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ABSTRACT

This work is devoted to predicting musical sequences. Its main focus is constructing a simple

yet e�ective algorithm for predicting music. The developed algorithm uses approach similar

to a multiple viewpoint system. The objective is to enhance prediction of a sequence of

chords that is treated as multivariate time series of discrete values. A chord is represented

as an array of half-tone sounds within one octave. The algorithm utilizes a classi�er based

on probability distributions over chord sequences that are estimated both on a big training

set and some revealed part of the forecasted melody. It shows robust forecasting on Midi50k

dataset. The novelty is model selection algorithm and invariant representation of chords.

Results of the research can be used as a real time assistant for people who compose music,

to generate music on-the-�y for video games and interactive environments like smart homes.
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Title: Principal Investigator at the CCAS

2



Contents

1 Introduction to the problem of predicting music 5

2 Problem statement for music forecasting 10

2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Bayes classi�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Composition of classi�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Chords structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Prediction function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Minimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Smooth error function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Midi50k Dataset 22

3.1 Midi-�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Collecting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Obtaining related data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Collection details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Naming conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Train/Test dataset division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Implementation of the method 28

4.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Midi �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Probability distribution . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 Reshaped probability distribution . . . . . . . . . . . . . . . . . . . . 28

4.1.4 Feature vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Project architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3



4.3 Parsing midi-�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Map container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Calculating probability distribution . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.1 Stochastic gradient descend . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.2 Levenberg-Marquardt algorithm (LMA) . . . . . . . . . . . . . . . . 33

4.6.3 Stability enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Computational experiment 36

5.1 Visualization of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Comparison with existing methods . . . . . . . . . . . . . . . . . . . . . . . 39

A Conclusion 42

B Acknowledgments 43

C Terms and abbreviations 44

List of figures 47

List of tables 49

4



Chapter 1

Introduction to the problem of

predicting music

Music is an ancient form of art. It is presented in every known culture of humans, and in

every culture it is di�erent, with its own peculiarities. But what is common among all of

these in�nite variety if music is that it connects people, music inspires people in a very special

way, that is out of the reach of any other form of art. The word �music� itself is originated

from Greek �art of Muses�, goddesses of the inspiration of literature, science and arts. Music

in�uences our mood, it can be used to establish comfortable or, on the contrary, a proactive

environment for people. It excites some particular zones in a human brain. Researchers

know this property and exploit it to study human brain and behavior, connection between

emotions and perception, for functional diagnostics and so on.

, not A sequence of simple tones

P
it

c
h

Time

Figure 1.1: A chord sequence (on the left) and a pitch sequence (on the right).

This work is devoted to a problem of predicting music sequence using special chords, like

it is illustrated on �gure 1.1. As a dataset we use midi �les, that can be represented as a

stack of simultaneously playing tracks. It can be decomposed into so-called piano roll �

a table of volumes for each pitch at each time interval, that further can be converted into

special chord representation, described in Chapter 2.1. For training and testing purposes we
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use a dataset that consists of 50 000 midi �les, randomly grabbed from the Internet. Average

length of an obtained sequence is 600 chords, that gives overall about 30 million chords.

Actuality

Nowadays musicians tend to use sequencers instead of traditional music instruments to com-

pose 1.2. These sequencers can be easily paired with a computer, providing additional

functionality, like recording notation of played sequence, introducing user interface to more

�exible control of a sound, and so on. Since many musicians improvise during their perfor-

mances, it can be valuable for them to have an assistance, making suggestions about how to

play further. Same is about interactive sequencers, that can explain music theory to a begin-

ner and teach how to play his or her composition the best way. As long as this new kind of

music composing techniques become more common, such a system, that can suggest a con-

tinuation for a melody (i.e. predict it), can become a usual tool for a performing composer.

The same method can be applied to produce ambient sound for interactive environments,

like games [1], or smart homes [2].

Figure 1.2: Google Trends shows an increasing interest for DJ Pads [3].

Goal

The goal of the research is to build an algorithm that can predict sequence of musical chords

of a special kind, one chord at a time (the rest of the sequence can be predicted, using
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some sort of propagation: using just predicted chord as an additional element to the input),

using some considerations derived from music theory. The algorithm is minimizing some

criteria, called error function � di�erence between a prediction and a ground truth (more

detailed description of the error function is in Chapter 2.1). The secondary goal is to collect

a comprehensive dataset of midi �les, that can be used for testing the proposed algorithm

as well as music predicting algorithms in general, and therefore to set a benchmark.

Methods

The problem of prediction time-discrete sequence is a classical machine learning problem.

Usually [4] it is reduced to a the problem of minimization of some error function that depends

on model parameters, sometimes prediction function can contain several di�erent prediction

models, each of that can require di�erent number of parameters depending on model com-

plexity. In this work we apply just one model � composition of multiclass classi�ers, but

as long as number of these classi�ers can vary, number of parameters of that model also can

be adjusted. But what's more important is maximum length of used N-grams. N-gram of

length up to 16 are used and we claim that 𝑁 = 8 is su�cient in most cases.

In the work we use Hamming distance between sequences of chords to compute error

function. The error function is then minimized to obtain optimal parameters. Because

amount of data is pretty big, batch processing can be impossible to run, so we use stochastic

gradient descend with small batches (typically 50 melodies) on each step.

Novelty

We use more complex representation of a chord based on a special chord decomposition

derived from music theory. That gives a signi�cant performance leap, as described in Chap-

ter 5.2. The problem is e�ectively reduced to classi�cation. We use composition of several

naive Bayes classi�ers (Section 2.3) for multi-class classi�cation. The point is that we have

to use very sparse probability distributions, because amount of possible N-grams is too high

to be recorded densely.
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Practical value

Prediction of music can be helpful for music writers, suggesting them most common musical

tricks and turns, simplifying the process of compositing. This algorithm can also be used to

�ll in the gaps in a music sequence and noise reduction. It can be used as a foundation for

dynamic music composing in real time. For example, in a video game, it can be important

to generate music based on a current game state: mood, tension, character disposition.

Real-time music composition can bring more comfort into a working or home environment.

Suggested algorithm is meant to be applied straight for real cases � it is adapted to be

used with usual midi �les. The reader can try the algorithm him/herself, since it is publicly

available at [5], as well as required data and collected statistics for it [6].

Defendant statements

∙ Investigated representation of chord sequence as sequence of elements of specially con-

structed group.

∙ Developed algorithm of predicting next element in a music sequence.

∙ The algorithm is tested on Midi50k dataset and compared to other alternative algo-

rithms ([7], [8]) in terms of prediction quality.

Validation

Credibility of the presented results is con�rmed by mathematical notion, automated unit-

testing, practical test of derived algorithms on a real data, by publications on scienti�c

conferences, including international. Results of the proposed work were presented, discussed

and received on the following conferences and seminars:

∙ M. Matrosov, V. Strijov, A. Matrosov. Short-term forecasting of musical compositions

using chord sequences. Conference of International Federation of Operational Research

Societies, � July 2014, Barcelona, Spain.

