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Peniens3us Ha ctaTbio
Mr. X

«Qwerty»

B pabore wuccnenyercs MeTOl HAMMEHBIIWX KBAaJApPATOB MpPU IOCTPOCHUM JIMHEHHBIX
perpeccuoHHbIX Mozenei. [Ipennaraercs BMeCTO METOla HAMMEHBIIMX KBaIpaTOB MCIOIb30BATh
METOJI HauMEHBIIMX MOAYJIEH B CBSI3U C TE€M, YTO CyMMa MOAYJIEH pPa3sHOCTH H3MEPEHUU U
COOTBETCTBYIOIIMX UM 3HAYEHUH JTUHEHHON (QYyHKIMH He SBISETCS BCIOAY TUbepeHIpyeMON.
[IpuBonsTcs popmynsl pacuera ko3hduueHTOB ogHOMEPHOH JuHeHoi Monenu no MHK. Jlns
HOJTy4YeHUs: poOacTHhIX Kko3(ULMEHTOB mpearaeTcss MUCHojiab3oBaTh B3BeweHHbI MHK ¢

q
BECaMHM BHUJIA /|y | . YKa3zaH KpUTEepUil ONTUMAJIbHOCTH 3HAYEHUN ¢. AJIEKBaTHOCTh MOJYYEHHON
MOJIeNI MPOBEpsieTCa C MoMollbio kputepus Puiiepa. B kauecTBe mpumepa HCIOIb30BaHUS
IPEIOKEHHOT0 MEeToJla NMpHUBEACHAa BbIOOpPKA M3 mATH AeMeHToB. [lo pesympraram paboThbI
CACJIaHbl BBIBOABI.

Peniensupyemasi cTaTths HE COIEPXKUT HM aHHOTALMU, HU BBeAeHUs. B crarbe He cooOmiarorcs
neneit pabotel. CTaThsi BHYyTPEHHE MPOTHBOPEYNBA: HECKOJIBKO pa3 MpeiaraeTcsl HCIoIb30BaTh
METOJ] HAaMMEHbIUX Moaynei (ctp.l, a63. 1.; cTp. 3, a63. 6, 7; cTp. 4., a03. 1, 2.), ogHaKo AJs
OTBICKaHUSI KO3(PPHUIIMEHTOB JTUHEHHOW MOJEITU HCIOJIb3YeT METO] HAMMEHBIIUX KBaJIpaToB.
Cne):[yeT OTMCTUTDH, UTO AJId HAXO0XICHUA BECOB JIMHEHOU MOZCIIH ITPU MUHHUMU3AlIUU CYMMBI
MoyJiel pazHOCTeH He uMeeT cMbIch auddepeHtpoBars (2). st 9TUX 1eNIed UCTIONb3YIOTCS,
HaIlpuMep, METOAbI JIMHEMHOIO IIPOrPaMMUPOBAHUS.

Temaruka OThICKaHUSI POOACTHBIX JIMHEHHBIX MOJENEH C HCIOJIb30BaHUEM (yHKUUOHaANA (2),
HOIHUMaeMas B PEIeH3UPyeMOi cTaThe, MOAPOoOHO OCBAIIEHa, HAIpUMeEp, B paboTe ...

B cBs3M ¢ BBIIEH3II0KEHHBIM, CIMTAIO0, YTO PELEH3UPYEMYIO CTaThio «Qwerty» ImyOIMKOBaTh B
KypHaie «Journal» HeoOs13aTeIbHO.

Penensenr,
K.(.-M.H. Mr. Y



PeueH3na Ha cTaTbio Mr. X

«QWERTY»

B cTaTbe onucaHa NWHeNHaa perpeccus O4HOW MepeMeHHOM — BbICOTbl Ha
NJIOTHOCTb MOYBbI. PaccmoTpeHbl Tpu BblIOOPKKU; OAHA COCTOMT W3 LIECTU
3N1EeMEHTOB, ABe ApYyrne coaepaTt no Tpu anemeHTa. lMNpueeaeHbl KO3GPUUMEHTDI

TPeX IMHENHbIX GYHKUMN perpeccum.

