounds induce a sequence of uncontrollably overestimated inequalities

• Why so?

It is usual to introduce and handle unobservable probabilities that can be hardly measured

• What is proposed:

A theory that handles only measurable quantities

Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results

Weak (minimalistic, combinatorial) Probability Axiomatic (WPA)

Overfitting at *n*-th partition: $\delta_n(\mu) \equiv \delta(\mu, X_n^{\ell}, X_n^k)$.

Probability of overfitting is defined as the "fraction of partitions": $1 \frac{N}{N}$

$$\mathsf{P}_n\big\{\delta_n(\mu) > \varepsilon\big\} = \frac{1}{N}\sum_{n=1}^{\infty} \big[\delta_n(\mu) > \varepsilon\big].$$

Remark. The notion of probability is introduced without theory of measure and without passage to the limit $L \rightarrow \infty$.

Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results

Advantages of Weak Probability Axiomatic

- Not redundant. Can give not asymptotical exact bounds.
- Any probability can be measured empirically:

$$\hat{\mathsf{P}}_n\{\delta_n > \varepsilon\} = \frac{1}{|N'|} \sum_{n \in N'} [\delta_n > \varepsilon] \stackrel{N' \to N}{\to} \mathsf{P}_n\{\delta_n > \varepsilon\}.$$

- Easy transition to Kolmogorov's axiomatic: if $P_n\{\delta(X_n^\ell, X_n^k) > \varepsilon\} \leq \eta(\varepsilon, X^L)$, then $P_{X^L}\{\delta(X^\ell, X^k) > \varepsilon\} \leq \mathbb{E}_{X^L}\eta(\varepsilon, X^L)$.
- Sufficient to prove fundamental facts:
 - the Law of Large Numbers (exact bound);
 - Kolmogorov-Smirnov criterion (also exact);
 - many statistical hypothesis tests (order statistics etc.);
 - Vapnik-Chervonenkis generalization bounds (see later);

Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results

The test set bound (Law of Large Numbers) under WPA

Consider a fixed classifier *a*, $\nu(a, X^L) = m/L$.

Theorem (exact bound)

The observable frequency $\nu(a, X^{\ell})$ predicts the hidden frequency $\nu(a, X^{k})$:

$$\mathsf{P}_n\big\{\delta(a, X_n^{\ell}, X_n^k) \geqslant \varepsilon\big\} = H_L^{\ell, m}(s(\varepsilon)),$$

where $H_{L}^{\ell,m}(s) = \sum_{t=s_{0}}^{s} \frac{C_{m}^{t}C_{L-m}^{\ell-t}}{C_{L}^{\ell}}$ — the left tail of hypergeometric distribution; $s(\varepsilon) = \lfloor \frac{\ell}{L}(m-\varepsilon k) \rfloor$; $s_{0} = \max\{0, m-k\}$.

Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results

Vapnik-Chervonenkis bounds under WPA

For any learning algorithm μ and any set X^L :

$$\begin{aligned} \mathcal{Q}_{\varepsilon} &= \mathsf{P}_{n} \big\{ \delta(\mathsf{a}_{n}, X_{n}^{\ell}, X_{n}^{k}) > \varepsilon \big\} \leqslant \\ &\leqslant \sum_{m=1}^{L} \mathcal{D}_{m} \cdot \mathcal{H}_{L}^{\ell, m}(s(\varepsilon)) \leqslant \\ &\leqslant \Delta_{L}^{\ell} \cdot \mathcal{H}_{L}^{\ell}(\varepsilon) \stackrel{\ell=k}{\leqslant} \Delta^{A}(L) \cdot 1.5 \ e^{-\varepsilon^{2}\ell} \end{aligned}$$

 $\Delta_{L}^{\ell}(\mu, X^{L}) - \text{local shatter coefficient (LSC)} - \text{shatter coefficient}$ of the set of classifiers $\{a_{n} = \mu(X_{n}^{\ell}) \mid n = 1, \dots, N\};$

 $\begin{array}{l} D_m(\mu, X^L), \ m=0,\ldots,L-\text{ shatter profile}-\text{ a sequence of}\\ \text{shatter coefficients of the sets of classifiers having }m \text{ errors on } X^L:\\ \left\{a_n=\mu(X_n^\ell) \mid \nu(a_n,X^L)=\frac{m}{L}, \ n=1,\ldots,N\right\}. \end{array}$

Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results

The effective local shatter coefficient

Conclusions:

- The exponential approximation 1.5 $e^{-\varepsilon^2 \ell}$ is avoided.
- The *splitting* of A is (partially) taken into account, but:
 - it's not clear, how to estimate D_m ;
 - it's not clear, whether this will give a gain.
- The similarity of classifiers is not taken into account.

