
Министерство науки и высшего образования
Российской Федерации

�Московский физико-технический институт
(государственный университет)�

Физтех-школа прикладной математики и информатики
Факультет управления и прикладной математики

Кафедра �Интеллектуальные системы�

Бочкарев Артем Максимович

Структурное обучение для генерации моделей

03.04.01 � Прикладные математика и физика

Выпускная квалификационная работа
(магистерская диссертация)

Научный руководитель:
д. ф.-м. н. Стрижов Вадим Викторович

Москва
2018

Аннотация:

Данная работа посвящена задаче генерации аппроксимирующих моделей временных
рядов в виде математических выражений. Стандартный метод поиска оптимальных ма-
тематических выражений – использование символьной регрессии. У этого алгоритма
множество достоинств, таких как интерпретируемость и высокое качество аппроксима-
ции. Недостатком данного алгоритма является высокая вычислительная сложность и
отсутствие строгих гарантий сходимости. Данная работа посвящена первой проблеме.

В данном исследовании предлагается использовать метод мета обучения для нахож-
дения новых модлей. Предлагаемый подход использует информацию о построенных
моделях для предыдущих похожих задач. Данные для мета обучения представляют
из себя пары сегмент временного ряда - оптимальная аппроксимирующая модель для
него. Модели представлены в виде деревьев и задача мета обучения ставится в виде
предсказания структуры дерева оптимальной модели.

Предлагается двух-этапный алгоритм предсказания структуры дерева. На первом
этапе, алгоритм классификации предсказывает вероятности ребер в дереве. На втором
этапе, алгоритм явно строит дерево из вероятностей его ребер. Для второго этапа пред-
ложено использовать жадный алгоритм или алгоритм, основанный на методе динами-
ческого программирования. Предложен метод параметризации полученных моделей,
что позволяет использовать их для аппроксимации реальных данных. Оптимальные
параметры находятся методом градиентного спуска, так как полученные выражения
диффиренцируемы.

Вычислительный эксперимент проводился на синтетических и реальных данных.
Целью эксперимента на синтетических данных было доказательство корректности пред-
ложенного алгоритма и сравнение между различными методами предсказания вероят-
ностей ребер и построения дерева. Был также проведен эксперимент на синтетических
данных с параметрическими моделями. Для эксперимента на реальных данных были
выбраны сегменты временных рядов с акселерометра и сегменты временного ряда кур-
са обмена валют и цен акций. Целью эксперимента на реальных данных было сравнение
качества прогноза предложенного метода и символьной регрессии. Алгоритм мета обу-
чения строит модели качества, сравнимого с символьной регрессии, работая при этом
более чем в 10 раз быстрее.

Contents

1 Introduction 4

2 Problem Statement 6

2.1 Base problem . 6

2.2 Model for a base problem . 6

2.3 Meta learning problem . 7

3 Meta learning approach 9

3.1 Choice of representation . 9

3.2 Meta model decomposition . 9

3.3 Greedy algorithm . 10

3.4 Dynamic programming . 11

3.5 Parametrisation . 12

4 Computational experiment 13

4.1 Synthetic data . 13

4.1.1 Nonparametric approach . 13

4.1.2 Parametric approach . 15

4.2 Real data . 16

4.3 Discussion . 19

5 Conclusion 21

3

1. INTRODUCTION

Genetic programming [1] is a powerful approach for building models. Symbolic regression [2]

uses genetic algorithms [3] in order to find the mathematical expression for the optimal

approximation model. The resulting model is interpretable and understandable by experts

in the application field [4]. The other advantage of genetic programming is that it provides

very high quality of approximation. Genetic algorithms often outperform other optimisation

methods in complex and multimodal problems [5].

These advantages make genetic programming suitable for many applications. Symbolic

regression is used for ranking documents upon user request in information retrieval [6], for

classification of time series of physical measurements [7] and for diagnosing pathologies from

medical data [8]. It was also shown that genetic programming can improve optimisation of

deep neural networks [9]. In [10] authors used symbolic regression models to simplify the

structure of neural network. This study shows that one can significantly reduce the number

of hidden units in neural network, keeping the quality the same, if the symbolic regression

models are used as features for a neural network.