B nporpammy KOHpepeHUuM ... BXOAMUT paccmoTpeHue OyHAAMEHTA/IbHbIX
MaTeMaTUYeCKMX BOMPOCOB pPaACMO3HAaBaHWA, MHTENNEKTYya/IbHOro aHaausa
AQHHbIX, MAWMHHOTO 06y4YeHWUA, NPOrHO3MPOBAHMA, NPUKAAAHbIX 3aaau
M NPOrpaMMHbIX cuctem. MaTemaTuMyecKaa 4acTb pPeLEH3NPYeMOMr CTaTbWu
onupaetca Ha KHury H0.B. JIMHHKKaA, nepeunsgaHHyo B 1962 ropy.
dyHoameHTaNbHAA 4YacTb MeToda M310XeHa Ha cTp. 11 3TOM KHUrM w
NPOMANIOCTPMPOBAHA MOXOXMM npumepom u3 pabotbl O.U. MeHaeneesa 1881
roga. Ha ctp. 20 KHUrm npuseaeH o0630p TEOPETUYECKMX U NPUKNALHbIX paboT
M3BECTHbIX uccnepgoBaTenen 3a 1806—1946 roabl, NOCBALWEHHbIX PELIeHUo
pPacCMaTPUBAEMOM B PELLEH3MPYEMOM CTaTbe 3a4auM.

B CBA3K C BbIWEN3NONKEHHBIM PELLEH3EHT He CYMUTAeT YMECTHbIM NOAHMMATb
AaHHY0 33434y A5 NOBTOPHOMO 06CYKAEHMA ee MaTeMaTMYECKOoro annapaTa Ha
KOHpepeHuun ... U npeanaraer aBTopam noAaTb CTaTbio Ha KoHdepeHuuio,
MOCBALLEHHYIO BOMPOCamM NoYBOBeAeHMUA.

PeueHseHT,

K.p.-M.H., gou. Mr. Y



Penen3usa Ha craroio Mr. X
«Qwerty»

B crarhbe paccMoTpeHa BecbMa akTyalibHas TMpoOjieMa MOCTPOCHHUS
JMHEHHBIX CTPYKTYPHBIX COOTHOIICHWH MEXTy CIydalHBIMU BEIWYMHAMHU Ha
MaJbIxX BeIOOpKax. Ha mpaktuke mpoOiiemMa BOCCTAaHOBJICHHS 3aKOHOMEPHOCTEH Ha
MaJIbIX BBIOOPKA YacTO CBSI3aHA C BBICOKOW CTOMMOCTBIO DKCIIEPUMEHTOB U MOYKET
BCTaThb OYEHb OCTPO. B COBpeMeHHOU luTeparype npeajararorcsi, mo KpaitHen
Mepe, TPU OCHOBHBIX Mojxoja: 1) BeleHne crenuaibHbIX GYHKIUNA OMMUOKY (MU
(GYHKIIMH KadecTBa) MOZACIH, 2) OTKa3 OT CHJIBHBIX THUITOTE3 MOPOKICHHS TaHHBIX
(MCTIOIB30BaHUE JTOCTATOYHO OO0MIeH wHGOpPMAamuM O 3aKOHAX paclpeAcIICHUS
UCCIEAYEMBbIX CIy4YaWHBIX BEIWYUH) U 3) BOCCTAHOBICHHUE COBMECTHOTO
pacmpenencHusT BXOAHBIX M 3aBHCHMBIX CIIyYalWHBIX BETUYMH. ABTOPBI BBIOpAIN
BTOPOM TIyTh W PACCMOTPEIN TPAKTUYCCKH BAKHBIC CIydaW OJHOMEPHOTO U
MHOTOMEPHOTO JIMHEMHOTO CTPYKTYpPHOTO COOTHOIIEHHUS, a TakXKe J0oKa3ajiu
TEOpEeMy O HECMEIIEHHOCTH IOJIyYaeMbIX OIEHOK MapamMeTpoB. Takke B CTaTbe
OBLI TIOCTaBJICH BBIUMCIUTEIBHBIA JKCIEPUMEHT Ha CHUHTETHYECKUX JTaHHBIX:
BBIOOPKU PA3IMYHOTO 00beMa ObUIM MOPOXKJICHBI COITIACHO AKCIIOHEHIIMATIHLHOMY,
JIOTHOPMAJILHOMY, YCEUEHHOMY HOPMaJIbHOMY paclpeeiIeHUI0 U pacipeaeICHUIO
Panesi; monydeHbl XOpollue pe3ynbTaThl, KOTOPHIE CpPaBHUBAIKNCHL C paHEe
PEITIOKEHHBIMH.