Idea: to estimate the causes of overestimation empirically

Definition

The *effective* local shatter coefficient (ELSC):

$$\hat{\Delta}_{L}^{\ell}(\varepsilon) = \frac{\hat{\mathsf{P}}_{n}\left\{\delta(\mathsf{a}_{n}, X_{n}^{\ell}, X_{n}^{k}) > \varepsilon\right\}}{H_{L}^{\ell,m}(s(\varepsilon))} = \frac{\hat{\mathsf{P}}_{n}\left\{\delta(\mathsf{a}_{n}, X_{n}^{\ell}, X_{n}^{k}) > \varepsilon\right\}}{\hat{\mathsf{P}}_{n}\left\{\delta(\mathsf{a}, X_{n}^{\ell}, X_{n}^{k}) > \varepsilon\right\}}.$$

Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results

Causes of overestimation of the VC bound

The rate of overestimation can be factorized into 4 parts:

$$\frac{\Delta^{A}(L) \cdot \frac{3}{2} e^{-\varepsilon^{2}\ell}}{\hat{Q}_{\varepsilon}} = \underbrace{\frac{\Delta^{A}(L)}{\Delta_{L}^{\ell}}}_{r_{1}} \cdot \underbrace{\frac{\Delta_{L}^{\ell}}{\hat{Q}_{L}^{\ell}(\varepsilon)}}_{r_{2}(\varepsilon)} \cdot \underbrace{\frac{\hat{\Delta}_{L}^{\ell}(\varepsilon) \cdot H}{\hat{Q}_{\varepsilon}}}_{r_{3}(\varepsilon)} \cdot \underbrace{\frac{3}{2} e^{-\varepsilon^{2}\ell}}_{H}$$
where $H = \max_{m} H_{L}^{\ell,m}(s(\varepsilon))$.

Causes of overestimation:

- $r_1 \ge 1$: the disregard of splitting
- $r_2 \ge 1$: the disregard of similarity (due to union bound)
- $r_3 \ge 1$: the flat upper bound of the shatter profile
- $r_4 \ge 1$: exponent approximation of hypergeometric tail

Rule induction machine

- The *rule* is a predicate φ_y: X → {0, 1} that covers mainly objects of the class y.
- Weighted voting of rules:

$$a(x) = \arg \max_{y \in Y} \sum_{t=1}^{T_y} w_y^t \phi_y^t(x),$$

where $\phi_y^t(x) - t$ -the rule of the class y, w_y^t - its weight.

- Rule learning algorithm of class y: $\mu_y : X^{\ell} \mapsto \{\phi_y^t(x) \mid t = 1, ..., T_y\}.$
- Why the rule induction machine is convenient for the analysis of VC bounds overestimation:
 - the shatter coefficient $\Delta^A(L)$ is known;
 - the LSC $\Delta_L^\ell(\mu, X^L)$ can be easily (lower) bounded;
 - the ELSC $\hat{\Delta}_{L}^{\ell}(\varepsilon)$ can be easily estimated.

Generalization bounds VC bounds: measuring factors of overestimation Splitting and similarity VC bounds: measuring factors of overestimation of the VC bound Empirical results

The experimental framework

- 7 tasks from UCI repository, two classes
- 20 \times 2-fold cross-validation, $\ell = k$
- Learning algorithm Forecsys LogicPro[®] [Vorontsov, Kochedykov, Ivakhnenko]

			the average test set errors									
Task	<i>L</i>	п	C4.5	C5.0	RIPPER	SLIPPER	LogicPro					
crx	690	15	15.5	14.0	15.2	15.7	14.3 ± 0.2					
german	1000	20	27.0	28.3	28.7	27.2	28.5 ± 1.0					
hepatitis	155	19	18.8	20.1	23.2	17.4	16.7 ± 1.7					
horse-colic	300	25	16.0	15.3	16.3	15.0	16.4 ± 0.5					
hypothyroid	3163	25	0.4	0.4	0.9	0.7	0.8 ± 0.04					
liver	345	6	37.5	31.9	31.3	32.2	29.2 ± 1.6					
promoters	106	57	18.1	22.7	19.0	18.9	12.0 ± 2.0					

L — sample size; n — number of features.

