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AHHOTaIMA:

Jlanaast paboTa IOCBIIEHA 3a/1a9e TeHEPAIINT AIIIPOKCUMUPYIOIIIX MOIe/Iei BpeMEHHbBIX
PSIIOB B BIJIE MaTeMaTHIeCKUX BbIparkeHuil. CTaHIapTHBIA METO/I ITOMCKA OITUMAJIHLHBIX Ma-
TEMATUYEeCKUX BBIPAXKEHUN — KCIIOJIb30BAHUE CUMBOJIBHON perpeccuu. Y 3TOTO aJrOpUTMa
MHOYKECTBO JIOCTOMHCTB, TAKUX KaK HHTEPIPETHPYEMOCTD U BHICOKOE KAIECTBO AITPOKCHMAa-
nun. HeoctaTkoMm JaHHOTO aJropuTMa, sIBJISETCS BBICOKAs BBIYUC/IMTE/IbHAA CJI0KHOCTH U
OTCYTCTBHE CTPOIUX TapaHTuii cxomumocTu. lanHast pabora MOCBsIIEHa IepBoil podieMe.

B nanHOM MccieioBaHIN IpeIaraeTcst NCIOJIb30BATh METO, MeTa 00y IeHHs JI/IsT HAXOXK-
JeHnst HOBBIX Mojyteit. [Ipemmaraembrit moaxo UCHoab3yeT MHAMOPMAIUIO O TOCTPOEHHBIX
MOJIEISIX JIJIsST TIPEIBIIYIUX TOX0XKUX 3ajad. JlaHHble Uit MeTa OOydYeHUsl MPeCTaBISIOT
u3 cebsi mapbl CEPMEHT BPEMEHHOTO Psijia - ONTHMAaJIbHAs AIIIPOKCUMUPYIOMAA MOJIE/Ib JIJIst
Hero. Mogenan mpeacTaBieHbl B BUIE JIEPEBbEB U 3ajiada MeTa OOyUeHHs CTaBUTCS B BHUJIE
[IpEeICKA3aHNsT CTPYKTYPHI JepeBa ONTHMAIBLHON MOJIEIIN.

[Ipemraraercss AByX-9TAIHBI AJTOPUTM TIPeJICKa3aHus CTPYKTYPHI jJepeBa. Ha mepsom
JTare, aJroOpuTM KIacCupuKalny IpeacKa3biBaeT BeposTHOCTH pebep B jepeBe. Ha BTopom
9Tare, aJJTOPUTM sIBHO CTPOUT JIEPEBO U3 BepodTHOCTel ero pedep. Jljist Broporo srara mpej-
JIO?KEHO HUCII0JIb30BATh KA IHBIN aJrOPUTM WJIH aJICOPUTM, OCHOBaHHBIN Ha METO/E JTHHAMU-
JeCcKOro ImporpaMmupoBaHusi. IIpeaioxken mMeTosd mapaMeTpusallui IOy IeHHBIX MOJIEIE,
YTO IMO3BOJISIET KCIIOJIb30BATh MX JIJIS AIIPOKCHMAIINN peajbHBIX JTaHHBIX. OUTHMaJIbHBIE
mapaMeTpbl HAXOJSATCS METOJOM I'PaJHeHTHOrO CIIyCKa, TaK KaK IMOJIy9YeHHbIe BbIParXKeHUsT
b PUPEHITUPYEMBI.

BoraucanrebHBIN SKCIIEPUMEHT ITPOBOAMICSA HA CUHTETHIECKUX U pPeabHBIX TaHHBIX.
[enbio sKCIepuMeHTa Ha, CHHTETHIECKUX JIAHHBIX OBLIO JI0KA3aTeIbCTBO KOPPEKTHOCTH IIPe -
JIOZKEHHOT'O aJITOPUTMa ¥ CPABHEHUE MEK Iy PA3IUIHBIMU METOIAMU MPE/ICKA3AHIA BEPOSIT-
HOCTell pebep U MoCTPOeHNs JiepeBa. Bl Takke MPOBeIeH SKCIIEPUMEHT Ha CHHTETHIECKHUX
JIAHHBIX C MapaMeTPUIECKUMU MOJe saMu. JJIist 9KcIeprMeHTa Ha peaJibHBIX JaHHBIX ObLIN
BBIOPAHBI CEI'MEHTHI BPEMEHHBIX PSIJIOB C aKCeJepoMeTpa U CerMEeHThl BpEMEHHOIO Psia Kyp-
ca oOMeHa BaJIIOT U IieH akmuii. Ilesibio sKcepuMenTa Ha peajbHBIX JTaHHBIX OBLIO CpaBHEHNE
KavuecTBa MPOrHO3a, MIPEIJIOKEHHOTO MeTOIa M CUMBOJIBHOI perpeccun. AJIropuTM mMeTa 00y-
YeHUsI CTPOUT MOJIEJIN KadecTBa, CPABHUMOIO C CUMBOJIBHOW perpeccun, paboTrasi Mpu ITOM
6osiee gem B 10 pas3 ObicTpee.
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1. INTRODUCTION

Genetic programming [1] is a powerful approach for building models. Symbolic regression |2]
uses genetic algorithms [3| in order to find the mathematical expression for the optimal
approximation model. The resulting model is interpretable and understandable by experts
in the application field [4]. The other advantage of genetic programming is that it provides
very high quality of approximation. Genetic algorithms often outperform other optimisation
methods in complex and multimodal problems [5].