Crarbsi moJIe3HA, AKKypaTHO HallMCaHa, COJEPKUT HUHTEPECHBIA pe3ylbrar u
XOPOILIUN BBIYMCIUTENBbHBIA dKCTIepuMeHT. [Ipemnarato omyOnukoBaTh CTaThio B

<Journal> 6e3 10pabOTOK.

Penensent
K.(.-M.H. Mr. X

14 urona 2012 .



Name of paper

1. The introduction should carry the brief explanation what is the Operating
Theater Layout and the activity. If is difficult to read the massage without
knowing the main subjects.

2. The introductory parts (1..3) are too long. If in one-page text the goal, the
novelty and the importance will be explained, it would be good.

3. Problem statement and problem modeling should be joined; the problem
statement should be reduced to the main message.

4. Parts 5, 6. Please write, what doctors (users) say about this placement: what
kind of placement is better: algorithmic or manual and according to what
criterion?

Methodologies and Tools to ...

1. The abstract must convey the field and the main problem of the
investigation. Now the abstract is a part of the introduction.

2. It would be great to eliminate the vague sentences like "The increasing
globalization of markets" from the introduction and write about the goals and
the novelty of the paper. The main subject of the paper, NPD, must go first.

3. Part 2. It would be great if the text and the table will be tightly connected.
The table is the key here.

4. Part 3 is the main part of the paper; is too brief. It should answer to the
following questions:

What is the source of the document collection?



What are the selection criterions?

Why the authors consider the criterions to be adequate to the goal of the
investigation?

How the percentage was calculated?
How the graphs were constructed?
What conclusion the reader could make from the figures?

Item 1..9: could the percent be shown as a histogram?

5. The conclusion repeats the previous part. If it will deliver how the reader
can use the results in his practice, it would be good.



\Comprehensive study of feature selection methods tefor solvinge
the multicollinearity problem according to evaluation criteria\m\[znsm

f’l’his\[sﬂ[s] paper provides a new approach fertheto feature selection—is based on the
concept of feature filters, so thethat feature selection is independent of the prediction model. Data
fitting is stated as a single-objective optimization problem, where the objective function indicates
the error of approximatingien the target vector withas some function of given features. The-lLinear
dependence between features indicatesinduces the multicollinearity problem—+ and leads to
wrinstability of the model and redundancy of the feature set. Thise paper introduces a feature
selection method based on a-quadratic programming-appreach. This approach takes into account
the mutual dependence of the features and the target vector, and selects features according to
relevance and similarity measures;-#hich-are defined according to anapphieationthe specific
problem. The main idea is to minimize mutual dependence and maximize approximation quality by
varying a binary vector; that indicatesing the presence of features-presence. The selected model is
less redundant and more stable. To evaluate the quality of the proposed feature selection method
and compare it with others, we use several criteria to measure urinstability and redundancy. In
theour experiments, we compare the proposed approach with theseveral other feature selection
methods-LARS LasseRidge, Stepwise and-Geneticalgerithm—We, and show that the quadratic
programming approach gives superior results according to the criteria considered eriteria-enfor the
test and real data sets.




1 Introduction

—This paper presents a aevelnew approach to avoiding multicollinearity in feature selection.
Multicollinearity is a strong correlation between features; whichthat affect the target vector
simultaneously. Bue—teln the presence of multicollinearity, the-common methods of regression
analysis, tkesuch as least squares, build unstable models of excessive complexity. The formal
definitions of model stability, complexity and redundancy are given in Section 5.

Most ef—previeush—prepesedexisting feature selection methods that solve the
multicollinearity problem are based on wvaricus—heuristics [Leardi (2001), Oluleye et- al.