The main drawback of genetic approach is that it is guided random search, therefore

in some circumstances it might be very slow due to improper selection of heuristics. The

problem is addressed in [11] using acceleration on GPU. The goal of this study is to increase

the speed of generating models in the form of mathematical expressions.

The proposed method is based on meta learning approach. The thorough relevant sur-

vey of the field is presented in [12, 13]. The aim is to find an optimal model for a new

approximation problem (base problem), given the optimal models for previous similar base

problems. Each mathematical expression is seen as a binary tree of superpositions of prim-

itive functions. The model in this case is a tree and the problem is to learn to predict a

complex structure. The overview of structured learning approaches can be found in [14].

The problem can also be posed as decoding tree structure from some vector representation

of base problem.

In [15] authors propose tree autoencoder architecture for generating structures of the

molecules. In the paper [16] the model for generating programs from input-output pairs is

proposed. The authors of paper [17] presented a neural hybrid tree framework for semantic

parsing. The paper [18] introduced doubly-recurrent neural network structure for decoding

tree structure, showing results on synthetic data and machine translation problem.

This study is devoted to accelerating of generation symbolic regression models, using

4

structured learning. The problem posed as a meta learning task, in order to use knowledge

of previously built models. Symbolic regression models are represented as trees. The main

contribution of this research is a proposal of novel method of predicting tree structure of the

models. The algorithm is divided in two stages. The first stage is a classifier, which predicts

the probabilities of the edges in a model tree. The second stage is a recovery function, which

constructs a valid model tree from the probabilities of its edges. Three different variations

of recovery function are proposed.

All proposed approaches are extensively tested on synthetic and real data. There are two

kinds of synthetic data, generated in this study – parametric and nonparametric models. In

computational experiment we compare all variations of proposed method on synthetic data

and present the proof of the method’s good performance. There are three real datasets used

in computational experiments – accelerometer and financial time series. On all three tested

datasets proposed method has significantly shorter time of building the model, compared to

symbolic regression. At the same time, meta learning approach retains the high quality of

output models.

5

2. PROBLEM STATEMENT

Consider the set of supervised problems with optimal models for them. Each single super-

vised problem is named “base problem”. The regression problems are considered to be base

problems in this study. The model for a base problem is a mathematical expression. The

goal of this study is to build a method to find models for base problems automatically.

2.1. Base problem

Denote X = {xi}ni=1 2 Rn⇥l be the feature matrix and y = {yi}ni=1 be the vector of target

variables for the base problem. The feature matrix X and target vector y are combined

into the dataset D = (X,y) which is a full description of a base problem. From now on we

denote both base problem and its dataset as D.

In this study the following conditions are posed to the base problem:

• xi is not random,

• {xi}ni=1 is an ordered set,

• y is random,

• 9f : yi = f(xi) + "i,

– "i are independent,

– "i are homoscedastic,

– "i ⇠ N (0, �).

These conditions are satisfied for various kinds of real datasets, for example time series.

2.2. Model for a base problem

The space of mathematical expressions F is searched for a model f for base problems. Any

mathematical expression is generated by the grammar G of primitive functions:

g ! B(g, g)|U(g)|S, (1)

where B is a set of binary primitive functions (+,⇥, . . .), U is a set of unary primitive

functions (log(·), sin(·),
p
·, . . .) and S is a set of variables. Therefore, each mathematical

6

expression f is a superposition of primitive functions from grammar G:

f = g1 � g2 � · · · � gk (2)

Tree representation. Each mathematical expression f is represented as a binary tree �f ,

which satisfies the following conditions:

• the root of the tree is a special symbol “*”, it has one child vertex,

• leaves of �f contain variables x 2 S

• each non-leaf vertex v contains primitive function g 2 B [U

• number of children of vertex v equals arity of corresponding primitive function g

• domain of a child vertex vj contains codomain of a parent vertex vi: dom(vj) ◆ cod(vi)

• children vertices are ordered.

The example of a tree for a mathematical expression can be seen on figure 1.

*

+

÷

log

y

3

exp

x

Figure 1: Tree �f for expression f = e
x + 3

log(y)

2.3. Meta learning problem

This study explores the approach of meta learning for finding models of base problems.

