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Definitions and notation

Training sample: X ℓ = {xi}ℓ
i=1 ⊂ X.

Learning algorithm µ : X ℓ 7→ a, where a ∈ A is a classifier.
Binary loss function I (a, x) = [classifier a makes an error on x ].
Binary loss vector of a classifier a on a sample X ℓ:

~a(X ℓ) =
(
I (a, xi )

)ℓ

i=1
.

Frequency of errors of classifier a on a sample X ℓ

ν(a, X ℓ) = 1
ℓ

ℓ∑

i=1

I (a, xi ).

Testing sample: X k = {xi}k
i=1 ⊂ X.

Overfitting of a learning algorithm µ with respect to X ℓ, X k :
δ(µ,X ℓ, X k) = ν

(
µ(X ℓ), X k

)
− ν

(
µ(X ℓ), X ℓ

)
.

Problem: obtain an upper bound of the probability of overfitting

PX ℓ,X k

{
δ(µ,X ℓ, X k) > ε

}
6 η(ε), η(ε) — ?
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Test set bound

Theorem (a form of the Law of Large Numbers)

For any fixed classifier a and any probability measure P over

X L = X ℓ ∪ X k the observable frequency ν
(
a, X ℓ

)
predicts

the unknown frequency ν
(
a, X k

)
:

Pn

{
δ(a, X ℓ

n , X k
n ) > ε

}
6 Hℓ

L(ε),

Hℓ
L(ε) = max

m=0,...,L

s(ε)∑

t=s0

C t
mC ℓ−t

L−m

C ℓ

L

is an upper bound of the left tail of

hypergeometric distribution, s0 = (m − k)+, s(ε) =
⌊

ℓ
L
(m − εk)

⌋
.

⊕⊕⊕ The bound is tight (moreover, an exact variant exists).

⊖⊖⊖ But it gives no recommendations for µ construction.
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Vapnik-Chervonenkis bounds [1968–1971]

For any set of classifiers A, any prob.measure P over X L = X ℓ ∪X k

PX L

{
δ(µ,X ℓ, X k) > ε

}
6 PX L

{

sup
a∈A

δ(a, X ℓ, X k) > ε
}

6

6
∑

~a∈A(X L)

PX L

{
δ(a, X ℓ, X k) > ε

}
6 ∆A(L) · Hℓ

L(ε) 6

(if ℓ = k) 6 ∆A(L) · 1.5 e−ε2ℓ,

A(X L) =
{
~a(X L)

∣
∣ a ∈ A

}
is a set of loss vectors induced by A.

∆A(L) = max
X L

|A(X L)| is a shatter coefficient of the set A,

∆A(L) 6 1.5 Lh

h! , where h is the VC-dimension of the set A.

⊕⊕⊕ The bound leads to the Structural Risk Minimization method.

⊖⊖⊖ But it is highly overestimated and almost useless in practice.
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The causes of overestimation: the recent understanding

The «worst case» bound does not take into account:

peculiarities of the data X L;
peculiarities of the learning algorithm µ.

The effect of splitting (or localization): the worse classifier is,
the less is a chance that it would be obtained from learning.
The set A is split into data-dependent subsets.

The «union bound» P(S1 ∪ · · · ∪ S∆) 6 P(S1) + · · ·+ P(S∆),
is loose when events Sd =

{
δ(ad , X ℓ, X k) > ε

}
are similar.

The exponent factor e−ε2ℓ is also an upper bound.
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40 years ago: the problem remains open

Uniform convergence [Vapnik, Chervonenkis, 1968]

Theory of learnable (PAC-learning) [Valiant, 1982]

Data-dependent bounds [Haussler, 1992; Bartlett, 1998]

Connected function classes [Sill, 1995]

Similar classifiers VC bounds [Bax, 1997]

Self-bounding learning algorithms [Freund, 1998]

Microchoice bounds [Langford, Blum, 2001]

Algorithmic stability [Bousquet, Elisseeff, 2002]

Algorithmic luckiness [Herbrich, Williamson, 2002]

Shell bounds [Langford, 2002]

PAC-Bayes bounds [McAllester, 1999; Langford, 2005]
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Shell bounds: main ideas
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Most classifiers a ∈ A are concentrated near to ν(a, X L) = 0.5

Only classifiers from the left tail of the histogram
have chances to be choused by ERM: ν(a, X ℓ

n) → min
a∈A

The bound is too complicated, requires Monte-Carlo
simulation, and not tight enough in practice.

John Langford. Quantitatively Tight Sample Complexity Bounds.