(2014)Stuteye-Armstrong—teng—Diepeveen], greedy searches [Ladha and Deepa (2011), Guyon
(2003)] or regularization techniques [Zou and Hastie (2005), El-Dereny and Rashwan (2011)]. These
approaches do not take into account the data set configuration and do not guarantee the
optimality of the specially designed feature subset [Katrutsa and Strijov (2015)]. In contrast, we
propose te-usea quadratic programming approach [Rodriguez-Lujan et- al. (2010)Redrigueztuian;
Huerta,—Elkan—Cruz] to solvinge the multicollinearity problem that esrrects—avoids the
disadvantages mentioned above. This approach is based on two ideas: thefirstone—is—te
representing feature presence as a binary vector, and thesecend-ene-iste-defininge the feature
subset quality criterion in a-quadratic form. The first term of the quadratic form is the pairwise
feature similarityies, and the linear term is the relevance of features relevances—to the target
vector. Therefore, we can state the feature selection problem with thea quadratic objective
function and a bBoolean vector domain.—

Measures of feature similarityies and relevances are problem-dependent and haveneed to
be defined befere—performing featureselection—according to the application preblembefore
performing feature selection. These measures have—teshould take into account the data set
configuration to remove redundant, noisy and multicollinear features, selecting those; whichthat
are significant for target vector approximation. We consider the correlation coefficient [Hall
(1999)] and the-mutual information [Estaez et- al. (2009)EstaeztesmerPerez—Zurada] between
features as measures of feature similarityies as~wel-asand between features and the target vector
as a measure of feature relevances. These measures guarantee thea positive semidefinite
guadratic form.—

To solve the convex optimization problem we need to relax the binary domain to thea
continuous eredomain. AftertThis relaxation; allows we-have-the convex optimization problem;
which—ean to be efficiently solved by state-of-the-art solvers; ferexample—fremsuch as CVX, a
package for specifying and solving convex programs package-by-[Grant and Boyd (2014), Grant and
Boyd (2008)]. To returafremtranslate the continuous solution to thea binary eresolution, we set a
significance threshold; whichthat defines a number of features to be selected—features. If the
feature similarity function does not give a positive semidefinite matrix, then the optimization
problem is not convex; and convex relaxation is required. In this case, theautherswe propose te
use-theusing a semidefinite programming relaxation by-[Naghibi et- al. (2015)NaghibiHeffmann
Pfister]. Such feature similarity functions are out of the scope of this paper. In addition, the
proposed approach gives a simple visualization of the feature weights in the target vector
approximation. This visualization helps to tune the threshold.

We earry—sutperform experiments on special test data sets generated according to the
procedure proposed in [Katrutsa and Strijov (2015)]. These data sets demonstrate different cases
of multicollinearity between features and correlation between features and the target vector.
Experiments show that the proposed approach outperforms the other censidered-feature selection




methods considered on every type of test data sets. Alse,—gQuadratic programming feature
selection shewsalso gives better quality results on the test and real data sets according to various
simultaneous evaluation criteria simultanesushyin contrast to other feature selection methods.
The main contributions of this paper are: —

e ltaddressinges the multicollinearity problem with a quadratic programming
approach and investigatinges its propertiesy;-

o [t demenstratesevaluating the performance of the quadratic programming feature
selection method on the-test data sets according to various criteria;-

e It comparinges the proposed feature selection method with others methods on test
and real data sets, and showings that itthe proposed method gives the-better feature subsets than
the other methods. The feature subset quality areis measured by external criteria.

Related werksresearch
—A comprehensive survey of feature selection algorithms was—can be found in [Li et- al.