Denote by D = {Di = (Xi,yi), fi}mi=1 the data for the meta learning problem (meta learning

dataset).

7

The following conditions are satisfied for meta learning dataset D:

• dom(xi) = dom(xj) 8i, j (all X share the same domain),

• fi is an optimal model for the base problem Di in a model space F:

fi = argmin
f2F

MSE(yi, fi(Xi)), (3)

where

MSE(y, ŷ) =
1

l

lX

j=1

(yj � ŷj)
2 (4)

is a mean squared error of the model on the base problem.

Given the meta learning dataset D, the goal is to find an optimal meta learning model

g : D ! f which minimises the error among all base problems:

g = argmin
g

L(g,D), (5)

L(g,D) =
1

m

mX

i=1

MSE(yi, g(Di)(Xi)). (6)

8

3. META LEARNING APPROACH

In this section we show how to find meta model g which generalises well to new base problems.

We present framework for generating non-parametric models f and then expand it to allow

parameters.

3.1. Choice of representation

The meta learning function is a mapping between base problems D and the space of math-

ematical expressions F. In order to define such mapping, define a suitable representation of

base problem and its model.

Base problem representation. Denote by d = [vec(X),y]T the vector representation of

a base problem D. This vector is a concatenation of vectorised feature matrix X and target

vector y

Assumption 1. All information needed for a generation of a model f for a base problem

D is encoded in its representation vector d.

Model representation. There are three ways to represent a model f :

• the mathematical expression of f ,

• the tree �f , corresponding to the model f ,

• the adjacency matrix Zf , corresponding to the tree �f .

The third way allows a vectorised representation of a model f , it is selected for the

proposed method of model generation. Therefore, the meta model g : Rn ! Z is a mapping

between vector representations of a model and the space Z of valid adjacency matrices of

mathematical expressions.

3.2. Meta model decomposition

The matrix Zf , predicted with meta model g, has to satisfy all conditions on a tree �f , listed

in section 2.2. Therefore, the construction of direct mapping g is infeasible. The proposed

method is to decompose the meta model into two stages:

Zf = g(d) = grec(gclf(d)), (7)

9

where grec is a recovery function and gclf is a classification function.

Classification function. gclf : Rn ! P is a mapping between vector representations of a

model and the space P of matrices of edge probabilities. Therefore,

gclf(d) = Pf , (8)

where Pf is a matrix of probabilities of edges in the tree �f . gclf is a multi label classification

algorithm, which predicts the probability pij 2 [0, 1] that there is an edge between vertices

vi and vj for any pair of vertices in the tree �f .

Recovery function. grec : P ! Z is a mapping between the space P of matrices of

edge probabilities and the space Z of valid matrices for mathematical expressions. grec is a

nonparametric algorithm which selects the edges for �f , based on their probabilities from

Pf . The resulting tree satisfies conditions from section 2.2.

In this study we propose two different methods for tree recovery, based on greedy strategy

and dynamic programming approaches.

3.3. Greedy algorithm

The first approach to matrix recovery is to use greedy strategy. The algorithm 1 builds

the tree step-by-step, adding edges with highest probability, starting from the root. The

algorithm stops early if the depth of the tree reached defined limit. Therefore the following

corollary is true.

Algorithm 1: Greedy algorithm
Data: Matrix of the edge probabilities P
Result: Recovered model f

1 Initialise set of open vertices S = {⇤};
2 while S 6= ; and maximum complexity is not reached do
3 Extract vertex i from S;
4 if i is a variable then
5 continue;
6 Select vertex j = argmax

j
Pij (the vertex with the highest edge probability);

7 Grow tree f with edge (i, j);
8 Add j to the set of open vertices S;

Corollary 1.The greedy algorithm of matrix recovery has O(1) complexity.

10

The corollary 1 also implies that the greedy algorithm is the fastest way to recover tree

from matrix of edge probabilities.

3.4. Dynamic programming

The second approach to matrix recovery is to use dynamic programming approach. In this

case on each step the of the algorithm 2 the problem of tree recovery is divided into smaller

problem, which are combined to maximise some score s(f).