PhD (Carnegie Mellon). 2002.
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Similar classifiers VC bounds: main ideas

Theorem

Suppose the set of loss vectors
{
~a(X L)

∣
∣ a ∈ A

}
is clusterized with

the Hamming distance on S clusters, each of the radius r . Then

PX L

{
δ(a, X ℓ, X k) > ε + r/ℓ

}
6 S · Hℓ

L(ε).

If A is separating hyperplanes, then S = ∆A(L)/(2r + 1).

Optimization over r (open problem: how r depends on the
dimension of the object space X?)

The bound is not tight, even after optimization over r .

Bax E. Similar Classifiers and VC Error Bounds. CalTech-CS-TR97-14,

June 1997. citeseer.ist.psu.edu/bax97similar.html
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Connected function classes

Definition

The set A is connected if for any ~a ∈ A(X L) with probability 1
exists ~a1 ∈ A(X L) such that Hamming distance ‖~a −~a1‖ = 1.

SVM, two layer ANN, RBF, etc. are connected.

Theorem: if A is connected, then

PX L

{
δ(a, X ℓ, X k) > ε

}
6

1√
πL

∆A(L) · Hℓ
L(ε).

The bound is not tight. It differs a little from the VC bound.

Sill J. Generalization Bounds for Connected Function Classes. 1995.
http://citeseer.ist.psu.edu/127284.html

Sill J. Monotonicity and Connectedness in Learning Systems. PhD thesis,

CalTech, 1998.
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Motivation for measuring factors of overestimation

Ultimate aim (OPEN PROBLEM)
to obtain tight and useful bounds.

Immediate aim (DONE — see below)
to understand the causes of overestimation by comparing them
quantitatively in experiments on real data sets

Problem:
Standard probabilistic techniques used to obtain bounds induce
a sequence of uncontrollably overestimated inequalities

Why so?
It is usual to introduce and handle unobservable probabilities
that can be hardly measured

What is proposed:
A theory that handles only measurable quantities
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Weak (minimalistic, combinatorial) Probability Axiomatic (WPA)

1 X L = {xi}L
i=1 — a given finite set of objects.

2 All partitions X L = X ℓ
n ∪ X k

n are equally probable,
where n = 1, . . . ,N, N = C k

L , L = ℓ + k ;
X ℓ

n — observable training subset;
X k

n — hidden testing subset.

Overfitting at n-th partition: δn(µ) ≡ δ(µ,X ℓ
n , X k

n ).

Probability of overfitting is defined as the “fraction of partitions”:

Pn

{
δn(µ) > ε

}
=

1

N

N∑

n=1

[
δn(µ) > ε

]
.

Remark. The notion of probability is introduced without theory
of measure and without passage to the limit L → ∞.
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Advantages of Weak Probability Axiomatic

Not redundant. Can give not asymptotical exact bounds.

Any probability can be measured empirically:

P̂n{δn > ε} = 1
|N′|

∑

n∈N′

[δn > ε]
N′→N→ Pn{δn > ε}.

Easy transition to Kolmogorov’s axiomatic:
if Pn{δ(X ℓ

n , X k
n ) > ε} 6 η(ε, X L),

then PX L{δ(X ℓ, X k) > ε} 6 EX Lη(ε, X L).

Sufficient to prove fundamental facts:

the Law of Large Numbers (exact bound);
Kolmogorov-Smirnov criterion (also exact);
many statistical hypothesis tests (order statistics etc.);
Vapnik-Chervonenkis generalization bounds (see later);
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The test set bound (Law of Large Numbers) under WPA

Consider a fixed classifier a, ν(a, X L) = m/L.

Theorem (exact bound)

The observable frequency ν
(
a, X ℓ

)
predicts

the hidden frequency ν
(
a, X k

)
:

Pn

{
δ(a, X ℓ

n , X k
n ) > ε

}
= H

ℓ,m
L (s(ε)) ,

where H
ℓ,m
L (s) =

s∑

t=s0

C t
mC ℓ−t

L−m

C ℓ

L

— the left tail of hypergeometric

distribution; s(ε) =
⌊

ℓ
L
(m − εk)

⌋
; s0 = max{0, m − k}.
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Vapnik-Chervonenkis bounds under WPA

For any learning algorithm µ and any set X L:

Qε = Pn

{
δ(an, X

ℓ
n , X k

n ) > ε
}

6

6

L∑

m=1

Dm · Hℓ,m
L (s(ε)) 6

6 ∆ℓ
L · Hℓ

L(ε)
ℓ=k
6 ∆A(L) · 1.5 e−ε2ℓ;

∆ℓ
L(µ,X L) — local shatter coefficient (LSC) — shatter coefficient

of the set of classifiers
{
an = µ(X ℓ

n)
∣
∣ n = 1, . . . ,N

}
;

Dm(µ,X L), m = 0, . . . , L — shatter profile — a sequence of
shatter coefficients of the sets of classifiers having m errors on X L:

{
an = µ(X ℓ

n)
∣
∣ ν(an, X

L) = m
L
, n = 1, . . . ,N

}
.
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The effective local shatter coefficient

Conclusions:

The exponential approximation 1.5 e−ε2ℓ is avoided.

