# Регуляризация нейросетевого слоя путем построения фрейма в пространстве параметров

Григорьев Алексей Дмитриевич

## Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

Научный руководитель: к.ф.-м.н. А.Н. Гнеушев

Москва, 2022

#### Задача

Предложить метод увеличения эффективности избыточного множества параметров нейронной сети и повышения устойчивости модели.

#### Проблема

Существующие решения, предполагающие регуляризацию параметров модели, накладывают чрезмерные ограничения на оптимизацию весов нейросети, что негативно влияет на качество модели.

#### Решение

Рассматривать веса слоя нейросети как систему векторов, проекция входа на которую устойчива и полна. Допустимая избыточность данной системы свойственна нейронной сети и позволяет точнее описывать ее веса.

#### Прунинг параметров

• *P. Molchanov, et al.* Pruning convolutional neural networks for resource efficient transfer learning // ICLR, 2017, P. 1–17.

#### Повышение разнообразия нейронов

- W. Lui, et al. Learning towards minimum hyperspherical energy // NIPS, 2018, P. 6222-6233.
- *N. Bansal, et al.* Can we gain more from orthogonality regularizations in training deep CNNs? // NIPS, 2018, P. 4266–4276.
- J. Wang, et al. Orthogonal Convolutional Neural Networks // CVPR, 2020, P. 11505-11515.

- Коррелированные системы весов нейронов неэффективны.
- Ортогональность чрезмерное требование и ограничение.
- Избыточные полные системы могут быть адекватны.
- Предлагается построение полной системы для разложения входных векторов в избыточном пространстве весов каждого слоя.



Возможные конфигурации весов нейронов

#### Григорьев А.Д.

### Семейство моделей

- Ограничим множество рассматриваемых моделей семейством  $\Phi_L$  нейросетей следующего вида.
- $\varphi(\cdot|\Theta) \in \Phi_L$  модель из семейства глубоких нейронных сетей, состоящих из L слоев, каждый из которых представим в виде линейного оператора  $\mathcal{F}_i : \mathbb{R}^{n_i} \to \mathbb{R}^{m_i}$  и нелинейной функции активации  $h : \mathbb{R}^{m_i} \to \mathbb{R}^{m_i}$ :

$$h(\mathcal{F}_i(\mathbf{z})) = h(\mathbf{W}_i\mathbf{z}), \ \forall \mathbf{z} \in \mathbb{R}^{n_i}, \ i = 1, \dots, L,$$

где  $\mathbf{W}_i \in \mathbb{R}^{m_i \times n_i}$ ,  $\mathbf{W}_i \subseteq \mathbf{\Theta}$  — матрица линейного оператора, составленная из параметров данного слоя,  $n_i, m_i : m_i \ge n_i$  — размерности входа и выхода слоя соответственно.



Сверточный слой в виде линейного оператора с матрицей W задается блочно-теплицевой матрицей из параметров  $\Theta$  свертки.



Теплицево представление одноканальной свертки

#### Оптимизация параметров модели

- $\{\mathbf{x}_i, y_i\}_{i=1}^N$  выборка размера N;
- $\varphi(\cdot|\Theta) \in \Phi_L$  модель из семейства  $\Phi_L$  глубоких нейронных сетей, состоящих из L слоев, представимых в виде линейного оператора;
- минимизация эмпирического риска:

$$\hat{\boldsymbol{\Theta}} = rg\min_{\boldsymbol{\Theta}} rac{1}{N} \sum_{i=1}^{N} \ell( arphi(\mathbf{x}_i | \boldsymbol{\Theta}), y_i) + \gamma \widetilde{R}(\boldsymbol{\Theta}),$$

где  $\ell - функция потерь, релевантная задаче обучения с учителем; <math>\widetilde{R}(\Theta) = \sum_{i=1}^{L} R(\mathbf{W}_i) - регуляризация , \gamma - коэф. регуляризации;$ 

#### Регуляризация параметров

Регуляризация параметров  $\mathbf{W}^T = [\mathbf{w}_1 \dots \mathbf{w}_m]$  направлена на минимизацию потерь информации на слое  $\mathcal{F}(\mathbf{z}) = \mathbf{W}\mathbf{z}$  путем построения системы весов  $\{\mathbf{w}_i\}_{i=1}^m$ , линейно восстанавливающих вход  $\mathbf{z}$  по выходу  $\mathcal{F}(\mathbf{z})$ :

$$orall \mathbf{z} \in \mathbb{R}^n \ \exists \mathbf{ ilde{c}} = \mathbf{ ilde{c}}(\mathcal{F}(\mathbf{z}), \mathbf{W}): \ \mathbf{z} pprox \mathbf{\hat{z}} = \sum_{k=1}^m ilde{c}_k \mathbf{w}_k.$$