There are two possible variants for score function s(f):

• s(f) =
Q
e2f

Pe, i.e. the product of all edges probabilities (tree likelihood);

• s(f) = 1
n

P
e2f

Pe, i.e. score is the average probability of the edges in the tree.

Intuitively, the former score function penalises deep trees heavily, while the latter allows

more complex models.

It is straightforward to show that algorithm 2 uses dynamic programming approach.

Bellman’s principle of optimality. An optimal policy has the property that whatever

the initial state and initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.

Corollary. Algorithm 2 satisfies Bellman’s principle of optimality.

Proof. Consider arbitrary step of the algorithm. The initial state is a given tree f 0 and initial

decisions are vertex choices that lead to the construction of such tree.

Then the algorithm finds the best subtree given the initial state, satisfying principle of

optimality. ⌅

Algorithm 2: Recursive procedure r(P, f, i) for dynamic programming
Data: Matrix of the edge probabilities P; current tree f ; leaf vertex i of f
Result: f̂ , s(f̂). f̂ is the best continuation of f and has i as its root.

1 if i is a variable then
2 return i, 1
3 for each unused vertex and variable j do
4 fj = f + (i, j) (grow tree f with the edge (i, j));
5 f̂j, s(f̂j) = r(P, fj, j) (find optimal continuation for fj);

6 f̂ = argmax
fj

s(f̂j + (i, j)) (select optimal continuation for f);

7 s(f̂) = maxfj s(f̂j + (i, j));
8 return f̂ , s(f̂)

11

3.5. Parametrisation

In previous sections the method for building mathematical expressions was introduced. Next

step is to expand it to parametric case. It allows the method to work on real data and provides

better approximation quality.

Suppose the nonparametric mathematical expression f is an output of some recovery

algorithm from previous sections. From the section 2.1,

f = g1 � g2 � · · · � gk, (9)

where gi is a nonparametric primitive function. To parametrise model f , let us parametrise

each primitive function gi:

gi(x,↵i1,↵i0) = ↵i1gi(x) + ↵i0 (10)

The parameters of model f are the parameters of its primitive functions:

f(x) ! f(x,↵) (11)

The resulting function is differentiable and the optimal parameters are found using gradient

descent.

The proposed method is described in algorithm 3 and algorithm 4.

Algorithm 3: Training procedure
Data: Meta learning dataset D = {Di = (Xi,yi), fi}mi=1

Result: Optimal meta model g
1 for each base problem Di do
2 remove parameters (constants) from model fi;
3 represent model fi with adjacency matrix Zfi of its corresponding tree �fi ;
4 represent base problem Di with a vector di = [vec(Xi),yi]T

5 train multi label classifier gclf on the set of pairs {(di,Zfi)};

Algorithm 4: Inference procedure
Data: Base problem D = (X,y)
Result: Optimal model f

1 represent base problem D with a vector d = [vec(X),y]T ;
2 predict probability matrix Pf : Pf = gclf(d);
3 recover adjacency matrix Zf : Zf = grec(Pf);
4 parametrise the model f ! f(↵);
5 find optimal ↵ using gradient descent;

12

4. COMPUTATIONAL EXPERIMENT

The proposed method was tested on generated and real data. The goal of the experiment is

to compare variations of the algorithm on synthetic data, and then compare its performance

with symbolic regression on the real data. All the experiments were conducted on 1-D time

series data.

4.1. Synthetic data

The goal of this experiment is to prove that meta learning method works and test different

variations of it. For all the experiments in this study we chose the following properties of

the models:

• the depth of the tree doesn’t exceed 10,

• Binary operators: +,⇥,

• Unary operators: sin, cos, exp, log, 1
x ,
p
x, x

2.

The full scheme of generating synthetic data can be found in the algorithm 5. The

difference between parametric and nonparametric setup is the presence of the parameters in

the tree on the step 3.