(2016)Li-Cheng WangMerstatterTrevinetang—Hu],- Hwhich gives a systematic analysis ferof

filter, wrapper, and embedded methods.—A—number—of algorithms—are—collected—intibrary!.
Previeushy—¥Various strategies werehave been proposed tefor detecting multicollinearity and $e

solvinge thisthe multicollinearity problem [Askin (1982), Leamer (1973), Belsley et- al.
(2005)8elsley—Kkuh—Welsek]. One way to solve the multicollinearity problem is to use feature
selection methods [Liu and Motoda(2012), Belsley et- al. (2005)Belstey,Kuh—\Welsek]. Thesey are
based on seme-scoring functions; whichthat estimate the quality of a feature subset, or on semea
heuristic sequential search procedure.—

This paper considers feature selection methods,—#hich—are based on scoring functions,
likesuch as least angle regression (LARS) [Efron et- al. (2004)Efren,—Hastie,JohnsteneTFibshirani
etak], tlasso [Tibshirani (1994)], Rridge regression [El-Dereny and Rashwan (2011)], and the
Eelastic Nnet [Zou and Hastie (2005)], and which—are-based on the-sequential search, tkesuch as
Sstepwise regression [Harrell (2001)] and the Ggenetic algorithm [Ghamisi and Benediktsson
(2015)]. The tlasso scoring function is the weighted sum of the /¢, norm of the residuals and the

£, norm of the parameter vector. This scoring function gives a good approximation efto the target
vector and penalizes biglarge elements in the parameter vector. Moreover, the 7/, norm of the

parameter vector induces sparsity efin the obtained parameter vector and therefore performs
feature selection. The Rridge scoring function is the same as in tlasso, but uses the ¢, norm

instead of the /¢, norm;-it-uses—;—norm. This approach makes the solution more stable, but
does not give a sparse parameter vector and selects features retseless aggressively asthan Llasso.
The Eelastic Nnet [Zou and Hastie (2005)] uses a linear combination of the /¢, and ¢, norms of
the parameter vector as a penalty tefor the residual norm. This penalty allows us to combineirg
the advantages of both Llasso and Rridge regressionsmetheds. TheTwo common problems for these
mentiened-feature selection methods are hew-te-tuninge the weights corresponding to the penalty
terms and hew-te-takinge into account the structure of a data set. Arethergreup—ofA study of
feature selection methods that useperferms sequential search can be found in [Aha and Bankert
(1996)]. The Ggenetic algorithm [Ghamisi and Benediktsson (2015)] uses a random search that

' Implementations of several feature selection algorithms are available from a library developed by Arizona State University
(http://featureselection.asu.edu).




maximizes the objective function and adds or removes some rumberof-features on everyeach
iteration,—Cnr-the-etherhand; while Sstepwise regression starts from thean empty feature set and
sequentially adds a single feature on everyeach interation according to the importance ebtained-by

perfermingdetermined by an F-test.

2 Feature Selection Problem Statement

Let X=[y,,....%, ]ER™" be thea design matrix, where X €R"™ isthe j-th feature. Let
yER™be-the-target-vector—Denote by J={1,...,n} the feature index set,- and Llet ACJ be

a feature index subset. Let yER" be a target vector. The data fitting problem is to find a

parameter vector w €R” such that
w = argmin__, S(w,A|X,y.f), (1)
~where § is the error function, which validates the quality of the parameter vector w and the
corresponding feature index subset A; given a design matrix X, a target vector y and a
function f.The Ffunction f approximates the target vector y.
This study explores the linear function
fX,A,w) =X, w,
where X, isthe reduced design matrix;-which consistings of features with indices frem-—setin A,
and the quadratic error function

S(w,A|X,y.f) =[f(XAw) - y.. 2)

The Ffeatures wed——are suppesedassumed to be noisy, irrelevant or multicollinear,—+

which leads to an-additional error in estimatingion-of the optimum vector w~ and increases the
grinstability of this vector. ©re—<can—usefFeature selection methods can be used to remove
Aamedcertain features from the design matrix X. The feature selection procedure reduces the
dimensionality of problem (1) and improves the stability of the optimum vector w'. The feature
selection problem is

A" =argmin, , O(A| X,y), (3)
~where O:A —R is a quality criterion,—which that validatesdetermines the quality of semea
selected feature index subset A CJ. Problem (3) does not necessarily require any-estimation of
the optimum parameter vector w’. It uses the relationships between the features xj,jEJ and

the target vector y.
Let aEB” ={0,1}" be an indicator vector such that @, =1 if and only if jEA. SeThen
problem (3) can be rewritten: as
a = argmin_, O(a|X.y), (4)
~where O:B" —R is another form of the criterion Q with domain B”. The “vector a’ and

the indexset A" are correspondingasrelated by
a,=1< jEA", jEJ. (5)