## Фреймы

## Определение (фрейм)

 $\{\mathbf{w}_k\}_{k=1}^m \subset \mathbb{R}^n - \pmb{\phi}$ рейм в  $\mathbb{R}^n$ , если  $\exists \ A, B: \ 0 < A \leq B < \infty: \ \forall \mathbf{z} \in \mathbb{R}^n$  выполнено *нер-во фрейма*:

$$\|\mathbf{z}\|^2 \leq \sum_{i=1}^m |\langle \mathbf{z}, \mathbf{w}_i 
angle|^2 \leq B \|\mathbf{z}\|^2$$

где *А*, *В* – *границы фрейма*. Если *А* = *В*, то фрейм называется жестким.

#### Разложение по дуальной системе

Если  $\{\mathbf{w}_k\}_{k=1}^m$  — фрейм в  $\mathbb{R}^n$ , то разложение по дуальному фрейму  $\{\widetilde{\mathbf{w}}_i\}_{i=1}^m$ :

$$\mathbf{z} = \sum_{i=1}^m \langle \mathbf{z}, \mathbf{w}_i 
angle \widetilde{\mathbf{w}}_i, \ \forall \mathbf{z} \in \mathbb{R}^n.$$



Пример жесткого фрейма с границей  $A = \frac{3}{2}$  в  $\mathbb{R}^2$ 

## Свойства фрейма $\{\mathbf{w}_k\}_{k=1}^m \subset \mathbb{R}^n$

- Фрейм образует полную систему в ℝ<sup>n</sup>. При m > n система избыточна, что характерно для слоя нейросети и позволяет точнее его описывать.
- Если строки {w<sub>k</sub>}<sup>\*</sup><sub>k=1</sub> матрицы W образуют фрейм, то собственные числа λ<sub>1</sub>,..., λ<sub>n</sub> матрицы W<sup>T</sup>W ограничены границами фрейма:

$$A \leq \lambda_i \leq B, \ \forall i = 1, \dots, n.$$

• Для переопредленной СЛАУ  $\mathcal{F}(\mathbf{z}) = \mathbf{W}\mathbf{z}$  фрейм  $\{\mathbf{w}_k\}_{k=1}^m$  дает устойчивое решение задачи восстановления входа:  $\mathbf{z} = (\mathbf{W}^T \mathbf{W})^{-1} \mathbf{W}^T \mathcal{F}(\mathbf{z})$ . Обусловленность задачи ограничена:

$$\kappa(\mathsf{W}) = \|\mathsf{W}^{\mathsf{T}}\mathsf{W}\| \, \|(\mathsf{W}^{\mathsf{T}}\mathsf{W})^{-1}\| = rac{|\lambda_{\mathsf{max}}|}{|\lambda_{\mathsf{min}}|} \leq rac{B}{A} \, .$$

## Модель слоя: $\mathbf{W} \in \mathbb{R}^{m \times n}$ : $m \ge n$

- Нейросетевого слой задан линейным оператором  $\mathcal{F} : \mathbb{R}^n \to \mathbb{R}^m$  с матрицей  $\mathbf{W} \in \mathbb{R}^{m \times n} : m \ge n$  и нелинейной функцией активации h,  $h(\mathcal{F}(\mathbf{z})) = h(\mathbf{W}\mathbf{z}), \forall \mathbf{z} \in \mathbb{R}^n; \mathbf{W}^T = [\mathbf{w}_1 \dots \mathbf{w}_m].$
- Для обратимости линейной части слоя *F*(z) = Wz необходимо и достаточно, чтобы строки {w<sub>k</sub>}<sup>m</sup><sub>k=1</sub> матрицы W образовывали фрейм.

