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Definitions and notation

Training sample: X* = {x;}¢_; C X.
Learning algorithm 11: X* — a, where a € A'is a classifier.
Binary loss function I(a, x) = [classifier a makes an error on x].
Binary loss vector of a classifier a on a sample X*:
¢
3(XY) = (/(a x,))l.zl.

Frequency of errors of classifier a on a sample X*
v(a, X% = E 1(a, x;).

Testing sample: Xk = {x}, C X
Overfitting of a learning algorithm s with respect to X¢, X*:
S, X XY = v (p(XY), XF) = v ((XY), X°).

Problem: obtain an upper bound of the probability of overfitting
Pxexie{6(p, X5, XX) > e} <nle),  n(e) =7

Konstantin Vorontsov (www.ccas.ru/voron) Towards tight generalization bounds



Generalization bounds The probability of overfitting
Vapnik-Chervonenkis bounds
Data dependent bounds

Test set bound

Theorem (a form of the Law of Large Numbers)

For any fixed classifier a and any probability measure P over
XL = Xt U Xk the observable frequency u(a, Xf) predicts
the unknown frequency v(a, X¥):

P.{0(a, X}, XX) > e} < H{(e),

5(5) Cct Cf—t

Hf(a) = max Y, ——=" js an upper bound of the left tail of
m:07"'7L t:S() CL

hypergeometric distribution, sy = (m — k)4, s(e) = L%(m —ek)].

-

@ The bound is tight (moreover, an exact variant exists).

© But it gives no recommendations for y construction.
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Vapnik-Chervonenkis bounds [1968-1971]

For any set of classifiers A, any prob.measure P over XL = XU Xk

P {8(u, X4, X¥) > e} < PXL{ sup 8(a, X!, X¥) > e} <
acA

< Y Pxe{d(a, X XK) > e} <AA(L)- Hi(e) <
FEA(XL)

(fe=k) <AAL)-15e %,

A(XE) = {3(X") | a € A} is a set of loss vectors induced by A.

AA(L) = max |A(X1)| is a shatter coefficient of the set A,
X

AA(L) <15 % where h is the VC-dimension of the set A.

@ The bound leads to the Structural Risk Minimization method.

© But it is highly overestimated and almost useless in practice.
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The causes of overestimation: the recent understanding

@ The «worst case» bound does not take into account:
o peculiarities of the data X*!;
o peculiarities of the learning algorithm p.

@ The effect of splitting (or localization): the worse classifier is,
the less is a chance that it would be obtained from learning.
The set A is split into data-dependent subsets.

@ The «union bound» P(S;U---USA) < P(S1)+ -+ P(Sa),
is loose when events Sq = {d(aq, X*, X¥) > e} are similar.

2l

@ The exponent factor e ¢ is also an upper bound.
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40 years ago: the problem remains open

]
]
]
]
]
]
]
]
*]
*]
*]

Uniform convergence [Vapnik, Chervonenkis, 1968]
Theory of learnable (PAC-learning) [Valiant, 1982]
Data-dependent bounds [Haussler, 1992; Bartlett, 1998]
Connected function classes [Sill, 1995]

Similar classifiers VC bounds [Bax, 1997]
Self-bounding learning algorithms [Freund, 1998]
Microchoice bounds [Langford, Blum, 2001]
Algorithmic stability [Bousquet, Elisseeff, 2002]
Algorithmic luckiness [Herbrich, Williamson, 2002]
Shell bounds [Langford, 2002]

PAC-Bayes bounds [McAllester, 1999; Langford, 2005]
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Shell bounds: main ideas

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
v

@ Most classifiers a € A are concentrated near to v(a, Xt) = 0.5
@ Only classifiers from the left tail of the histogram

have chances to be choused by ERM: v(a, X%) — miR
ac

@ The bound is too complicated, requires Monte-Carlo
simulation, and not tight enough in practice.

John Langford. Quantitatively Tight Sample Complexity Bounds.
PhD (Carnegie Mellon). 2002.
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Similar classifiers VC bounds: main ideas

Suppose the set of loss vectors {3(X") ‘ a € A} is clusterized with
the Hamming distance on S clusters, each of the radius r. Then

Px.{d(a, X4\, X5) > e+ r/t} < S- Hi(e).

o If Ais separating hyperplanes, then S = AA(L)/(2r + 1).

@ Optimization over r (open problem: how r depends on the
dimension of the object space X7)

@ The bound is not tight, even after optimization over r.

Bax E. Similar Classifiers and VC Error Bounds. CalTech-CS-TR97-14,

June 1997. citeseer.ist.psu.edu/bax97similar.html
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Connected function classes

Definition

The set A is connected if for any 3 € A(X"L) with probability 1
exists 31 € A(X!) such that Hamming distance ||3 — 31| = 1.