Generalization bounds VC bounds: measuring factors of overestimation Splitting and similarity	Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results
---	---

Results

Causes of overestimation of the VC bound (thresholds $\varepsilon_0, \varepsilon_1, \varepsilon_2$ correspond to the significance $\hat{Q}_{\varepsilon} = 0.05, 0.1, 0.01$).

Task	у	<i>r</i> 1	$r_2(\varepsilon_0)$	$r_3(\varepsilon_0)$	$r_4(\varepsilon_0)$	$\hat{\Delta}_L^\ell[arepsilon_1,arepsilon_2]$	$\hat{\Delta}^\ell_L(arepsilon_0)$
crx	0	890	680	3.1	32.6	[10; 41]	24
	1	690	1700	1.6	11.6	[11; 180]	12
german	1	8 950	1500	1.7	10.9	[38; 530]	54
	2	37 000	9000	1.2	9.9	[1.0; 2.2]	1.9
hepatitis	0	23	280	13.4	9.5	[11; 148]	83
	1	55	680	2.4	22.5	[12; 27]	15
horse-colic	1	72	4500	2.1	7.2	[2; 9]	7
	2	140	3400	3.6	7.3	[3; 6]	6
hypothyroid	0	61 000	400	32.2	16.5	[3; 220]	21
	1	153 000	460	3.8	28.7	[2; 44]	30
promoters	0	94	340	5.9	9.8	[36; 230]	72
	1	150	790	3.4	6.9	[9; 22]	18

Konstantin Vorontsov (www.ccas.ru/voron)

Generalization bounds VC bounds: measuring factors of overestimation Splitting and similarity	Weak Probability Axiomatic (WPA) Vapnik-Chervonenkis bounds under WPA Causes of overestimation of the VC bound Empirical results
---	---

Conclusions

- The shatter coefficient $\hat{\Delta}_{L}^{\ell}$ should take value about 10^{2} or less to bound be tight. No recent theory can provide so low estimates.
- The effective local VC-dimension (if we would like to define it) degenerates and becomes less that 1.
 Open problem 1: What new complexity characteristic to be introduced?
- There is a little sense to estimate the shatter profile D_m .
- Open problem 2 (towards tighter bounds): How to take into account both *splitting* and *similarity*?

Vorontsov K. V. Combinatorial probability and the tightness of generalization bounds // Pattern Recognition and Image Analysis. — 2008. — Vol. 18, no. 2. — Pp. 243–259.

Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

A toy example: the pair of classifiers

Consider two classifiers a_1 , a_2 with m_1 , m_2 errors on X^L :

 m_2

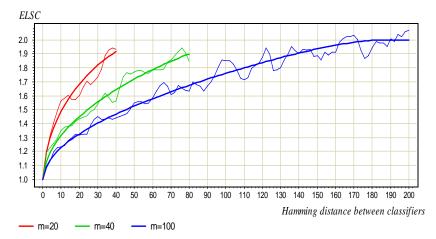
Theorem (exact probability of overfitting)

$$\begin{split} \mathsf{P}_n \big\{ \delta(\mu, X_n^{\ell}, X_n^{k}) \geqslant \varepsilon \big\} &= \sum_{s_0=0}^{m_0} \sum_{s_1=0}^{m_1} \sum_{s_2=0}^{m_2} \frac{C_{m_0}^{s_0} C_{m_1}^{s_1} C_{m_2}^{s_2} C_{L-m_0-m_1-m_2}^{\ell-s_0-s_1-s_2}}{C_L^{\ell}} \times \\ &\times \big[m_0 + m_1 + m_2 - k \leqslant s_0 + s_1 + s_2 \leqslant \ell \big] \times \\ &\times \big(\big[s_1 < s_2 \big] \big[s_0 + s_1 \leqslant \frac{\ell}{L} (m_0 + m_1 - \varepsilon k) \big] + \\ &+ \big[s_1 \geqslant s_2 \big] \big[s_0 + s_2 \leqslant \frac{\ell}{L} (m_0 + m_2 - \varepsilon k) \big] \Big). \end{split}$$

Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

Experiment 1. Two classifiers of the equal quality

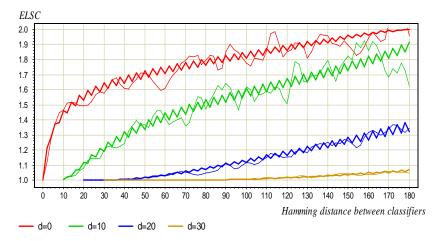
$$\ell=k=100;\;\;arepsilon=0.05;\;\;m_1=m_2;\;\;m=20,\;40,\;100$$



Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

Experiment 2. Two classifiers of the different quality

$$\ell = k = 100; \ arepsilon = 0.05; \ m_0 = 20; \ d \equiv m_2 - m_1 = 0, \, 10, \, 20, \, 30$$



Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

Experiment 3. The chain of 1000 classifiers

D = 1000 classifiers, given by their binary loss vectors; $\ell = k = 100$ — the size of training and testing sets (L = 200); m/L = 0.05, 0.25 — the quality of the best classifier; $\varepsilon = 0.05$ — the threshold of overfitting; N' = 1000 random Monte-Carlo generated partitions.