### Построение фрейма

• Неравенство фрейма для строк  $\{\mathbf{w}_k\}_{k=1}^m$  матрицы **W**:

$$A \|\mathbf{z}\|^2 \le \|\mathbf{W}\mathbf{z}\|^2 \le B \|\mathbf{z}\|^2, \, \forall \mathbf{z} \in \mathbb{R}^n \Longleftrightarrow \begin{cases} (\mathbf{W}^T \mathbf{W} - A \mathbb{I}) \succeq \mathbf{0}, \\ (-\mathbf{W}^T \mathbf{W} + B \mathbb{I}) \succeq \mathbf{0}. \end{cases}$$

Матрица V ∈ ℝ<sup>m×m</sup> положительно полуопределена, если:
 она обладает свойством диагонального преобладания:

$$|\mathbf{v}_{ii}| \geq \sum_{j \neq i} |\mathbf{v}_{ij}| \ \forall i = 1, \dots, m,$$

ее диагональные элементы неотрицательны:

$$v_{ii} \geq 0 \ \forall i = 1, \ldots, m.$$

• Пусть  $V = W^T W$ ,  $M(v) = \min(v, 0)$ ; введем регуляризатор:

$$R(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{M(\mathbf{v}_{ii} - A - \sum_{j=1}^{n} |\mathbf{v}_{ij}|)^{2}}_{\text{штраф } i\text{-ой строки } (\mathbf{W}^{\mathsf{T}}\mathbf{W} - A\mathbb{I})} + \underbrace{M(-\mathbf{v}_{ii} + B - \sum_{j=1}^{n} |\mathbf{v}_{ij}|)^{2}}_{\text{штраф } i\text{-ой строки } (-\mathbf{W}^{\mathsf{T}}\mathbf{W} + B\mathbb{I})}$$

## Вычислительный эксперимент

#### Цель

Сравнить предложенный подход к регуляризации параметров модели с существующими решениями в задаче классификации изображений.

#### Параметры эксперимента

- задача многоклассовой классификации;
- архитектуры модели  $\varphi(\cdot|\Theta)$  ResNet-34, ResNet-50;
- функция потерь  $\ell$  кросс-энтропия;
- оптимизатор Adam с начальным шагом 0.01;
- критерий качества Ассигасу.

## Выборки

O CIFAR-10, CIFAR-100, SVHN – датасеты изображений;

| Выборка   | Число изображений | Число классов |
|-----------|-------------------|---------------|
| CIFAR-10  | 60000             | 10            |
| CIFAR-100 | 60000             | 100           |
| SVHN      | ${\sim}100000$    | 10            |

| Метод регуляризации           | CIFAR-10                           | CIFAR-100                          | SVHN                               |  |
|-------------------------------|------------------------------------|------------------------------------|------------------------------------|--|
| Без регуляризации             | $94.53\pm0.03$                     | $75.58\pm0.08$                     | $96.50\pm0.03$                     |  |
| Minimum Hyperspherical Energy | $94.58\pm0.04$                     | $75.78\pm0.08$                     | $96.59\pm0.03$                     |  |
| Weights Orthogonalization     | $94.59\pm0.04$                     | $75.98\pm0.08$                     | $96.51\pm0.02$                     |  |
| Spectral Restricted Isometry  | $94.72\pm0.03$                     | $76.24\pm0.09$                     | $96.57\pm0.03$                     |  |
| Orthogonal Convolutions       | $95.03\pm0.04$                     | $76.57\pm0.06$                     | $96.66\pm0.02$                     |  |
| Фреймовая регуляризация       | $\textbf{95.17} \pm \textbf{0.05}$ | $\textbf{77.61} \pm \textbf{0.07}$ | $\textbf{96.85} \pm \textbf{0.02}$ |  |

Ассигасу (%) методов регуляризации (ResNet-34)

Ассигасу (%) методов регуляризации (ResNet-50)

| Метод регуляризации           | CIFAR-10                           | CIFAR-100                          | SVHN                               |  |
|-------------------------------|------------------------------------|------------------------------------|------------------------------------|--|
| Без регуляризации             | $94.83\pm0.04$                     | $77.20\pm0.07$                     | $96.92\pm0.03$                     |  |
| Minimum Hyperspherical Energy | $94.88\pm0.03$                     | $77.34 \pm 0.06$                   | $96.94\pm0.02$                     |  |
| Weights Orthogonalization     | $94.92\pm0.04$                     | $77.38\pm0.06$                     | $96.91\pm0.03$                     |  |
| Spectral Restricted Isometry  | $95.01\pm0.03$                     | $77.40\pm0.07$                     | $96.95\pm0.03$                     |  |
| Orthogonal Convolutions       | $\textbf{95.29} \pm \textbf{0.03}$ | $77.77\pm0.07$                     | $97.01\pm0.02$                     |  |
| Фреймовая регуляризация       | $95.25\pm0.04$                     | $\textbf{78.35} \pm \textbf{0.06}$ | $\textbf{97.10} \pm \textbf{0.02}$ |  |