∙ M. Matrosov, V. Strijov. Short-term forecasting of musical compositions using chord

sequences. 57-th Scienti�c Conference of MIPT. � November 2014, Dolgoprudny,

Russia.
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∙ Seminar �Music and Science�, Moscow State Conservatory named for P. I. Tchaikovsky.

� January 20, 2015, Moscow, Russia.
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Chapter 2

Problem statement for music forecasting

2.1 Related work

In work [7] author applies arti�cial neural networks to predict pitches and durations of tone

in a music composition. Mozer also makes an attempt to predict sets of simple tones (also

known as chords). A melody is presented to the network as a vector of ones and zeros, each

corresponding to a single tone. The input is presented to the input layer of the network,

and the output layer yields the prediction. Both input and output layers of the network

contain three parameters of a note: pitch, duration and its harmonic chord accompaniment.

Two inner layers � Next Note Distributed (NND) and Next Note Local (NNL) � hold

psychophysical and explicit representations, and layer, called Context, holds music history.

Overall structure is shown on �gure 2.1. The author also experiments with slightly di�erent

architectures of neural network.

Mozer uses several specially prepared datasets, each is for a di�erent purpose � learning

structure, scales, walk sequences, phrase patterns and etc. One dataset contains real musical

compositions.

Di�erence of the proposed method is mainly in structure of predicting function. Mozer

in [7] uses an arti�cial neural network, it contains context layer and layer that transforms

distributed to local representation of chords. Instead, we utilize a feature vectors that

explicitly contains history (i.e. several chords preceding the chord to be predicted) and

explicit transformation of space of chords. In the proposed work we also utilize a much

bigger dataset, that brings a possibility of collecting statistics on algorithm performance.
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Figure 2.1: Architecture of the neural network in [7]. Rectangles indicate a layer of units,

directed lines indicate full connectivity from one layer to another. The selection process is

external to the network.

Paper [8] examines prediction of music using a multiple viewpoint system, a collection

of independent views of some musical surface. Each view models a speci�c type of musical

phenomena. Machine learning as applied to create models of the general music style and a

particular piece of music using both short-term and long-term theories. Then the created

model is used to predict the musical sequence. The author measures predictive power of a

model by the notion of entropy that is supposed to be an objective quanti�able quality of

the model.

Di�erence of the proposed method is that we hardcoded some musical theory into the

algorithm, speci�cally a chord structure in terms of one octave and relative nature of its pitch

� somewhat like engineering approach � comparing to the empirical approach developed
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in [8]. On the other hand, that part of the musical theory is the only hardcoded part, the

rest (that could also be called syntax) is determined from the collected dataset while learning

using statistical analysis.

Book [9] describes basic algorithms that can be used for predicting discrete time series.

Di�erent models for a structure of music, as well as explanations and reasoning can be found

in [10]. This book is about more or less moderate approaches to the problem of music

composing. Book [11] describes boosting techniques. Paper [12] explains di�erent approach

to the allied problem � the problem of predicting a discrete time series. Filipenkov and

Petrova exploit bunches of discrete time series to �nd patterns and hidden rules, as well

as their evolution over time. Paper [13] illustrates Map/Reduce conceptions on a concrete

practical example. In this chapter we explain structure of the space, in which prediction

is made, how the prediction is made and a way to measure algorithms performance (error

function). As a result the problem is stated in a form of a minimization problem.

2.2 Bayes classifier

For a pair of a vector and a class label (𝑥, 𝑦), where 𝑥 ∈ X and 𝑦 ∈ Y, the conditional

distribution of 𝑥, given that its label 𝑦, is 𝑃 (𝑥|𝑦). The di�culties are associated with

e�ective modeling of the probability distributions. In the simplest case, when we have a

�nite set X, probability can be estimated as

𝑃 (𝑦|𝑥) =
𝑁𝑦|𝑥

𝑁𝑥

. (2.1)

The same approach is used to model probability distributions on a set of 𝑘-grams of

chords:

𝑃 (𝑥𝑖+1|{𝑥𝑖−𝑘+1, . . . , 𝑥𝑖}) =
𝑁{𝑥𝑖−𝑘+1,...,𝑥𝑖,𝑥𝑖+1}

𝑁{𝑥𝑖−𝑘+1,...,𝑥𝑖}
. (2.2)

2.3 Composition of classifiers

In the proposed work we use composition of several Bayes classi�ers � for a model complexity

𝐾, number of classi�ers is 2 ×𝐾, half of them react on 1- to 𝑘-grams from the training set,

the second half � on the 1- to 𝑘-grams from the previous part of the melody.

General de�nition of composition of classi�ers is the following:

X = (𝑥𝑖, 𝑦𝑖)
𝑙
𝑖=1 ⊂ 𝑋 × 𝑌� training set, 𝑦𝑖 = 𝑦 * (𝑥𝑖);
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𝑎(𝑥) = 𝐶(𝑏(𝑥)) is an algorithm where

𝑏 : 𝑋 → 𝑅 � basic algorithm, 𝐶 : 𝑅 → 𝑌 � decision rule, 𝑅 � space of evaluations.

Definition.

Composition of classifiers.

Composition of basic algorithms 𝑏1, . . . , 𝑏𝑇 is a function

𝑎(𝑥) = 𝐶 (𝐹 (𝑏1(𝑥), . . . , 𝑏𝑇 (𝑥))) ,

where 𝐹 : 𝑅𝑇 → 𝑅 is some correcting function.

In our case we use a linear function 𝐹 , that gives a composition known as weighted

voting:

𝐹 (𝑟1, . . . , 𝑟𝑇 ) =
𝑇∑︁
𝑖=1

𝑤𝑖𝑟𝑖. (2.3)

2.4 Chords structure

Assume we have a group of chords C. As soon as representation of the input data is crucial

for this problem, let me describe this group in details. Octave consists of 12 semitones.

Playing a composition, one can shift all notes into just one octave, and melody will sound

Figure 2.2: Piano keys corresponding to one octave.

almost the same (at least it will remain recognizable by an expert). Each chord consists

of 1 to 12 simultaneously sounding tones. Chord can be shifted several tones up or down.
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Triadic chord examples (key of C)
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Seventh Chords (key of C)

major minor diminished
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Figure 2.3: Circle of transpositions and six basic chords.

It can also be drawn on a circle, where rotation is changing pitch up or down. Each pitch

constellation can be played in 12 di�erent keys (transpositions), except for several symmetric

cases (that are pretty rare in real music). Overall it gives us 212 − 1 = 4095 possible chords.