Algorithm 5: Generate data for synthetic experiment
Result: Synthetic dataset D

1 for i = 1, . . . ,m do
2 sample n points x = {xi}nk=1 uniformly from [�5, 5];
3 create random tree �fi (start building tree from root “*”, sampling operators or

variables with equal probabilities);
4 generate target variable y and add gaussian noise: yk = fi(xk) +N (0, 0.05);
5 base problem Di = (x,y);
6 add problem-model pair (Di, fi) to the meta learning dataset D;
7 split dataset D into train Dtrain and test Dtest;

4.1.1. Nonparametric approach

In this experiment the size of the dataset D is 5000, |Dtrain| = 4500, |Dtest| = 500. Greedy

algorithm and two variations of dynamic programming were tested as recovery functions.

Random forest, neural network with 2 hidden layers and logistic regression were variations

of classification functions.

13

The examples of generated models for the test set are shown on the figure 2. The red dots

are generated data and coloured lines are models, obtained with various recovery functions.

Random forest was used as a classification algorithm for generation of these examples.

a b

c d

Figure 2: Performance of nonparametric approach on the test set.

These examples shows that proposed method not only approximates data well, but also

recovers the structure of the model correctly in most cases. This observation proves, that

in parametric case we will achieve high quality not because parameters tuning, but because

of correct structure prediction. Full results are shown in the table 1. The numbers in the

table is an error of meta model on the test set, as defined in (6). Random forest is the

classification method of highest quality in our experiments. As expected the performance of

greedy algorithm as a recovery function is worse than dynamic programming.

14

Table 1: Results in a nonparametric case.

Random Forest Neural network Logistic regression
Greedy algorithm 5.45 5.81 6.3

DP (tree likelihood) 5.41 5.65 5.97
DP (mean probability) 5.32 5.72 6.12

4.1.2. Parametric approach

The setup of the experiment in parametric settings is the same, as in nonparametric case.

Our conclusions from nonparametric case stay true in parametric case as well. Random

forest is the best classifier, and greedy algorithm has larger error than dynamic programming

on the test set. The examples of models for the test set, obtained from random forest and

tree likelihood recovery function are shown in the figure 3. Red dots are ground truth data

and blue line is a predicted model. The results of the experiment are shown in the table 2.

a b

c d

Figure 3: Performance of parametric approach on the test set.

15

Table 2: Results in a parametric case.

Random Forest Neural network Logistic regression
Greedy algorithm 7.02 7.13 7.35

DP (tree likelihood) 6.88 6.93 7.01
DP (mean probability) 6.92 6.94 6.99

These examples show that parametric method correctly recovers underlying model from

the data. Even if it fails to predict the structure exactly, introduction of parameters allows

model to have low error. In some cases the structure and the parameters are recovered

exactly.

4.2. Real data

The goal of the experiment on the real data is to show that the proposed method is faster

than symbolic regression, without significant drop in quality of the predicted models. The

real experiment is conducted on three time series datasets.

To compare the performance of meta model and symbolic regression, we need to fit the

latter on each base problem. The algorithm 6 shows the procedure for extracting meta

learning dataset from real time series data.

Algorithm 6: Generate data for real experiment
Result: Real dataset D

1 for i = 1, . . . ,m do
2 sample a segment of n points from time series: x = {xi}nk=1,y = {yi}nk=1;
3 find the optimal approximating model fi for the segment using symbolic

regression;
4 base problem Di = (x,y);
5 add problem-model pair (Di, fi) to the meta learning dataset D;
6 split dataset D into train Dtrain and test Dtest;

In this experiment we compare the quality of models obtained from meta model and from

symbolic regression. We also compare the time of finding optimal model on the step 3 and

of inference procedure of meta model (algorithm 4). The greedy algorithm is selected as a

recovery function for the fastest inference of the proposed method. The random forest with

500 estimators is selected as a classification function in all of the following experiments.

Accelerometer time series. The first real data of our experiment are accelerometer time

series [19]. Time series are measurements of acceleration from wrist-worn accelerometer. The

sampling rate is 32Hz. There are 14 different activities present in the data (walking, going

16

upstairs, eating etc.). Time series were collected from activity of 16 people. Each class for

each person was divided into segments of length n = 100. Total number of sampled segments

m = 3000, 2500 of them are train problems and 500 are test. The example of time series

segment for walking and corresponding symbolic regression model are shown on figure 4.