A binary $L \times D$ -matrix of column vectors of losses:

Example:	1	1 –	→ 0	0	0 -	→ 1	1	1	1	1	1	
	0	0	0	0 -	$\rightarrow 1$	1	1	1	1	1 –	→ 0	
	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0 -	$\rightarrow 1$	1	1	1	1 –	→ 0	0	0	
	0	0	0	0	0	0	0 –	$\rightarrow 1$	1	1	1	
	0 -	$\rightarrow 1$	1	1	1	1 -	→ 0	0	0 –	→ 1	1	

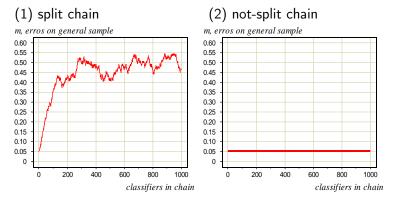
Chain is a sequence of binary loss vectors such that each subsequent vector differ from the previous one in one bit.

Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

Chains with and without splitting

Chain is a sequence of binary loss vectors such that each subsequent vector differ from the previous one in one bit.

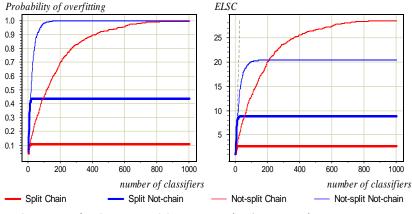
Two extreme types of chains:



Konstantin Vorontsov (www.ccas.ru/voron) Towards tight generalization bounds

Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

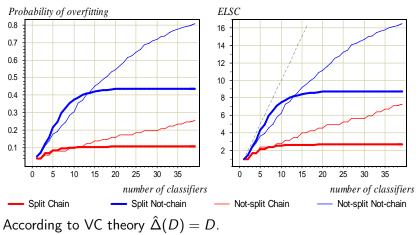
Chain and not-chain, with and without splitting (m/L = 0.05)



In the case of splitting and low errors (m/L = 0.05), the probability of overfitting newer reaches 1 with $D \rightarrow \infty$.

Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

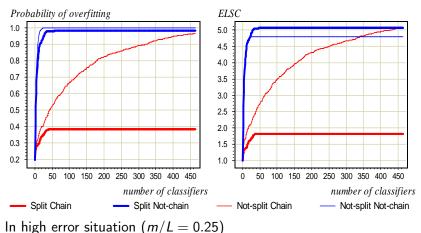
Chain and not chain, with and without splitting (m/L = 0.05, zoom)



This happens for not-chains and for low D only.

Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

Chain or not chain, with or without splitting (m/L = 0.25)



only a *chain with splitting* provides a low overfitting.

Generalization bounds VC bounds: measuring factors of overestimation Splitting and similarity Overfitting of two-element set of classifiers Overfitting of chain of classifiers Conclusions

Conclusions

- ELSC Â(D) has a horizontal asymptote whereas = D according to VC theory.
- Chain provides a slower growth of $\Delta(D)$.
- Splitting provides a lower (\ll 1) horizontal asymptote.
- About the nature of overfitting: overfitting arises as a result of choice of the best classifier (even from 2 classifiers!) on a finite training set.

• Optimism:

Chains with splitting are very often encountered in practice; just in this situation overfitting is low.

• Motivation for further research: No theory exists that can take into account both similarity (chain) and splitting.

Thanks! Questions?

Continually:

virtual seminars on wiki www.MachineLearning.ru (in Russian)

- Слабая вероятностная аксиоматика
 - Weak Probability Axiomatic
- Расслоение и сходство алгоритмов (виртуальный семинар)
 - Splitting and similarity of classifiers (virtual seminar)
- Участник:Vokov
 - K.Vorontsov's participant page
- Today! 15:00, Assembly Hall, building 2
 The wiki resource www.MachineLearning.ru for research and education collaboration

 (plenary talk and discussion)