@ SVM, two layer ANN, RBF, etc. are connected.

@ Theorem: if A is connected, then
1
——AA(L) - Hi(e).

@ The bound is not tight. It differs a little from the VC bound.

Pxc{d(a, X", X*) > e} <

Sill J. Generalization Bounds for Connected Function Classes. 1995.
http://citeseer.ist.psu.edu/127284.html

Sill J. Monotonicity and Connectedness in Learning Systems. PhD thesis,
CalTech, 1998.
Konstantin Vorontsov (www.ccas.ru/voron) Towards tight generalization bounds



Weak Probability Axiomatic (WPA)
Vapnik-Chervonenkis bounds under WPA
Causes of overestimation of the VC bound
Empirical results

VC bounds: measuring factors of overestimation

Motivation for measuring factors of overestimation

o Ultimate aim (OPEN PROBLEM)
to obtain tight and useful bounds.

o Immediate aim (DONE — see below)
to understand the causes of overestimation by comparing them
quantitatively in experiments on real data sets

@ Problem:
Standard probabilistic techniques used to obtain bounds induce
a sequence of uncontrollably overestimated inequalities

@ Why so?
It is usual to introduce and handle unobservable probabilities
that can be hardly measured

@ What is proposed:
A theory that handles only measurable quantities
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Weak (minimalistic, combinatorial) Probability Axiomatic (WPA)

VC bounds: measuring factors of overestimation

Q XL = {x}L,; — a given finite set of objects.
Q All partitions Xt = X! U Xk are equally probable,
wheren=1,...,N, N=CF, L=/(+k;
X,{ — observable training subset;
XX — hidden testing subset.

Overfitting at n-th partition: 6,(u) = 0(u, X2, X)).
Probability of overfitting is defined as the “fraction of partitions':

N
Pn{dn(p) >} = %Z[(Sn(u) > e].
n=1

Remark. The notion of probability is introduced without theory
of measure and without passage to the limit L — oc.
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Advantages of Weak Probability Axiomatic

VC bounds: measuring factors of overestimation

@ Not redundant. Can give not asymptotical exact bounds.
@ Any probability can be measured empirically:

N N'—N

Po{dn >} = ﬁ Y [0n>¢e] = Pp{dn> e}

neN’

@ Easy transition to Kolmogorov's axiomatic:

it Pa{d(X5, XK) > e} < n(e, X1,

then Py {0(X%, X*) > e} < Exun(e, X1).

@ Sufficient to prove fundamental facts:

o the Law of Large Numbers (exact bound);
o Kolmogorov-Smirnov criterion (also exact);
@ many statistical hypothesis tests (order statistics etc.);
@ Vapnik-Chervonenkis generalization bounds (see later);
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The test set bound (Law of Large Numbers) under WPA

VC bounds: measuring factors of overestimation

Consider a fixed classifier a, v(a, X!) = m/L.

Theorem (exact bound)

The observable frequency I/(a, Xf) predicts
the hidden frequency v(a, X k) :

P {6(a, X2, XE) > £} = HE™ (s(2),

S Ct Cf t
where H'™ (s) = 3. e

t=sp

distribution; s(¢) = | £(m —ek)]|,; so = max{0, m — k}.

— the left tail of hypergeometric
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Vapnik-Chervonenkis bounds under WPA

For any learning algorithm p and any set X*:

Q- =Py {5(3n,Xe Xk >€}§
ZD - H™ (s(e)) <

I—k
< A{ CHi(e) < AAL) 15675

A (11, XB) — local shatter coefficient (LSC) — shatter coefficient
of the set of classifiers {a, = u(X}) | n=1,...,N};

Dp(p, X5), m=0,..., L — shatter profile — a sequence of
shatter coefficients of the sets of classifiers having m errors on X°:
{an = p(XE) | v(an, X5) =2, n=1,...,N}.
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VC bounds: measuring factors of overestimation

The effective local shatter coefficient

Conclusions:

@ The exponential approximation 1.5 e’ is avoided.

@ The splitting of A is (partially) taken into account, but:
— it's not clear, how to estimate D,;;
— it's not clear, whether this will give a gain.

@ The similarity of classifiers is not taken into account.

Idea: to estimate the causes of overestimation empirically

Definition
The effective local shatter coefficient (ELSC):

 Pu{0(an X XK) > e} Pa{0(an, XE, X)) > €}
O HTGE) Pa{d(a XXl > e}
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Causes of overestimation of the VC bound

VC bounds: measuring factors of overestimation

The rate of overestimation can be factorized into 4 parts:

AAL)-3e  AAL) AL Ale)-H de
Q- Ai Ai(g) Q- H
—_— —— ——— Y~——
rn ra(e) r3(e) ra(e)

o l,m
where H = max H;" (s(€)).