The splitting of A is (partially) taken into account, but:
— it’s not clear, how to estimate Dm;
— it’s not clear, whether this will give a gain.

The similarity of classifiers is not taken into account.

Idea: to estimate the causes of overestimation empirically

Definition

The effective local shatter coefficient (ELSC):

∆̂ℓ
L(ε) =

P̂n

{
δ(an, X

ℓ
n , X k

n ) > ε
}

H
ℓ,m
L (s(ε))

=
P̂n

{
δ(an, X

ℓ
n , X k

n ) > ε
}

P̂n

{
δ(a, X ℓ

n , X k
n ) > ε

} .
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Causes of overestimation of the VC bound

The rate of overestimation can be factorized into 4 parts:

∆A(L) · 3
2 e−ε2ℓ

Q̂ε

=
∆A(L)

∆ℓ
L

︸ ︷︷ ︸

r1

· ∆ℓ
L

∆̂ℓ
L(ε)

︸ ︷︷ ︸

r2(ε)

· ∆̂ℓ
L(ε) · H
Q̂ε

︸ ︷︷ ︸

r3(ε)

·
3
2 e−ε2ℓ

H
︸ ︷︷ ︸

r4(ε)

where H = max
m

H
ℓ,m
L (s(ε)).

Causes of overestimation:

r1 > 1: the disregard of splitting

r2 > 1: the disregard of similarity (due to union bound)

r3 > 1: the flat upper bound of the shatter profile

r4 > 1: exponent approximation of hypergeometric tail
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Rule induction machine

The rule is a predicate φy : X → {0, 1} that covers mainly
objects of the class y .

Weighted voting of rules:

a(x) = arg max
y∈Y

Ty∑

t=1
w t

yφt
y (x),

where φt
y (x) — t-the rule of the class y , w t

y — its weight.

Rule learning algorithm of class y :
µy : X ℓ 7→

{
φt

y (x)
∣
∣ t = 1, . . . ,Ty

}
.

Why the rule induction machine is convenient for
the analysis of VC bounds overestimation:

the shatter coefficient ∆A(L) is known;
the LSC ∆ℓ

L(µ,X L) can be easily (lower) bounded;

the ELSC ∆̂ℓ

L(ε) can be easily estimated.
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The experimental framework

7 tasks from UCI repository, two classes

20 × 2-fold cross-validation, ℓ = k

Learning algorithm Forecsys LogicPror

[Vorontsov, Kochedykov, Ivakhnenko]

the average test set errors
Task L n C4.5 C5.0 ripper slipper LogicPro

crx 690 15 15.5 14.0 15.2 15.7 14.3 ± 0.2
german 1000 20 27.0 28.3 28.7 27.2 28.5 ± 1.0
hepatitis 155 19 18.8 20.1 23.2 17.4 16.7 ± 1.7
horse-colic 300 25 16.0 15.3 16.3 15.0 16.4 ± 0.5
hypothyroid 3163 25 0.4 0.4 0.9 0.7 0.8 ± 0.04
liver 345 6 37.5 31.9 31.3 32.2 29.2 ± 1.6
promoters 106 57 18.1 22.7 19.0 18.9 12.0 ± 2.0

L — sample size; n — number of features.
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Results

Causes of overestimation of the VC bound
(thresholds ε0, ε1, ε2 correspond to the significance Q̂ε = 0.05, 0.1, 0.01).

Task y r1 r2(ε0) r3(ε0) r4(ε0) ∆̂ℓ

L[ε1, ε2] ∆̂ℓ

L(ε0)

crx 0 890 680 3.1 32.6 [10; 41] 24
1 690 1700 1.6 11.6 [11; 180] 12

german 1 8 950 1500 1.7 10.9 [38; 530] 54
2 37 000 9000 1.2 9.9 [1.0; 2.2] 1.9

hepatitis 0 23 280 13.4 9.5 [11; 148] 83
1 55 680 2.4 22.5 [12; 27] 15

horse-colic 1 72 4500 2.1 7.2 [2; 9] 7
2 140 3400 3.6 7.3 [3; 6] 6

hypothyroid 0 61 000 400 32.2 16.5 [3; 220] 21
1 153 000 460 3.8 28.7 [2; 44] 30

promoters 0 94 340 5.9 9.8 [36; 230] 72
1 150 790 3.4 6.9 [9; 22] 18
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Conclusions

The shatter coefficient ∆̂ℓ
L should take value about 102 or less

to bound be tight. No recent theory can provide so low
estimates.