Then a melody can be represented as a sequence of chords.

c
melody

= {𝑐𝑖}
sequence

, 𝑐𝑖 ∈ C,

C = {1, 2, 3, . . . , 4095} � space of chords. Each chord has its base form (strum 𝑠 ∈ S)

Figure 2.4: Some of the most popular pitch constellations.
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and key (𝑧 ∈ Z12). So the whole melody can be represented as a sequence of pairs (𝑠, 𝑧):

C

E

F
G

A

B

D
#
E
b

F#
Gb

G
# A
b

A
#

B
b Tra

nspo-

siti
on, r

Figure 2.5: Transposition of

a chord.

𝑐
chord

= 𝑠
strum

× 𝑧
key
,

c
melody

= {(𝑠, 𝑧)𝑖}
pairs

,

Multiplication stands for transposition.

Melody can be transposed, so each key is relative to previ-

ous keys. That is why we use adjacent di�erences of keys:

𝑟𝑖 = 𝑧𝑖 − 𝑧𝑖−1 mod 12, 𝑟1 = 𝑧1.

Pair (s, r) is called element and denoted as 𝑥 ∈ E.

C = S× Z12 = S×R12 = E,

C - group of chords (𝑁 = 212),

S - group of unique strums (𝑁 = 351),

Z12 - group of residue classes modulo 12,

R12 - group of di�erences of 𝑍12,

E - group of elements, that we predict.

There is a bijection between groups C and E, so every melody can be represented as a

sequence of elements

x = {𝑥𝑖 ∈ E, 𝑖 = 1, 2, 3, . . .}.

𝑁 -gram is a contiguous sequence of 𝑁 elements 𝑥 ∈ E from a given sequence x = {𝑥𝑖}.

𝑁 -gram of size 1 (unigram) is just one element 𝑥 ∈ E. For example:

x𝑁
𝑖 = {𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑖+𝑁−1}.

In this work 𝑁 -grams are used as features describing current point in the music sequence.

X is a set of melodies: X = {x𝑗}.

2.5 Prediction function

Prediction is made using weighted sum of several classi�ers:

𝑥𝑖+1 = 𝑓(X, {𝑥1, . . . , 𝑥𝑖}, w
={𝑢𝑘,𝑣𝑘},
𝑘=1,...𝐾

) = arg max
𝑒∈E

𝐾∑︁
𝑘=1

(𝐴𝑒𝑘𝑢𝑘 + 𝐵𝑒𝑘𝑣𝑘), (2.4)
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𝐴𝑒𝑘 ∝ 𝑁

⎛⎝{𝑥𝑖−𝑘+2, . . . , 𝑥𝑖, 𝑒}⏟  ⏞  
𝑘-gram

in X⏟ ⏞ 
Training set

⎞⎠ ,

𝐵𝑒𝑘 ∝ 𝑁

⎛⎝{𝑥𝑖−𝑘+2, . . . , 𝑥𝑖, 𝑒}⏟  ⏞  
𝑘-gram

in {𝑥1, . . . , 𝑥𝑖}⏟  ⏞  
Part of melody before i+1

⎞⎠ ,

where "∝" means that 𝐴*𝑘 and 𝐵*𝑘 are L1-normalized, 𝑥𝑖 ∈ E,

𝑁(𝑔 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡) � number of 𝑘-grams 𝑔 ∈ E𝑘 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡,

w = {𝑢𝑘, 𝑣𝑘|𝑘 = 1, . . . 𝐾} ∈ R2𝐾 � vector of model parameters (weights), 𝐾 is model

complexity (maximum length of 𝑁 -grams).

Figure 2.6: Representation of a chord sequence.

2.6 Minimization problem

Function 𝑓 is a classi�er that predicts the next element. Then error function is (𝑖 denotes

time interval)

𝑆(w,X) =
∑︁
x∈X

𝑁x−1∑︁
𝑖=1

⎡⎣𝑥𝑖+1 ̸= 𝑓(X, {𝑥1, . . . , 𝑥𝑖}⏟  ⏞  
Prev. part of the melody

,w)

⎤⎦. (2.5)

Brackets stand for 1 if the statement inside is true and 0 if false.

X is a set of melodies, w ∈ R2𝐾 is vector of parameters. For a training dataset X we

would like to �nd vector w of algorithm parameters (weights), that minimizes error function:

ŵ = arg min
w∈R2𝐾

𝑆(w,X).

2.7 Smooth error function

Error function, as it is written in (2.5), is obviously has steps: every time a prediction for some

chord changes from an incorrect to a correct one or inside out, the error function makes a
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small leap. Even thought there are many thousands of such tiny steps, this circumstance has

an in�uence on convergence of optimization methods since they are targeted on minimizing

di�erentiable functions. To bear this trouble, one can go with a slightly di�erent, but smooth

error function:

𝑆𝑠𝑚𝑜𝑜𝑡ℎ(w,X) =
∑︁
x∈X

𝑁x−1∑︁
𝑖=1

𝐵

⎛⎝𝑥𝑖+1, 𝑓(X, {𝑥1, . . . , 𝑥𝑖}⏟  ⏞  
Prev. part of the melody

,w)

⎞⎠, (2.6)

𝐵(𝑥, 𝑓) = tanh(−𝑠
𝑀1 −𝑀2

|𝑀1 + 𝑀2|
· 𝑒),

where 𝑀1 and 𝑀2 are the �rst and second maximum elements of the probability distribution

𝑓 from 𝑓 in (2.4), 𝑠 � is a scale parameter, and 𝑒 is 1 if the prediction is correct and −1

otherwise.

The rationale for such a function is basically our need for a function, that is substantial

to comparing the result of forecasting. For example, let's consider introducing something like

a Hellinger distance between a predicted probability distribution 𝑃 on the next chord and a

ground truth probability distribution 𝐺 = (0, . . . , 0, 1, 0, . . . , 0)𝑇 . Probability distribution 𝑃

is going to have a set of almost equal numbers for the most probable next chords, and only

because we minimizing the error function, we are able to get more correct predictions. It

also means, that a slightly di�erent vector 𝑃 can give us a very di�erent prediction result �

because it can have another maximum element. Anyway, these two distributions are much

closer to each other then to the ground-truth vector 𝐺, that makes this metric inconsistent

and not informative for our purpose.

Another example � comparing a maximum element from the distribution to an average

or a median from elements of the vector 𝑃 . Counter-example for this type of distances would

be

𝑃1 = (0.5, 0.49, 0.001, . . . , 0.001) and

𝑃2 = (0.2, 0.1, . . . , 0.1).

In the �rst case there are two salient candidates (1 and 2) for the next chord, which both

look quite the same. Distance for the maximum element both from average and median is

quite big, which could lead one to a thought, that it's a good prediction. But in reality,

this prediction is very unstable, it is really close to the boundary � every little �uctuation

in initial parameters will shift maximum to another element and will make the prediction

incorrect. On the other hand, distribution 𝑃2 is more regular, meaning there are no salient
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maximums. Maximum can be just several percent bigger than average, but obviously it is

much harder to shift from one result to another.

This reasoning is leading us to the proposed smoothing function.

Theorem.

Smoothed error function has nearly the same minimum as the original one, i. e.