Causes of overestimation:

@ r; > 1: the disregard of splitting

@ rp > 1: the disregard of similarity (due to union bound)
@ r3 > 1: the flat upper bound of the shatter profile

@ ry > 1: exponent approximation of hypergeometric tail
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VC bounds: measuring factors of overestimation

Rule induction machine

@ The rule is a predicate ¢,: X — {0,1} that covers mainly
objects of the class y.

o Weighted voting of rules:
Ty
a(x) = argmax > wlet(x),
() = g ma 35 i (<)

where ¢} (x) — t-the rule of the class y, w;, — its weight.

y
@ Rule learning algorithm of class y:

py: X {ob(x) [ t=1,..., T, }.

@ Why the rule induction machine is convenient for
the analysis of VC bounds overestimation:

o the shatter coefficient A%(L) is known;
o the LSC Af(u, X!) can be easily (lower) bounded;
o the ELSC Af(e) can be easily estimated.

Konstantin Vorontsov (www.ccas.ru/voron) Towards tight generalization bounds



Weak Probability Axiomatic (WPA)
Vapnik-Chervonenkis bounds under WPA
Causes of overestimation of the VC bound
Empirical results

VC bounds: measuring factors of overestimation

The experimental framework

@ 7 tasks from UCI repository, two classes
@ 20 x 2-fold cross-validation, ¢ = k

@ Learning algorithm Forecsys LogicPro®
[Vorontsov, Kochedykov, Ivakhnenko]

the average test set errors
Task L n | C45 (C5.0 RIPPER SLIPPER LogicPro
crx 690 15 | 155 14.0 15.2 15.7 | 143+0.2
german 1000 20 | 27.0 28.3 28.7 27.2 | 285+ 1.0
hepatitis 155 19 | 18.8 20.1 23.2 174 | 16,7+ 1.7
horse-colic 300 25| 16.0 153 16.3 15.0 | 16.4+0.5
hypothyroid | 3163 25 0.4 0.4 0.9 0.7 | 0.8 +0.04
liver 345 6 | 375 319 31.3 322 | 29.2+1.6
promoters 106 57 | 18.1 227 19.0 189 | 12.0+£ 2.0

L — sample size; n — number of features.
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VC bounds: measuring factors of overestimation

Results

Causes of overestimation of the VC bound
(thresholds g, 1,2 correspond to the significance Q. = 0.05, 0.1, 0.01).

Task y n n(e) n(e) n(e) | Aller,e]  Af(eo)
crx 0 890 680 3.1 326 | [10,41] 2%
1 690 1700 1.6 11.6 [11;180] 12
german 1 8950 1500 1.7 10.9 [38;530] 54
2| 37000 9000 12 9.9 | [1.0;2.2] 1.9
hepatitis 0 23 280 13.4 9.5 [11;148] 83
1 55 680 2.4 225 | [12;27] 15
horse-colic 1 72 4500 2.1 7.2 [2;9] 7
2 140 3400 36 73| [3:6] 6
hypothyroid | 0 | 61000 400 322 165 | [3;220] 21
1 | 153000 460 3.8 28.7 [2; 44] 30
promoters 0 94 340 5.9 9.8 [36; 230] 72
1 150 790 34 69| [9;22] 18
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VC bounds: measuring factors of overestimation

Conclusions

@ The shatter coefficient Af should take value about 102 or less
to bound be tight. No recent theory can provide so low
estimates.

@ The effective local VC-dimension (if we would like to define it)
degenerates and becomes less that 1.
Open problem 1:
What new complexity characteristic to be introduced?

@ There is a little sense to estimate the shatter profile D,,.

@ Open problem 2 (towards tighter bounds):
How to take into account both splitting and similarity?

Vorontsov K. V. Combinatorial probability and the tightness of generalization
bounds // Pattern Recognition and Image Analysis. — 2008. — Vol. 18, no. 2.
— Pp. 243-259.
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Splitting and similarity

A toy example: the pair of classifiers

Consider two classifiers a1, a» with my, my errors on X°:
m

= (ylL 7 n

d1(X")=(111111110000000000000000);

Lol f—mo—|

d(X")=(000111111111100000000000).
—_—

m2

Theorem (exact probability of overfitting)

mo mp M so 51 s ~l—s0—s1—52
Co Cr C CL_mO_ml_m2><

Po{o(u X0 Xs) 2 b =30 3 3
L

so0=0s1=0s,=0
x[mo+my+my—k<sp+s+5 <] x

x([sl < 2] [s0 4+ s1 < {(mo + my — k)] +
+ [51 > 52] [so+52 < (mo+m2—ek)]).
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Experiment 1. Two classifiers of the equal quality