The effective local VC-dimension (if we would like to define it)
degenerates and becomes less that 1.
Open problem 1:
What new complexity characteristic to be introduced?

There is a little sense to estimate the shatter profile Dm.

Open problem 2 (towards tighter bounds):
How to take into account both splitting and similarity?

Vorontsov K. V. Combinatorial probability and the tightness of generalization

bounds // Pattern Recognition and Image Analysis. — 2008. — Vol. 18, no. 2.

— Pp. 243–259.
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A toy example: the pair of classifiers

Consider two classifiers a1, a2 with m1, m2 errors on X L:

~a1(X
L) = (

m1
︷ ︸︸ ︷

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 );
|←−m0−→|

~a2(X
L) = ( 0 0 0 1 1 1 1 1 1 1 1 1 1

︸ ︷︷ ︸

m2

0 0 0 0 0 0 0 0 0 0 0 ).

Theorem (exact probability of overfitting)

Pn

{
δ(µ,X ℓ

n , X k
n ) > ε

}
=

m0∑

s0=0

m1∑

s1=0

m2∑

s2=0

C s0
m0

C s1
m1

C s2
m2

C ℓ−s0−s1−s2
L−m0−m1−m2

C ℓ
L

×

×
[
m0 + m1 + m2 − k 6 s0 + s1 + s2 6 ℓ

]
×

×
([

s1 < s2
][

s0 + s1 6
ℓ
L
(m0 + m1 − εk)

]
+

+
[
s1 > s2

][
s0 + s2 6

ℓ
L
(m0 + m2 − εk)

])

.
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Experiment 1. Two classifiers of the equal quality

ℓ = k = 100; ε = 0.05; m1 = m2; m = 20, 40, 100

m=20 m=40 m=100
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Experiment 2. Two classifiers of the different quality

ℓ = k = 100; ε = 0.05; m0 = 20; d ≡ m2 − m1 = 0, 10, 20, 30

d=0 d=10 d=20 d=30
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Experiment 3. The chain of 1000 classifiers

D = 1000 classifiers, given by their binary loss vectors;
ℓ = k = 100 — the size of training and testing sets (L = 200);
m/L = 0.05, 0.25 — the quality of the best classifier;
ε = 0.05 — the threshold of overfitting;
N ′ = 1000 random Monte-Carlo generated partitions.

A binary L × D-matrix of column vectors of losses:

Example: 1 1→0 0 0→1 1 1 1 1 1 . . .
0 0 0 0→1 1 1 1 1 1→0 . . .
0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0→1 1 1 1 1→0 0 0 . . .
0 0 0 0 0 0 0→1 1 1 1 . . .
0→1 1 1 1 1→0 0 0→1 1 . . .

Chain is a sequence of binary loss vectors such that each
subsequent vector differ from the previous one in one bit.
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Chains with and without splitting

Chain is a sequence of binary loss vectors such that each
subsequent vector differ from the previous one in one bit.

Two extreme types of chains:

(1) split chain (2) not-split chain
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Chain and not-chain, with and without splitting (m/L = 0.05)

Split Chain Split Not-chain Not-split Chain Not-split Not-chain
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In the case of splitting and low errors (m/L = 0.05),
the probability of overfitting newer reaches 1 with D → ∞.
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Chain and not chain, with and without splitting (m/L = 0.05, zoom)
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According to VC theory ∆̂(D) = D.
This happens for not-chains and for low D only.
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Chain or not chain, with or without splitting (m/L = 0.25)
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In high error situation (m/L = 0.25)
only a chain with splitting provides a low overfitting.
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Conclusions

ELSC ∆̂(D) has a horizontal asymptote
whereas ∆̂ = D according to VC theory.

Chain provides a slower growth of ∆(D).

Splitting provides a lower ( ≪ 1) horizontal asymptote.

About the nature of overfitting:
оverfitting arises as a result of choice of the best classifier
(even from 2 classifiers!) on a finite training set.

Optimism:
Chains with splitting are very often encountered in practice;
just in this situation overfitting is low.

Motivation for further research: No theory exists that can
take into account both similarity (chain) and splitting.
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Thanks!
Questions?



Two invitations

1 Continually:
virtual seminars on wiki www.MachineLearning.ru (in Russian)

Слабая вероятностная аксиоматика
— Weak Probability Axiomatic
Расслоение и сходство алгоритмов (виртуальный семинар)
— Splitting and similarity of classifiers (virtual seminar)
Участник:Vokov
— K.Vorontsov’s participant page

2 Today! 15:00, Assembly Hall, building 2
The wiki resource www.MachineLearning.ru for research
and education collaboration
(plenary talk and discussion)
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