2.1 Multicollinearity problem

In this subsection, we give a formal definition and some special cases of the
multicollinearity problemphenomenon-—and-special-cases. Assume that the features y,; and the
target vector y are normalized:

||y||2 =1land HXJHZ =1, j&d. (6)

—Consider an active index subset A C J.
Definition 2.1 The features with indices frerin the set A are catled-multicollinear if there
exist an index j, coefficients A,, anindex k&€A\ j and a sufficiently small positive number

0 >0 such that
2
X_/ - k; A’ka
J 2

~The smaller 6 is, the higher the degree of multicollinearity.
—FheA particular case of this definition is the following.
Definition 2.2 Let£The features indexed by i, j beare correlated if there exists a

< 4. (7)

sufficiently small positive number 517 > (0 such that

b~ [, <oy (8)

—From this definition it follows that 5:‘1 =5ﬁ. Inequalities (7) and (8) are identical if
A =0,k=j and A =1,k=.

Definition 2.3 The #feature 1y ; is caliee-correlated with the target vector 'y if there exists

a sufficiently small positive number 5j > () such that

|y - x/Hﬁ <9,

3 Quadratic Optimization Approach to the Multicollinearity

Problem

—Fhe—paperin [Katrutsa and Strijov (2015)], it was showns that none of the censidered
feature selection methods considered (LARS, tlasso, Rridge regression, Sstepwise regression and
the Ggenetic algorithm) solve the—problem (1) and give a model that is simultaneously stable,
accurate and nonredundant—medel—simultanesusly. Therefore, we propose ihea quadratic
programming approach to solvinge the multicollinearity problem.

The main idea of the proposed approach is to minimize the number of similar features and
maximize the number of relevant features. To formalize this idea we represent the criterion Q
from problem (4) intheferm-efas a quadratic function

O(a)=a’Qa-b’a, (9)
~where QER™" is a matrix of pairwise features similarities, and b&R" is a vector of the
relevances of featuress relevances-to the target vector.




To indicate—compute the matrix Q and the vector b —cemputation—appreach, we
introduce the functions Sim and Rel:
Sim:JxJ—][0,1],
Rel:J—0,1].
—These functions are problem-dependent, defined by the user before performing feature selection,
and indicate the-wayhow to measure feature similarityies (Sim) and relevance to the target vector
(Rel). To highlight the dependence of the quadratic programming feature selection method on the
similarity and relevance functions, we introduce the following definition.
Definition 3.1 Let QP(Sim, Rel) be a feature selection method—w#hich that solves the
optimization problem

(10)

a =argmin __ a'Qa-b'a, (11)

—where the matrix Q is computed by-functionusing Sim:

Q =[g,]=Sim(z,,x,) ), (12)
—and the vector b is computed by-funetionusing Rel:
b=[h]=Rel(y,). (13)

—Below we provide examples of the functions Sim and Rel to illustrate the proposed
approach.

3.1 Correlation coefficient
~The similarityies between the features y, and y, can be computed withusing the

Pearson correlation coefficient [Hall (1999)]. The Pearson correlation coefficient is defined as:
o - Cov(y,,x;)
T Var(y)Var(y,)’
where Cov(y,,x ;) is the covariance between features—y, and y,, and Var(:) is the variance

of a feature. The sample correlation coefficient is defined as
) -y
Dl -,
—where )_(; and )_(j are the means of features—y, and 7y, respectively. In this case, the

> iiz[}i9""}[] b ijz[)_tj7"‘7;_(j]L (14)

2

elements of matr—Q =[g,] are equal to the absolute values of the corresponding sample
correlation coefficients:

q, =Sim(. %) =l oy | (15)
—and the elements of veeter—b =[b,] are equal to the absolute values of the sample correlation
coefficient between the feature yx, and the target vector y:

b, =Rel(y,) = léiy . (16)

—This means that we want to minimize the number of correlated features and maximize the
number of features correlated to the target vector.