𝑥 + ∆𝑥 = argmin
w

𝑆𝑠𝑚𝑜𝑜𝑡ℎ(w,X), (2.7)

𝑥 = argmin
w

𝑆(w,X), (2.8)

∀𝑠 > 0 ∃𝜀𝑠 > 0 : ∆𝑥 < 𝜀𝑠. (2.9)

In case 𝑀1 = 𝑀2 the argument of tanh is 0, so sign of 𝑒 doesn't matter. Now from the

de�nition of error function (2.4) we easily derive:⎡⎣𝑀1

𝑀2

⎤⎦ =

⎡⎣𝑚11 𝑚12

𝑚21 𝑚22

⎤⎦ ·

⎡⎣𝑤1

𝑤2

⎤⎦ (2.10)

From there follows:

𝐵(𝑥, 𝑓) = tanh(𝑠
𝑘1𝑤1 − 𝑘2𝑤2

𝑘1𝑤1 + 𝑘2𝑤2

) · 𝑒, (2.11)

where 𝑘1 and 𝑘2 are some coe�cients combined from the previous equation. Calculating a

derivative from this function reveals:

𝐵′
𝑤1

=

[︂
1 − tanh2

(︂
𝑠
𝑘1𝑤1 − 𝑘2𝑤2

𝑘1𝑤1 + 𝑘2𝑤2

)︂]︂
2𝑠𝑘1𝑘2𝑤2

(𝑘1𝑤1 + 𝑘2𝑤2)2
· 𝑒. (2.12)

E�ectively, this function transforms into a clipped slope:

𝐵′
𝑤1

(𝑥, 𝑓) =

⎧⎨⎩ 0, if far away from from the boundary,

𝑒 · 𝑠 · 𝑘(𝑤1, 𝑤2), otherwise.

It means, that for 𝑠 → +∞, function 𝑆𝑠𝑚𝑜𝑜𝑡ℎ(𝑥) is e�ectively the same as 𝑆(𝑥). The smaller

value of s, the smoother function becomes, as it is shown on �gure 2.7. Oversmoothed
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function will give less accurate results, but the optimization process will �nish faster, because

there will be no plateaus. The theorem's terms can be reformulated as:∑︁∑︁
𝐵′(𝑥, 𝑠 → +∞) = 0, (2.13)

∑︁∑︁
𝐵′(𝑥 + ∆𝑥, 𝑠) = 0, (2.14)

∀𝑠 > 0 ∃𝜀𝑠 > 0 : ∆𝑥 < 𝜀𝑠. (2.15)

Summing up all the derivatives for 𝐵 we determine, that the minimum is not far away from

its original position because B is a continuous function bounded in [−1, 1]. �
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Figure 2.7: Smooth error function for di�erent values of parameter 𝑠.

On the �gure 2.8 shown projections of error function 𝑆(𝑤) from 2.5 and smooth error

function 2.6. As you see, in most cases, minimums are very close to each other, and just in

one case (for 𝑤9) minimums are distinguishably di�erent, so these trends proof that original
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and smoothed functions have closely situated optimums. These plots are build just for 5

songs from the dataset, and a closeup of region of the minimum is given to illustrate the

di�erence between locations of smooth and raw error functions.
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Figure 2.8: Projections of the error function 𝑆(𝑤) to planes 𝑆(𝑤3), 𝑆(𝑤18) and 𝑆(𝑤1).
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Chapter 3

Midi50k Dataset

Here is a description of the dataset, that was used to train and test the proposed algorithm.

We explain how the dataset was constructed and used, what parameters does it have.

The dataset was collected specially for this work. It consists of 49 949 midi-�les, down-

loaded from the Internet. They are of di�erent authors, of di�erent genres and from di�erent

time. The dataset can be found at [6]. Overall project description and scripts to collect this

dataset are stored on the Sourceforge [5].

3.1 Midi-files

MIDI (Musical Instrument Digital Interface) �is a technical standard that describes a pro-

tocol, digital interface and connectors and allows a wide variety of electronic musical in-

struments, computers and other related devices to connect and communicate with one an-

other.� [14] It carries events, that specify notation, pitch, velocity, volume and other param-

eters for multiple devices. These messages can be received by other devices which generate

sound accordingly. The same stream of events can also be stored to be played back later or

edited.

Midi-�le is an audio �le, that contains not the audio wave itself, but instructions to

generate it � recorded stream of events from the previous paragraph. It can be roughly

understood as musical notation for a particular song. Thus it is easy to parse and to operate.

Midi-�les are very small (about 40 KB for an average �le, that can be compressed up to

3 KB) comparing to MP3 (around 5 MB) or lossless (FLAC, around 50 MB). Although they

do not contain any information about human voice, it is impossible to record singing with
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midi-�le. Since we predict only music, not trying to predict lyrics, midi-�les are perfect for

our purposes.

Midi-�les are very common inside audio studies during creation and mastering musical

compositions. But it is not a common thing for a composer to share them. Midi-�les are also

created by enthusiasts or can be automatically generated from an audio stream with some

special software. But because midi-�les cannot contain any human voice, they are much less

spread nowadays, comparing to other audio �les, like MP3.

3.2 Collecting method

One can �nd a whole bunch of midi-�les on the Internet, but usually they are distributed

in smaller collections. A Python script [15] was written to grab midi-�les from the Internet,

at the same time storing their title and authors name. The script works as a usual crawler

� it takes input links to web-pages, checks them looking for links to midi-�les, that can be

downloaded. Other links pointing to the same web-site are stored and visited later. We do

not visit the same page or download the same �le twice. For that purpose we maintain a set

of already visited links. Also we have to store a queue of links that we are to visit � that

were found but not visited by the script yet.

3.3 Obtaining related data

Midi-�les do not contain any information about the author. Since that we have to obtain all

the related data (genre, year of creation, place of creation, etc) ourselves. For that purpose

another Python script was written. For every author's name it performs an Internet search

(using Bing search engine) in order to retrieve information on that author. Then it parses

Wikipedia page devoted to the author. All the data is stored in an electronic table, checked

and manually edited later. The table contains the following columns:

1. Author's name.

2. Number of songs of that author in the collection.

3. First year, that the author was active.

4. Last year, that the author was active (9000 if active by the time collection is created).
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Table 3.1: An excerpt from the mined database, showing dataset structure.

Name N Active Active Genre Labels City State Country

Songs from until

led zeppelin 186 1985 2007 hard rock, atlantic, london u.k.

blues rock, swan song

folk rock,

heavy metal

bach johann 166 1700 1750 classical eisenach saxe- germany

sebastian eisenach

dadi marcel 92 1971 1996 chanson france

madonna 48 1979 9000 pop, rock, sire, warner bay city michigan u.s.

electronic bros., live

nation,

maverick,

interscope

5. Comma separated list of genres

6. Comma separated list of labels/studios, that author was published under (if applica-

ble).