Mean error and mean inference speed of symbolic regression and proposed approach on

test data is shown in table 3. The proposed approach significantly lowers inference type

without damaging quality of the model. This is desirable pattern and proves the correctness

of our method.

Figure 4: Example of time series segment

Table 3: Results comparison on accelerometer dataset

MSE Inference speed, sec.
Symbolic regression 0.052 5.12

Meta model 0.054 0.23

17

Daily foreign exchange rates. The dataset [20] contains time series of exchange rate

between USD and foreign currency for the period from 31 December 1979 to 31 December

1998. The time series contain 4770 data points. Using algorithm 6 we generate m = 1000

time series segments of length n = 100. The size of the training set and test set is 900

and 100 accordingly. The example of the time series segment and corresponding symbolic

regression model are shown on figure 5.

Mean squared error and mean inference speed of two approaches are shown in the table 4.

The proposed meta learning method provides 20x speedup of inference type in comparison

with symbolic regression approach. Moreover, the models from meta model are marginally

worse than those, obtained with symbolic regression.

Figure 5: Example of time series segment

Table 4: Results comparison on exchange dataset

MSE Inference speed, sec.
Symbolic regression 0.012 6.02

Meta model 0.014 0.28

18

Stock prices. The dataset [21] contains time series of IBM common stock closing prices

for the period from 2 Jan 1962 to 31 Dec 1965. The time series contain 1008 data points.

Using algorithm 6 we generate m = 500 time series segments of length n = 100. The size

of the training set and test set is 400 and 100 accordingly. The example of the time series

segment and corresponding symbolic regression model are shown on figure 6.

Comparison of the two approaches on the stock data is shown in 5. The speedup and the

performance of the proposed method is very similar to the result on the exchange dataset.

Meta learning approach gives great speedup without big sacrifice in a quality of the models.

Figure 6: Example of time series segment

Table 5: Results comparison on stock price dataset

MSE Inference speed, sec.
Symbolic regression 3.13 6.34

Meta model 3.22 0.31

4.3. Discussion

Our experiments show that meta learning approach for generating symbolic regression models

indeed works. In nonparametric case its predictions are mostly accurate. Dynamic program-

ming paradigm to tree recovery outperforms greedy strategy in terms of quality of models.

19

Nonetheless greedy strategy can be more useful in applications, because the speed of model

generation is much greater. Experiments on parametric data show that parameters allow

proposed method to recover good model, even if the structure was wrongly predicted. This

implies that introducing parameters improves method’s robustness and allow it to approxi-

mate real data. In the experiment on the real datasets, the speed of building models using

proposed method is significantly greater that that of symbolic regression. Meta learning

approach is thus suitable for applications where the speed of building interpretable models

is of high importance.

Future work. Proposed method has several shortcomings which will be addressed in future

work. First, it is important to expand the method to multi dimensional case. Second, we

hope to make the approach work on data without order. Both these points require different

approach to encoding of the base problem, which is efficient and is not dependant on the

order of objects in the data. The other goal which we have for future work is to make the

method work end-to-end, i.e. build differentiable mapping from the space of base problems

to the space of valid model trees.

20

5. CONCLUSION

This study is dedicated to generating models in a form of mathematical expressions. We pro-

pose meta learning approach to automate this process and avoid costly symbolic regression.

The meta learning problem is posed as prediction of the tree structure of the model. The

meta learning dataset are pairs of base problems and corresponding models. The two-staged

algorithm for predicting tree structure was proposed. We proposed several variations of tree

recovery. Parametric and nonparametric cases were described.

The computational experiment was conducted on synthetic and real data. The experi-

ments on synthetic data proved the ability of the meta learning approach to find good models

for unseen data. Experiment on real time series of accelerometer and financial data showed

effectiveness of the proposed approach in comparison with symbolic regression.

21

REFERENCES

[1] John R Koza. Genetic Programming II, Automatic Discovery of Reusable Subprograms.

MIT Press, Cambridge, MA, 1992.

[2] Ivan Zelinka, Zuzana Oplatkova, and Lars Nolle. Analytic programming–symbolic re-

gression by means of arbitrary evolutionary algorithms. Int. J. of Simulation, Systems,

Science and Technology, 6(9):44–56, 2005.