- Обучающая выборка CIFAR-10;
- Тестовые домены:
  - O CIFAR-10-С аугментированная выборка CIFAR-10,
  - СІNІС-10 подвыборка ImageNet, включающая классы из CIFAR-10;
- Для моделей с регуляризацией выбраны субоптимальные эпохи;

| Accuracy (%) | ) методов регуляризации на разных доменах ( | [ResNet-34] | ) |
|--------------|---------------------------------------------|-------------|---|
|--------------|---------------------------------------------|-------------|---|

| Метод регуляризации     | CIFAR-10 (*)                       | CIFAR-10-C                         | CINIC-100                          |  |
|-------------------------|------------------------------------|------------------------------------|------------------------------------|--|
| Без регуляризации       | $94.53\pm0.03$                     | $74.77\pm0.25$                     | $67.91\pm0.35$                     |  |
| Orthogonal Convolutions | $94.52\pm0.01$                     | $76.27\pm0.19$                     | $69.87\pm0.29$                     |  |
| Фреймовая регуляризация | $\textbf{94.53} \pm \textbf{0.01}$ | $\textbf{76.65} \pm \textbf{0.15}$ | $\textbf{71.20} \pm \textbf{0.32}$ |  |

(\*) – исходный домен

- Выборка CIFAR-10;
- Состязательная атака типа "черный ящик" SimBA (Guo, 2019);
- Attack Success Rate (ASR) доля успешных атак;

|                         | # Итераций |       |       |       |       |
|-------------------------|------------|-------|-------|-------|-------|
| метод регуляризации     | 1          | 10    | 50    | 100   | 1000  |
| Без регуляризации       | 52.08      | 59.37 | 84.38 | 92.71 | 93.75 |
| Orthogonal Convolutions | 41.30      | 57.61 | 83.69 | 91.30 | 92.06 |
| Фреймовая регуляризация | 39.56      | 49.45 | 80.20 | 84.61 | 86.81 |

Зависимость ASR(%) от цисла итераций SimRA



Григорьев А.Д.

## Выводы

- Предложена модель нейросетевого слоя на основе фрейма в пространстве параметров, минимизирующая потерю информации на линейном слое.
- Предложенная модель обобщена на сверточные слои с использованием блочно-теплицева представления свертки.
- Построен фреймовый регуляризатор параметров нейросетевого слоя путем введения штрафа за нарушение фреймового неравенства.
- Проведенные вычислительные эксперименты показали значимое преимущество предложенного метода и увеличение эффективности регуляризации в задачах классификации, повышения устойчивости к состязательным атакам и к смене домена по сравнению с существующими подходами.
- Предложенная регуляризация позволила отказаться от стандартной регуляризации weight decay путем введения штрафа на соблюдение верхней границы фрейма.

#### Публикации по теме диссертации

• Григорьев А.Д., Гнеушев А.Н. Регуляризация параметров нейронной сети на основе неравенства Рисса // Математические методы распознавания образов: Тезисы докладов 20-й Всероссийской конференции с международным участием, г. Москва 2021 г. — М.: Российская академия наук, 2021. — С. 121-122.

### Публикации

- Grigorev A., Gneushev A., Litvinchev I. Re-identification-based models for multiple object tracking // Artificial Intelligence in Industry 4.0 and 5G Technology. — Hoboken: Wiley, 2022 (in press).
- Григорьев А.Д., Гнеушев А.Н. Ре-идентификация с пред-фильтрацией по качеству изображений в задаче слежения за множеством объектов // Информационные технологии, Москва: Новые технологии, 2021. — Т. 27, N 8. — С. 409–418.
- Григорьев А.Д., Гнеушев А.Н. Слежение за множеством объектов на видео изображениях с помощью ре-идентификации с предфильтрацией дескрипторов по качеству // Интеллектуализация обработки информации: Тезисы докладов 13-й Международной конференции, г. Москва 2020 г. — М.: Российская академия наук, 2020. — С. 433-434.