7. City of origin.

8. State of origin.

9. Country of origin.

Table 3.1 is an excerpt from the mined database.

3.4 Collection details

Overall, there are 49 949 midi-�les, of 6918 di�erent authors/compositors/music bands. Each

author is labeled with several genres. Figure 3.1 shows distribution of authors by a number

of songs in the collection, written by this author. There are 40 basic genres, like �rock�,
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trend.

�classical�, �blues�, etc, and 897 detailed genres, e.g. �alternative rock�, �nu metal� and so

on. Number of songs of each author is related to its popularity in contemporary culture. On

the side is the distribution of number of songs by author, below are distributions by several

popular genres, refer to �gure 3.2.

Genre is labeled with a string, usually of one or two words, like �'alternative rock�, �nu

metal� or �horror punk� or �hip hop�. On the graphics below, rock means any possible kind

of rock. Same is about other genres on the plots.
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3.5 Naming conversion

Filenames and table entries have di�erent naming conventions. It is due to historical reasons.

Author's name can be retrieved from a midi �lename with the following Python function:

# convert midi filename to obtain author’s name

def getAuthorName(subject):

author = subject.split("-")[0] # part before "-"

author = " ".join(author.split("_")) # split by "_"

author = re.sub("(?=[A-Z])", " ", author) # split by letter-case

author = re.sub(" +", " ", author) # remove double spaces

return author.strip().lower()

It takes part of the input string, that stands before hyphen "-", substitutes symbols

"_"with spaces, then splits words by understanding letter case, and �nally, all double spaces

are removed and the string is stripped of unnecessary characters on its beginning and ending.

3.6 Train/Test dataset division

For evaluation purposes full dataset X0 (50 000 melodies) was being split several times in

two pieces of di�erent size. Each time splitting was performed on a random basis � from

the dataset was selected a subset (without returns) of requested size 𝑀 .

Xtraining ⊂ X0,

|Xtraining| = 𝑀.

To test the algorithm we use the rest of the dataset:

Xtesting = X0 ∖Xtraining.

Each midi �le was converted to a sequence of chords c = {𝑐𝑖}, 𝑐𝑖 ∈ C with the following

steps:

∙ open midi �le as a piano roll,

∙ remove percussion part,

∙ quantize time with rate 2/𝑡𝑒𝑚𝑝𝑜,
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∙ strip octave number (𝑛𝑒𝑤 𝑝𝑖𝑡𝑐ℎ = 𝑝𝑖𝑡𝑐ℎ mod 12).

Average midi �le contains sequence of 600 chords, that gives 30 million chords overall.

Melody is a sequence of elements (index is time): x = {𝑥𝑖}, 𝑥𝑖 ∈ E.

X is a set of melodies: X = {x𝑗}.
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Chapter 4

Implementation of the method

This chapter is devoted to the actual method implementation: how the data is organized,

algorithms for dealing with this data, used optimizations that result in a more e�cient code.

Most of the algorithm is written in MATLAB and available at [5].

4.1 Data structures

4.1.1 Midi files

Input is represented as a set of MIDI �les with extension �.mid� � generic midi �les. There

are no special requirements for these �les in any sense.

4.1.2 Probability distribution

Probability distribution is a basic structure for the prediction system.

pd Probability distribution among elements.

containers.Map string(n) → double For each combination of elements, given as a

string, contains probability to �nd it in the

training set.

4.1.3 Reshaped probability distribution

Reshaped probability distribution is used to dramatically increase performance during pre-

diction phase.
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rpd Reshaped probability distribution among elements.

containers.Map string(n-1) →

mat(ELG_SZ, 1)

For each combination of elements, given as a

string, contains probability distribution on the

next element in the sequence.

4.1.4 Feature vector

Set of probability distributions used for boosting.

fv Set of probability distributions.

sparse mat [ELG_SZ, 2*LDEPTH] Matrix with probabilities. ELG_SZ � size of

elements group (basically, 4212), LDEPTH �

model complexity (lookup depth), default is 8.

4.2 Project architecture

Overall system architecture is described with the IDEF0 format on the graphics below.

Project consists of the following modules:

∙ Dataset builder � includes Python scripts to look for midi �les in the Internet, fetch

metadata, and to transform data�les to MATLAB-readable �les.

∙ Midi parsing � converting a midi �le to a sequence of chords.

∙ Learning part of the algorithm.

∙ Predicting model.

∙ Optimization � minimizes error function (using stochastic gradient descend).

∙ Statistics and visualization.

IDEF0 diagrams of the project are shown on �gures 4.1 and 4.2.

4.3 Parsing midi-files

For parsing midi �les in MATLAB was used Ken Schuttle's library [16]. He included some

very basic functions, like reading and writing midi �les, parsing it as a piano roll and so on.
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Figure 4.1: A1 level diagram showing system architecture in the IDEF0 format.

Figure 4.2: A2 level diagram expanding system architecture of model evaluation module in

the IDEF0 format.

On top of this library was written set of functions that converts a piano roll to a sequence

of chords.

Using a specially generated scheme, group of chords is decomposed into a product of two

groups � strums and keys:

stMap = genStrumsMap();

elements = chords2elements( chords, stMap );

Variable stMap is a matrix of size 2 × 4095, �rst row contains corresponding strum

number (1 to 351), second row � basic key of the chord (0 to 11). Part of it's contents con

be seen in table 4.1.

This table is generated by the following function (in MATLAB notation):

function [strumsTonesMap] = genStrumsMap()

chords = 1:4095; % all possible combinations of 12 bits
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Table 4.1: Contents of matrix stMap.

1 1 2 1 3 2 4 1 5

0 11 0 10 0 11 0 9 0
· · ·

350 219 320 340 350 320 350 350 351

8 9 9 9 9 10 10 11 0

strums = zeros(1,4095); % maps the set of chords into the set of strums

tones = zeros(1,4095); % maps into the set of tones

n = 1;

while numel(chords)>0

ch = chords(1);

if ismember(ch, chords)

arr = zeros(12,1);

for j=1:12

arr(j)=rotateChord(ch,j);

end

chords = setdiff(chords, arr);

strums(arr) = n; % ch;

n = n+1;

tones(arr) = 11:-1:0;

end

end

strumsTonesMap = [strums;tones];

end

The idea is similar to the sieve of Eratosthenes. First set of all 4095 chords is created,

then we select an element from this set, get all 12 rotations of it (meaning the same chord

but for all possible keys), and remove it from the set. This process continues, until all chords

are represented as a product strum×key.

4.4 Map container

Assuming we have model size 𝐾, meaning there are 𝑁 -grams for 𝑁 up to 𝐾, we need to store

feature vectors of huge dimensionality 212×𝐾 ≈ 6.3 · 1057 (for 𝐾 = 16). It is way bigger even
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than 64-bit wide integers, that is why we have to use associative arrays (so-called maps).

Luckily, these vectors are extremely sparse (no more than 250k non-zeros).