3.2 Mutual information
—FheAn alternative measure of feature similarity measure—is based on the concept of



mutual information cencept—[Estaez et- al. (2009)Estacz—Tesmer,—Perez—Zurada, Peng et al.
(2005)Pengteng—DBing]. The mutual information between the features y, and X, isdefined as

pL-%,)
[,0,) = [[POtx,)log——22L dy
1, = [[P@isx,) T S

—The sample mutual information is calculated based on an estimation of the probability
distribution in equation (17). To estimate the marginal and joint probability distributions, we use
the approach described in Section 4.1. of thepaper[Peng et- al. (2005)RPengteng—bing]. a-tThis
paper—authersapproach uses the Parzen window method with a Gaussian kernel to estimate the
probability distributions, which are necessary for computing the mutual information-cemputation,
and replacesing integration ferwith summation to compute the mutual information.

In this case, the elements of matri—Q = [g,] are equal to the values of the corresponding

(17)

sample mutual information:

qy =Sim(y,x,) =106>%;,)
and the elements of vecter—b =[b,] are equal to the sample mutual information ef-everybetween
each feature and the target vector:

b, =Rel(y,) = 1(1;>¥)-

3.3 Normalized feature significance

—~The correlation coefficient (14) and mutual information (17) do not directly present
thecapture feature relevance. To take the relevance of features into account-features—relevance,
we propose fe-useusing the normalized significance of the features estimated by a standard t-test
according to the linear regression assumption. To select the relevant features, we state the
following hypothesis testing problem for everythe j—th feature:

H,: w;=0,
H: w, =0
—The ebtained— p-value p, shows the relevance of the j-th feature relevanee—in the-target
vector approximation. If p; <0.05, then we reject H;the null hypothesis and suppeseassume
that the esrresponding— j -th element of the parameter vector w—is not zero.
Definition 3.2 L—ep—ﬁT—be—tIhe normalized feature significance for the j -th feature, j&J

(18)

S

L

i n :
Zpk
=1

—TFhusto-representthefeaturerelevanece-w\We propose te-use-n{13tusing the normalized

feature significance to represent feature relevance:
b, =Rel(y,;)=p;. (19)

3.4 Convex representation of the feature selection problem
—The quadratic programming approach to the multicollinearity problem leads to problem



(11), which is NP-hard due—te—itsbecause of the bBoolean domain. Therefore, we need to
approximate itthis problem with £hea convex optimization problem to solve it efficiently.
Assume that funetion-Sim gives thea positive semidefinite matrix Q .; tThen the quadratic

form (9) is thea convex function. To represent problem (11) in the-convex form, we have to replace
the non-convex set B” with thea convex eneset. FheA natural way ferthis—representatiento
achieve this is to use the convex hull of set-B":

Conv(B")=1[0,1]".
New-pProblem (11) is now approximated by the following convex optimization problem:

* . T T
z =argmin _ ., Z Qz-b'z (20)
S.t. ||z||1 <1.
~We add this constraint to show that z' can be treated as a vector of non-normalized
probabilities for every feature to be selected in the active set A”.
To return from a continuous vector z  to a bBoolean vector a° and consequently to an
active set A" (see equation (5)), we use the significance threshold 7 .

Definition 3.3 LetThe value T beis a significance threshold such-thetif zj. >t ifand only
if a,=1 and jEA".

—~Tuning the value of 7 is problem-dependent and is based on the appropriate error rate,
the number of selected-features selected and the values of the evaluation criteria. To obtain the
most appropriate significance threshold for a specific problem, ©re-haswe need to set semea

range of values for 7 —te-gettheme ' oblem. In Section 6, we
shewpresent some examples of tuning 7.

4 Test Data Sets

—To test the proposed quadratic programming approach in the case of extremely feature
correlation, we use synthetic test data sets from [Katrutsa and Strijov (2015)]-Fhese-data—sets to
demonstrate the performance of several feature selection methods in the multicollinearity
problem. Belew-w\We provide a summary of these data sets below.