These advantages make genetic programming suitable for many applications. Symbolic
regression is used for ranking documents upon user request in information retrieval [6], for
classification of time series of physical measurements [7| and for diagnosing pathologies from
medical data [8]. It was also shown that genetic programming can improve optimisation of
deep neural networks [9]. In [10] authors used symbolic regression models to simplify the
structure of neural network. This study shows that one can significantly reduce the number
of hidden units in neural network, keeping the quality the same, if the symbolic regression
models are used as features for a neural network.

The main drawback of genetic approach is that it is guided random search, therefore
in some circumstances it might be very slow due to improper selection of heuristics. The
problem is addressed in [11] using acceleration on GPU. The goal of this study is to increase
the speed of generating models in the form of mathematical expressions.

The proposed method is based on meta learning approach. The thorough relevant sur-
vey of the field is presented in [12,|13]. The aim is to find an optimal model for a new
approximation problem (base problem), given the optimal models for previous similar base
problems. Each mathematical expression is seen as a binary tree of superpositions of prim-
itive functions. The model in this case is a tree and the problem is to learn to predict a
complex structure. The overview of structured learning approaches can be found in [14].
The problem can also be posed as decoding tree structure from some vector representation
of base problem.

In [15] authors propose tree autoencoder architecture for generating structures of the
molecules. In the paper [16] the model for generating programs from input-output pairs is
proposed. The authors of paper [17] presented a neural hybrid tree framework for semantic
parsing. The paper [18| introduced doubly-recurrent neural network structure for decoding
tree structure, showing results on synthetic data and machine translation problem.

This study is devoted to accelerating of generation symbolic regression models, using
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structured learning. The problem posed as a meta learning task, in order to use knowledge
of previously built models. Symbolic regression models are represented as trees. The main
contribution of this research is a proposal of novel method of predicting tree structure of the
models. The algorithm is divided in two stages. The first stage is a classifier, which predicts
the probabilities of the edges in a model tree. The second stage is a recovery function, which
constructs a valid model tree from the probabilities of its edges. Three different variations
of recovery function are proposed.

All proposed approaches are extensively tested on synthetic and real data. There are two
kinds of synthetic data, generated in this study — parametric and nonparametric models. In
computational experiment we compare all variations of proposed method on synthetic data
and present the proof of the method’s good performance. There are three real datasets used
in computational experiments — accelerometer and financial time series. On all three tested
datasets proposed method has significantly shorter time of building the model, compared to
symbolic regression. At the same time, meta learning approach retains the high quality of

output models.



2. PROBLEM STATEMENT

Consider the set of supervised problems with optimal models for them. Each single super-
vised problem is named “base problem”. The regression problems are considered to be base
problems in this study. The model for a base problem is a mathematical expression. The

goal of this study is to build a method to find models for base problems automatically.

2.1. Base problem

Denote X = {x;}1.; € R™ be the feature matrix and y = {y;}"; be the vector of target
variables for the base problem. The feature matrix X and target vector y are combined
into the dataset D = (X,y) which is a full description of a base problem. From now on we
denote both base problem and its dataset as D.

In this study the following conditions are posed to the base problem:
e X; is not random,

e {x;}", is an ordered set,

e y is random,

o 3f 1y = f(x:) + i,

— ¢g; are independent,

— ¢; are homoscedastic,

— & NN(O,O')

These conditions are satisfied for various kinds of real datasets, for example time series.

2.2. Model for a base problem

The space of mathematical expressions § is searched for a model f for base problems. Any

mathematical expression is generated by the grammar G of primitive functions:

g — B(g,9)|U(9)|S, (1)

where B is a set of binary primitive functions (+, X,...), U is a set of unary primitive

functions (log(+),sin(-),+/,...) and S is a set of variables. Therefore, each mathematical



expression f is a superposition of primitive functions from grammar G:

f=g10gs0---0g (2)

Tree representation. Each mathematical expression f is represented as a binary tree I'y,

which satisfies the following conditions:

“*¥7 it has one child vertex,

e the root of the tree is a special symbol
e lcaves of I'; contain variables z € S

e cach non-leaf vertex v contains primitive function g € BUU

e number of children of vertex v equals arity of corresponding primitive function g

e domain of a child vertex v; contains codomain of a parent vertex v;: dom(v;) 2 cod(v;)

e children vertices are ordered.