4.5 Calculating probability distribution

Map containers are hard to deal with � they have really bulky keys stored in a hash map.

The point is that updating a map with a single entry is as hard as merging two maps. It also

takes a lot of space when not reduced. In the second case we can keep track of the smallest

entries, that we can omit early the collecting stage without risk of loosing precision. It makes

preferable to split dataset into several parts, collecting statistics in each one separately and

then merging results. So, overall we developed a procedure, similar to Map/Reduce strategy

[13], but recursive:

∙ If the dataset is too big, split it into two parts.

∙ For each part calculate probability distribution.

∙ Merge probability distributions (Reduce stage).

∙ Remove small values (Map stage).

∙ Return decimated probability distribution.

4.6 Minimization

4.6.1 Stochastic gradient descend

One evaluation of predicting and error function for the whole Midi50k dataset can take 100

hours of machine time (dual-core Intel P6100 @ 2.0 GHz). Therefore it is better to make

small steps for just a small part (bunch) of the training set [17]. One bunch is typically 100

melodies (random subset) comparing to 10 000 usual dataset and it can be evaluated much

faster because it �ts into RAM.

Each step is implemented using Levenberg-Marquardt algorithm, also known as the

damped least-squares (DLS) method. Once we found optimal parameters for this small

bunch, the current position is updated with a decreasing weight (𝛼 = 1
no. of iteration

). We have

pretty big bunches of data, that's why convergence trend is relatively smooth:
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Figure 4.3: Convergence of stochastic gradient descend.

Stochastic gradient descend is commonly used in cases when amount of data is over-

whelmingly big � for example, training arti�cial neural networks. This method has proven

its e�ectiveness and converges almost surely, and if the objective function is convex or pseu-

doconvex � almost surely to a global minimum.

4.6.2 Levenberg-Marquardt algorithm (LMA)

It is a well-known algorithm for solving non-linear least-squares problems, like curve �t-

ting [18]. Basically, LMA is an interpolation between a usual gradient descend and Gauss-

Newton minimization. It is more stable and robust in most cases and tends to �nd minimum

even if the starting point is set far away from the minimum. However, it �nds only a local

minimum, which is also common for most minimization algorithms.

If the problem is stated as

𝑆(𝛽) =
𝑚∑︁
𝑖=1

[𝑦𝑖 − 𝑓(𝑥𝑖, 𝛽)]2 → min . (4.1)

LMA is an iterative algorithm. It starting point user gives an initial position � vector 𝛽. It

can be random, speci�ed by user or derived from some intuitive estimations. Then on each

iteration we update vector 𝛽, adding vector 𝛿, obtained from the following equation:

(︀
𝐽𝑇𝐽 + 𝜆diag(𝐽𝑇𝐽)

)︀
𝛿 = 𝐽𝑇 [𝑦 − 𝑓(𝛽)] , (4.2)
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Table 4.2: Computational complexity and evaluation time for di�erent parts of the project.

Stage Reading

midi

�les

Calculating

probability

distribu-

tion

Reducing

probability

distribu-

tion

Reshaping

probability

distribu-

tion

Generating

feature

vectors

Weights

opti-

mization

Quality

test

Complexity𝑂(𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑘) 𝑂(𝑘) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

Time 20 min 15 min < 1 min < 1 min 30 min ∼1 hour ∼1 hour

Where 𝐽 = 𝜕𝑓(𝑥𝑖,𝛽)
𝜕𝛽

is a Jacobian of the minimized function 𝑓 and 𝜆 is some damping factor.

4.6.3 Stability enhancements

Because we have a function, that has �nite steps and multiple local minimums, and because

the result of minimization depends on the initial point, we would like to even further improve

stability of the optimization algorithm. For that sake we introduce damping of the vector of

parameters:

𝛽𝑖 = argmin(𝑓, 𝛽𝑖−1),

𝛽𝑖 = 𝛽𝑖(𝛼− 1) + 𝛽𝑖−1𝛼,

where 𝛼 is another damping factor, that is also exponentially decreased from iteration to

iteration.

4.7 Computational complexity

System consists of 7 separate parts � stages. Performance and complexity of each stage

is shown in the table 4.2 (for a smaller dataset, just 350 midi �les, only to show order of

magnitudes).

Overall complexity is 𝑂1(𝑛 log 𝑛) + 𝑂2(𝑛) where 𝑂1 ≪ 𝑂2. One midi-�le can be pre-

dicted in about 3 seconds, and the most time-consuming parts of this process are reading

the actual midi �le (due to inaccurate design of used MATLAB lib to read midi �les) and

generating feature vectors, because it requires lots of queries to the probability distribution

containers.Map. Memory consuming is within reasonable for all the stages, except for gen-

erating feature vectors � it easily �nishes all the memory (that is limited to 2 GB for 32-bit

JVM). Here is a trade-o� between memory consumption and time required for optimizing the
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weights:you can �t into only about 100 MB of memory (generating probability distributions

on-the-�y) but in this case optimization will take about 30 hours on a set of 350 midi �les,

and several months for the full Midi50k dataset.
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Chapter 5

Computational experiment

The chapter describes results obtained by applying the proposed algorithm to the Midi50k

dataset, gives some understanding of the properties of the method and about optimal pa-

rameters that can be fed to the system.

5.1 Visualization of the results

Let's start with an interesting fact. Probability distributions of N-grams with di�erent N.

Number of events is a number of occurrences found in a set of 50 000 midi �les. Slope

coe�cient is about -0.6, distribution is similar to distribution of words in a natural language

(Zipf's law [19]). This is a pretty interesting phenomenon, it explains similarities between

music natural language and also makes a point why a technique based on N-grams can work

for the purpose of predicting music. The trend for 1-grams is decaying faster for bigger

ordinal numbers of chords, because there are only 4095 of chords, an exact number, unlike

in a situation with words from a natural language. And it is clearly visible, how increasing

number of possible words (combinations, N-grams in this case) leads to a more linear shape

of the trend (in a double logarithmic scale, of-course).

Picture 5.2 shows a heat map of distribution probability of elements E. Number of events

is a number of occurrences found in a set of 50 000 midi �les. Order of strums (horizontal

axis) is arbitrary � result of representing a chord as a pair (𝑠, 𝑟). Notice, that color scale is

logarithmic, meaning that some chords are more common than other by a factor of 106.

Forecasting quality. Number of parameters is 16, training set is 50 000 melodies. Average

prediction error is 0.42 (meaning 58% of successfully predicted elements 𝑥 ∈ E). There are

also melodies that were forecasted on 100%, as well as melodies forecasted poorly (<5%)
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Figure 5.1: Probability distribution on N-grams showing Zipf's law.

Figure 5.2: Heat map of elements.

Distribution looks like a usual binomial distribution � it doesn't have signi�cant �uctuations

and has only one maximum, which approximately is 0.4, as shown on Figure 5.3.

There are several songs with corresponding prediction quality in the table. Pop-songs

usually are better predicted then the rest of the collection. Table 5.1 shows just several

compositions, sorted by the performance of the algorithm, applied to them.