{=k=100; ¢ =0.05; my = my; m=20, 40, 100

ELSC

20 1
19 9
18 7§
17 4
16 4
15 4
14 4
13 4
12 1
11 4
10 4

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Hamming distance between classifiers
— m=20 — m=40 — m=100
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Experiment 2. Two classifiers of the different quality

{=k=100; €¢=0.05, my=20; d=mry—m; =0, 10, 20, 30

ELSC
20 1
19 1
18 3
17 4
16 3
15 §
14 1
13 ]
12 1
11
10 1

0 10 20 30 40 50 6 70 8 9 100 110 120 130 140 150 160 170 180
Hamming distance between classifiers
—d=0 — d=10 — d=20 d=30
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Experiment 3. The chain of 1000 classifiers

D = 1000 classifiers, given by their binary loss vectors;

¢ = k = 100 — the size of training and testing sets (L = 200);
m/L = 0.05, 0.25 — the quality of the best classifier;

€ = 0.05 — the threshold of overfitting;

N’ = 1000 random Monte-Carlo generated partitions.

A binary L x D-matrix of column vectors of losses:

Example: 1 1-0 0 0—1 1 1 1 1 1
0 00 0—-1 1 1 1 1 1-0
00000 OO 0 O0 0 O
0 0 01 1 1 1 1-0 0 O
00000 0O 0-1 1 1 1
0—-1 1 1 1 1-0 0 0—1 1

Chain is a sequence of binary loss vectors such that each
subsequent vector differ from the previous one in one bit.
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Chains with and without splitting

Chain is a sequence of binary loss vectors such that each
subsequent vector differ from the previous one in one bit.

Two extreme types of chains:

(1) split chain (2) not-split chain
m, erros on general sanple m, erros on general sanple
060 0.60 |
055 055 4
050 050 1
045 045 4
040 040 4
035 035 4
030 030 1
025 025 4
0.20 0.20
0.15 015 4
0.10 010 4
0.05 005 4

0 0

0 200 400 600 800 1000 0 200 400 600 800 1000
classifiersin chain classifiersin chain
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Chain and not-chain, with and without splitting (m/L = 0.05)

Probability of overfitting ELSC
10 4 |
09 2 ]
08 3 1
07 3 209
06 1 ]
05 ] 157
04 1
03 ] 09
02 3 5 ]
01 3 ]
0 200 400 600 800 1000 0 200 400 600 800 1000
number of classifiers nurber of classifiers
= Split Chain = Split Not-chain — Not-split Chain — Not-split Not-chain

In the case of splitting and low errors (m/L = 0.05),
the probability of overfitting newer reaches 1 with D — oo.
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Chain and not chain, with and without splitting (m/L = 0.05, zoom)

Probability of overfitting ELSC

038 1 16 A

07 1 1 |

06 1 12

05 10 1

04 ] g

03 1 6

02 ] 4

01 ] 2

0 5 10 15 20 25 30 35 0 5 10 15 2 25 30 35
number of classifiers number of classifiers

= Split Chain = Split Not-chain — Not-split Chain — Not-split Not-chain

According to VC theory A(D) = D.
This happens for not-chains and for low D only.
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Chain or not chain, with or without splitting (m/L = 0.25)

Probability of overfitting ELSC
1.0 A 50 . s —
09 3 ( 45 1
08 4 40 . (
07 1 35
06 ] 30
05 1 25 -
0.4 1 20 -
03 ; s/
0.2 1 1.0 -
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
number of classifiers nurber of classifiers
= Split Chain = Split Not-chain — Not-split Chain — Not-split Not-chain

In high error situation (m/L = 0.25)
only a chain with splitting provides a low overfitting.
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Conclusions

@ ELSC A(D) has a horizontal asymptote
whereas A = D according to VC theory.

@ Chain provides a slower growth of A(D).
o Splitting provides a lower ( < 1) horizontal asymptote.

@ About the nature of overfitting:
overfitting arises as a result of choice of the best classifier
(even from 2 classifiers!) on a finite training set.

o Optimism:
Chains with splitting are very often encountered in practice;
just in this situation overfitting is low.

@ Motivation for further research: No theory exists that can
take into account both similarity (chain) and splitting.
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© Continually:
virtual seminars on wiki www.MachineLearning.ru (in Russian)

o Cnabas BepoATHOCTHasi akCMOMaTNKa
— Weak Probability Axiomatic
o Paccnoenue n cxoncteo anropntMoB (BUPTYasbHbI cemuHap)
— Splitting and similarity of classifiers (virtual seminar)
@ VuactHuk:Vokov
— K.Vorontsov's participant page
© Today! 15:00, Assembly Hall, building 2
The wiki resource www.MachineLearning.ru for research
and education collaboration
(plenary talk and discussion)
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