[3] Lawrence Davis. Handbook of genetic algorithms. 1991.

[4] Helen E Johnson, Richard J Gilbert, Michael K Winson, Royston Goodacre, Aileen R

Smith, Jem J Rowland, Michael A Hall, and Douglas B Kell. Explanatory analysis

of the metabolome using genetic programming of simple, interpretable rules. Genetic

Programming and Evolvable Machines, 1(3):243–258, 2000.

[5] Carmen G Moles, Pedro Mendes, and Julio R Banga. Parameter estimation in bio-

chemical pathways: a comparison of global optimization methods. Genome research,

13(11):2467–2474, 2003.

[6] AS Kulunchakov and VV Strijov. Generation of simple structured information retrieval

functions by genetic algorithm without stagnation. Expert Systems with Applications,

85:221–230, 2017.

[7] Damian R Eads, Daniel Hill, Sean Davis, Simon J Perkins, Junshui Ma, Reid B Porter,

and James P Theiler. Genetic algorithms and support vector machines for time series

classification. In Applications and Science of Neural Networks, Fuzzy Systems, and Evo-

lutionary Computation V, volume 4787, pages 74–86. International Society for Optics

and Photonics, 2002.

[8] Athanasios Tsakonas, Georgios Dounias, Jan Jantzen, Hubertus Axer, Beth Bjerre-

gaard, and Diedrich Graf von Keyserlingk. Evolving rule-based systems in two medical

domains using genetic programming. Artificial Intelligence in Medicine, 32(3):195–216,

2004.

[9] Omid E David and Iddo Greental. Genetic algorithms for evolving deep neural networks.

In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic

and Evolutionary Computation, pages 1451–1452. ACM, 2014.

[10] Артем Максимович Бочкарев, Иван Львович Софронов, and Вадим Викторович

Стрижов. Порождение экспертно-интерпретируемых моделей для прогноза

проницаемости горной породы. Системы и средства информатики, 27(3):74–87,

2017.

[11] Cheng-Chieh Li, Jung-Chun Liu, Chu-Hsing Lin, and Winston Lo. On the accelerated

convergence of genetic algorithm using gpu parallel operations. In Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing 2015, pages 1–

16. Springer, 2016.

[12] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a survey of trends

and technologies. Artificial intelligence review, 44(1):117–130, 2015.

[13] Pavel Brazdil and Christophe Giraud-Carrier. Metalearning and algorithm selection:

progress, state of the art and introduction to the 2018 special issue, 2018.

[14] Sebastian Nowozin, Christoph H Lampert, et al. Structured learning and prediction in

computer vision. Foundations and Trends R� in Computer Graphics and Vision, 6(3–

4):185–365, 2011.

[15] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoen-

coder for molecular graph generation. arXiv preprint arXiv:1802.04364, 2018.

[16] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong

Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv preprint

arXiv:1611.01855, 2016.

[17] Raymond Hendy Susanto and Wei Lu. Semantic parsing with neural hybrid trees. In

AAAI, pages 3309–3315, 2017.

[18] David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-

recurrent neural networks. 2016.

[19] Dataset for ADL Recognition with Wrist-worn Accelerometer Data Set.

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+

with+Wrist-worn+Accelerometer. [Online; accessed 29-May-2018].

[20] Daily foreign exchange rates, 31 December 1979 – 31 December 1998. http://bit.ly/

1XonNrs. [Online; accessed 29-May-2018].

23

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
http://bit.ly/1XonNrs
http://bit.ly/1XonNrs

[21] IBM common stock closing prices. http://bit.ly/2H0Nf1w. [Online; accessed 29-May-

2018].

24

http://bit.ly/2H0Nf1w

	Introduction
	Problem Statement
	Base problem
	Model for a base problem
	Meta learning problem

	Meta learning approach
	Choice of representation
	Meta model decomposition
	Greedy algorithm
	Dynamic programming
	Parametrisation

	Computational experiment
	Synthetic data
	Nonparametric approach
	Parametric approach

	Real data
	Discussion

	Conclusion