There is also a dependence from amount of data. As you on the �gure 5.4, prediction

quality on a training set and on a test set are converging to a common value. It is also

noticeable, that 1000 midi �les is somewhat like a minimum size of the dataset, that allows

relatively good training of the algorithm.

Graph 5.5 shows error function vs number of parameters 𝐾 (w ∈ R2𝐾), on a test set.

Note a signi�cant leap after 𝐾 = 5 and almost no di�erence for 𝐾 bigger than 8. It is

because 5 is basically a full musical measure, plus one additional chord, that is required to
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Figure 5.3: Some songs are easy to predict, some other songs are very unpredictable.

understand the context. But additional 4 chords are enough to identify most of the contexts,

that's why error isn't really reduced by even further increasing of the 𝐾 parameter.

Figure 5.6 is demonstrating a visualized output of the algorithm. It is a fragment from

Beethoven's Silence. The chart is stylized in such a way that the reader can better understand

the input and the output of the algorithm. Input is represented as empty circles, dots

represent the prediction, vertical axis is a pitch and horizontal axis is time.

It can appear that di�erent genres will tend to have di�erent sets of chords or 2-grams

of chords, but in reality, it doesn't look like that. On the contrary, all the genres seem

to use similar sequences of chords. On the �gure 5.7 melodies are shown as data points

on a 2D plane, which is the projection from space of frequency distribution over 2-grams.

The projection consists of two �rst principal components, obtained using PCA method [20].

Blues, classical and hip-hop music was chosen because they are the most distinguishable

from each other, and their frequencies in the Midi50k dataset are comparable (538, 324 and

45 songs respectively). Genres doesn't form clusters in this space, as it is shown on the

�gure. A rationalization for this is that music genre is de�ned mostly by its rhythm and

spectrum of lower frequencies of the melody (bass part), thats why the proposed model is

insensitive to di�erences between genres.
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Table 5.1: Compositions sorted by prediction quality, showed by the proposed algorithm.

Katy Perry California Gurls 90.5%

The Twelve Days of Christmas 88.5%

The First Noel 88.5%

· · · · · ·

Tchaikovsky, op. 37 25.3%

Bodysoul 21.9%

Godrest 18.2%

AVERAGE 58.0%

Table 5.2: Performance of the proposed algorithm.

Quality Mozer[7] Conklin[7] Proposed

Main idea Neural network Music patters Bayes classi�ers

Chords � 40% 58.0%

Pitches 93% 95% 92.5%

Durations 90% 75% �

Datasize 20 4500 50 000

5.2 Comparison with existing methods

This set of experiments was conducted in order to compare performance of algorithms. As

you can see in the table below, the proposed algorithm scores its ancestors in terms of

predicting chords as a whole. The results are also more reliable, since we used more data

to test our method. Table 5.2 shows a comparison between the proposed algorithm and its

ancestors.
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Figure 5.4: Prediction quality on testing and training sets depending on the size of the set.
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Figure 5.6: Forecasting example circles represent the truth tones, dots � predicted tones,

errors are highlighted, horizontal axis is time.
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Appendix A

Conclusion

Overall, we managed to experiment with chords representation and to choose one, that works

quite good. We tested it by developing an algorithm for predicting next element in a music

sequence. We also developed several approaches to bearing with computational complexity of

the problem, like smoothing error function, based on a speci�c distance between probability

distributions; Map/Reduce-like way of gathering statistics (large scale learning). For the

purpose of testing the algorithm we collected Midi50k dataset. The method was compared

to other related algorithms. During tests was found that:

∙ The optimal model complexity (max combination length) is 𝐾 = 8, though the more,

the better.

∙ Number of songs in the training set should be at least 1000.

∙ Forecasting quality is 58% (chord-wise, 0.024% for a random guess), Hamming distance

is 0.075 (meaning 92.5% tone matches comparing to 50% for a random guess).

The work can be improved by using more sophisticated classi�ers and models with bigger

number of parameters. It is also a great idea to include durations and arpeggio patterns

and scales as a data to predicted, i. e. involving more pieces from the theory of music.

Volume of di�erent parts of the melody, as well as percussion, are also great targets. For a

practical usage it can be worth creating a more interactive interface to the program, may be

a graphical interface so that any user can easily apply the algorithm to predict and compose

music.
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Appendix C

Terms and abbreviations

Bayes theorem. It is one of the main theorems in the Probability theory, that allows to

�nd a probability of some event in case another event happened, in other words, this theorem

relates current probability to a prior probability. Bayes formula can be derived from basic

axioms of Probability theory, in particular from conditional probability. A distinctive feature

of the formula is that it requires lots of data and computations for practical usage, therefore

Bayesian estimations become actively used only after advances in computational and network

technologies.

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)
, where

𝑃 (𝐴) and 𝑃 (𝐵) � probabilities of A and B without regard to one other.

𝑃 (𝐴|𝐵) � conditional probability of A given that B is true.

𝑃 (𝐵|𝐴) � conditional probability of B given that A is true.

The statement of the theorem follows directly from the following equation:

𝑃 (𝐴𝐵) = 𝑃 (𝐴|𝐵)𝑃 (𝐵) = 𝑃 (𝐵|𝐴)𝑃 (𝐴).

Bayes classifier. For a pair of a vector and a class label (𝑥, 𝑦), where 𝑥 ∈ X and 𝑦 ∈ Y,

the conditional distribution of 𝑥, given that its label 𝑦, is 𝑃 (𝑥|𝑦). Thus classi�cation can be

done as

𝐶(𝑢) = argmax
𝑟∈Y

𝑃 (𝑦 = 𝑟|𝑥 = 𝑢).

R, space of evaluations. The classi�er outputs some ranking, that give an opportunity

to distinguish between classes of objects. This valuation is an element of some set R, it can
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be set of real numbers R, multidimensional vector of natural numbers N𝑑 or any other set.

Pitch is frequency of a note. For example, the �rst guitar string, E4, sounds at frequency

329.63 Hz.

Chords � set of simultaneously sounding notes. It is considered as a basic element of the

musical composition. Every chord has its key (basic tone) and quality (like minor, dimin-

ished, augmented, etc). In this work we assume all the notes to be only from one octave

(e.g. from C3 to B4).

Group of elements E is a pair {shift of the key, chord quality}, more detailed description

is given in Chapter 2.1.

Music tempo. It is the speed, or pace of a given musical piece. Tempo is measured in

BPM (beats per minute) and usually is between 40 and 180, depending on genre and style

of some particular melody.

Probability distribution. In this work we talk about probability distributions on a �nite

set of chords and elements of E. Since that, probability distribution can be seen as a vector

of real numbers from [0, 1], with a unit length in L1 metric.

Feature vector is a vector fromR𝑑 that somehow characterizes a speci�c feature of the data.

45



Bibliography

[1] Booth M. The AI Systems of Left 4 Dead // Valve. �� 2009.