Definition 4.1 LetAn inadequate and correlated data set be-a-deata-set-that-consists of the-
correlated features,—whichk that are orthogonal to the target vector: (Fig. 1).

Definition 4.2 LetAn adequate and random data set be-a-data-setthat-consists of the-
random features with-theand a single feature—which that approximates the target vector; (Fig. 2).

Definition 4.3 LetAn adequate and redundant data set be-a-data-set-that-consists of the-
features,—which that are correlated to the target vector; (Fig. 3).

Definition 4.4 LetAn adequate and correlated data set be-a-deata-set-that-consists of the-
orthogonal features and features; that are correlated to the orthogonal eresfeatures;- Fthe target
vector is ethe sum of two orthogonal features; (Fig. 4).

The performances of the censidereddifferent feature selection methods isare compared
aeeerging-tousing various evaluation criteria,~which-are provided in the next section.



5 Evaluation Criteria

To evaluate athe quality of thea selected feature subset and to compare censidered-feature
selection methods, we use the following criteria used-in—papersfrom [Paul (2006), Paul and Das
(2015)1.

Variance inflation factor. To diagresedetect multicollinearity, the-paper[Paul (2006)] uses
the variance inflation factor, VIF, - #which shows theany linear dependence between the j-th

feature and the other features. To compute VIF;, we estimate the parameter vector w’

according to problem (1) assuming that y = L and extracting the j-th feature from index—set
A=A\j:
1

29
1-R;

VIF, =

5 RSS. . . o
—where R; = 1- TSSJ is the coefficient of determination, and-—

J
2

9
2

Xi~%j
whereand )_(j is defined in (14). he-paperin [Paul (2006)], statesit is stated thatif VIF, =5 then

the associated element of the-vector—w' is poorly estimated because of multicollinearity. Denote
by VIF the maximum value of VIF, feroverall jEA:

VIF = maxV[F}.
JEA

RSS, =[x, -X,w[. 785, =

Stability. To estimate the stability R of parameters—w  estimated on a selected feature
subset A, we use the logarithm of the irverse-reciprocal of the condition number of matrix— X' X

g

R= lnlﬂ,
A’max

where A - and A . are the maximum and minimum non-zero eigenvalues of matri- X' X.
FheA larger value for R is-theindicates more stable parameter estimation.

Complexity. To measure the complexity C of a selected feature subset A°’, we use the
cardinality of thissubset— A"
C+ A’ |.
FhelessA smaller complexity is;thevalue corresponds to better subset selectioned-subset.

Mallow’s C,. Fhe-Mallow’s C, criterion [Gilmour (1996)] is a trades-—off between the

residual norm r=|y - Xw||§ and the number of features p . Fhe-Mallow’s C, is defined as

_Ta
C, —7—m+2p,

where 7, =||y—XAw||§ is computed withusing p =| A| features enly-and m is the number of



rows in the design matrix;-which-isthe-samefermatrices— and in both X and X, . In terms of
this criterion, thea smaller value for Cp is—theindicates a better feature subset.

Bayesian information criterionBiC. The Bayesian tinformation criterion —BIC [McQuarrie
and Tsai (1998)] is defined as

BIC=r+ plogm.
The notation here is the same as in the definition of Mallow’s C, criterion—definition. FheA

smaller value effor BIC istheshows a better fit between the model fitsand the target vector.
CensideredThe criteria are summarized in the-Table 1.

7 Conclusion

—This study addresses the multicollinearity problem from the quadratic programming point
of view. The quadratic programming approach gives thea reasonable methodology to
investigatinge the relevance of features relevance—and redundancy. The proposed approach is
tested on synthetic test data sets with specifiedal configurations of features and the target vector,
as well as on real data sets. These configurations demonstrate different cases of the
multicollinearity problem. Under multicollinearity conditions, the quadratic programming feature
selection method outperforms the other feature selection methods likeconsidered LARS—tasse;
Stepwise,—Ridgeand-Geneticalgorithm—on the censidered-test and real data sets. Alse—w\We
compare the performance of the proposed approach with the—etherexisting feature selection
methods according to various evaluation criteria and show that the proposed approach
bringsselects feature subsets of higher quality than the other methods.