[2] Inc. Philips. Where sound meets light, comfort is built.

[3] DJ Pad, Google trends. �� http://www.google.com/trends/explore#q=%22dj%

20pad%22&cmpt=q&tz=. �� Accessed: 2015-05-24.

[4] T. Hastie R. Tibshirani J. Friedman. The Elements of Statistical Learning. �� Springer,

2001.

[5] Project repository on Sourceforge. �� http://sourceforge.net/p/mlalgorithms/

code/HEAD/tree/Group074/Matrosov2013MusicForecasting. �� Accessed: 2015-05-

24.

[6] Midi50k dataset. �� https://www.dropbox.com/s/2htn17j9xduwz7u/Midi50k_full.

zip. �� Accessed: 2015-05-24.

[7] Mozer M. Neural network music composition by prediction // Connection Science. ��

1994.

[8] D. Conklin I. Witten. Multiple viewpoint systems for music prediction // Journal of

New Music Research. �� 1995, rev. 2002.

[9] Brown R.G. Smoothing forecasting and prediction of discrete time series. �� N.Y., 1963.

[10] Cope David. Computers and Musical Style. �� Madison, 1991.

[11] Schapire Robert E. The Strength of Weak Learnability. �� Boston, MA (Kluwer Aca-

demic Publishers) : Machine Learning, 1990.

[12] N. V. Filipenkov M. A. Petrova. On the analysis of multidimensional time series //

JMLDA. �� 2014.

46

http://www.google.com/trends/explore#q=%22dj%20pad%22&cmpt=q&tz=
http://www.google.com/trends/explore#q=%22dj%20pad%22&cmpt=q&tz=
http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group074/Matrosov2013MusicForecasting
http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group074/Matrosov2013MusicForecasting
https://www.dropbox.com/s/2htn17j9xduwz7u/Midi50k_full.zip
https://www.dropbox.com/s/2htn17j9xduwz7u/Midi50k_full.zip


[13] M. Matrosov B. Urman. Map/Reduce in application to monitoring of Worldwide LHC

Computing GRID. �� Dolgoprudny, Russia : Proceedings of the 56-th scienti�c confer-

ence of MIPT, 2013.

[14] MIDI standart, Wikipedia. �� http://en.wikipedia.org/wiki/MIDI. �� Accessed:

2015-05-24.

[15] A Python script to grab midi �les. �� http://sourceforge.net/p/mlalgorithms/

code/HEAD/tree/Group074/Matrosov2013MusicForecasting/utils/midicrawler.

py. �� Accessed: 2015-05-24.

[16] Ken Schutte's MATLAB midi library. �� http://www.kenschutte.com/midi. �� Ac-

cessed: 2015-05-24.

[17] Kiwiel Krzysztof C. Convergence of approximate and incremental subgradient methods

for convex optimization // SIAM Journal on Applied Mathematics 14 (3). �� 2003.

[18] Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters //

SIAM Journal on Applied Mathematics 11 (2). �� 1963.

[19] Ch. D. Manning H. Schutze. Foundations of Statistical Natural Language Processing. ��

MIT Press, 1999.

[20] T. Jolli�e I. Principal Component Analysis, second edition // Springer. �� 2002.

47

http://en.wikipedia.org/wiki/MIDI
http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group074/Matrosov2013MusicForecasting/utils/midicrawler.py
http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group074/Matrosov2013MusicForecasting/utils/midicrawler.py
http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group074/Matrosov2013MusicForecasting/utils/midicrawler.py
http://www.kenschutte.com/midi


List of Figures

1.1 A chord sequence (on the left) and a pitch sequence (on the right). . . . . . . 5

1.2 Google Trends shows an increasing interest for DJ Pads [3]. . . . . . . . . . . 6

2.1 Architecture of the neural network in [7]. Rectangles indicate a layer of units,

directed lines indicate full connectivity from one layer to another. The selec-

tion process is external to the network. . . . . . . . . . . . . . . . . . . . . . 11

2.2 Piano keys corresponding to one octave. . . . . . . . . . . . . . . . . . . . . 13

2.3 Circle of transpositions and six basic chords. . . . . . . . . . . . . . . . . . . 14

2.4 Some of the most popular pitch constellations. . . . . . . . . . . . . . . . . . 14

2.5 Transposition of a chord. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Representation of a chord sequence. . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Smooth error function for di�erent values of parameter 𝑠. . . . . . . . . . . . 19

2.8 Projections of the error function 𝑆(𝑤) to planes 𝑆(𝑤3), 𝑆(𝑤18) and 𝑆(𝑤1). . 21

3.1 Number of songs varies for di�erent authors. This dependence is shown on

the trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Number of authors and songs by genre. Only 6 of out 40 basic genres are shown. 25

4.1 A1 level diagram showing system architecture in the IDEF0 format. . . . . . 30

4.2 A2 level diagram expanding system architecture of model evaluation module

in the IDEF0 format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Convergence of stochastic gradient descend. . . . . . . . . . . . . . . . . . . 33

5.1 Probability distribution on N-grams showing Zipf's law. . . . . . . . . . . . . 37

5.2 Heat map of elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Some songs are easy to predict, some other songs are very unpredictable. . . 38

5.4 Prediction quality on testing and training sets depending on the size of the set. 40

5.5 Prediction quality vs model complexity 𝐾. . . . . . . . . . . . . . . . . . . . 40

48



5.6 Forecasting example circles represent the truth tones, dots � predicted tones,

errors are highlighted, horizontal axis is time. . . . . . . . . . . . . . . . . . 41

5.7 Music genres on a projection from 2-grams distribution space onto 2D space

with PCA (�rst two components). . . . . . . . . . . . . . . . . . . . . . . . . 41

49



List of Tables

3.1 An excerpt from the mined database, showing dataset structure. . . . . . . . 24

4.1 Contents of matrix stMap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Computational complexity and evaluation time for di�erent parts of the project. 34

5.1 Compositions sorted by prediction quality, showed by the proposed algorithm. 39

5.2 Performance of the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . 39

50


	Introduction to the problem of predicting music
	Problem statement for music forecasting
	Related work
	Bayes classifier
	Composition of classifiers
	Chords structure
	Prediction function
	Minimization problem
	Smooth error function

	Midi50k Dataset
	Midi-files
	Collecting method
	Obtaining related data
	Collection details
	Naming conversion
	Train/Test dataset division

	Implementation of the method
	Data structures
	Midi files
	Probability distribution
	Reshaped probability distribution
	Feature vector

	Project architecture
	Parsing midi-files
	Map container
	Calculating probability distribution
	Minimization
	Stochastic gradient descend
	Levenberg-Marquardt algorithm (LMA)
	Stability enhancements

	Computational complexity

	Computational experiment
	Visualization of the results
	Comparison with existing methods

	Conclusion
	Acknowledgments
	Terms and abbreviations
	List of figures
	List of tables