The example of a tree for a mathematical expression can be seen on figure

Figure 1: Tree I'; for expression f = e + 53—

log(y)

2.3. Meta learning problem

This study explores the approach of meta learning for finding models of base problems.
Denote by © = {D; = (X;,¥:), fi}1*, the data for the meta learning problem (meta learning
dataset).



The following conditions are satisfied for meta learning dataset ©:

e dom(x;) = dom(x;) Vi, j (all X share the same domain),

e f; is an optimal model for the base problem D; in a model space §:

fi = argmin MSE(y;, f:(X;)),
feF

where

MSE(y,y) =

Nll—l

30~

is a mean squared error of the model on the base problem.

Given the meta learning dataset ®, the goal is to find an optimal meta learning model

g : D — f which minimises the error among all base problems:

g = argmin £(g, D),
g

_ % >~ MSE(y;. 8(D))(X,)).



3. META LEARNING APPROACH

In this section we show how to find meta model g which generalises well to new base problems.
We present framework for generating non-parametric models f and then expand it to allow

parameters.

3.1. Choice of representation

The meta learning function is a mapping between base problems D and the space of math-
ematical expressions §. In order to define such mapping, define a suitable representation of

base problem and its model.

Base problem representation. Denote by d = [vec(X),y]? the vector representation of
a base problem D. This vector is a concatenation of vectorised feature matrix X and target
vector y

Assumption 1. All information needed for a generation of a model f for a base problem

D 1s encoded in its representation vector d.

Model representation. There are three ways to represent a model f:
e the mathematical expression of f,
e the tree I'y, corresponding to the model f,
e the adjacency matrix Zy, corresponding to the tree I'f.

The third way allows a vectorised representation of a model f, it is selected for the
proposed method of model generation. Therefore, the meta model g : R® — 7Z is a mapping
between vector representations of a model and the space Z of valid adjacency matrices of

mathematical expressions.

3.2. Meta model decomposition

The matrix Z;, predicted with meta model g, has to satisfy all conditions on a tree I'y, listed
in section [2.2] Therefore, the construction of direct mapping g is infeasible. The proposed

method is to decompose the meta model into two stages:

Zf = g(d) = grec(gclf(d))a (7)



where ¢, is a recovery function and gy is a classification function.

Classification function. g.: R"™ — P is a mapping between vector representations of a

model and the space P of matrices of edge probabilities. Therefore,

gclf(d) = Pf’ (8)

where P is a matrix of probabilities of edges in the tree I'y. gqy is a multi label classification
algorithm, which predicts the probability p;; € [0, 1] that there is an edge between vertices

v; and v; for any pair of vertices in the tree I'y.

Recovery function. g¢.. : P — Z is a mapping between the space P of matrices of
edge probabilities and the space Z of valid matrices for mathematical expressions. g is a
nonparametric algorithm which selects the edges for I'y, based on their probabilities from
P ;. The resulting tree satisfies conditions from section

In this study we propose two different methods for tree recovery, based on greedy strategy

and dynamic programming approaches.

3.3. Greedy algorithm

The first approach to matrix recovery is to use greedy strategy. The algorithm 1 builds
the tree step-by-step, adding edges with highest probability, starting from the root. The
algorithm stops early if the depth of the tree reached defined limit. Therefore the following

corollary is true.

Algorithm 1: Greedy algorithm

Data: Matrix of the edge probabilities P

Result: Recovered model f
1 Initialise set of open vertices S = {x};
2 while S # 0 and maximum complexity is not reached do
3 Extract vertex ¢ from S;
4
5

if 7 is a variable then
L continue;

6 Select vertex j = argmax P;; (the vertex with the highest edge probability);
J

7 Grow tree f with edge (i, j);
8 | Add j to the set of open vertices S;

Corollary 1.The greedy algorithm of matrixz recovery has O(1) complexity.
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The corollary 1 also implies that the greedy algorithm is the fastest way to recover tree

from matrix of edge probabilities.

3.4. Dynamic programming

The second approach to matrix recovery is to use dynamic programming approach. In this
case on each step the of the algorithm 2 the problem of tree recovery is divided into smaller
problem, which are combined to maximise some score s(f).

There are two possible variants for score function s(f):

e s(f)=1]] FP., i-e. the product of all edges probabilities (tree likelihood);

ecf

o s(f)= % Z%Pe, i.e. score is the average probability of the edges in the tree.
ec

Intuitively, the former score function penalises deep trees heavily, while the latter allows
more complex models.

It is straightforward to show that algorithm 2 uses dynamic programming approach.

Bellman’s principle of optimality. An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

Corollary. Algorithm 2 satisfies Bellman’s principle of optimality.
Proof. Consider arbitrary step of the algorithm. The initial state is a given tree f’ and initial
decisions are vertex choices that lead to the construction of such tree.

Then the algorithm finds the best subtree given the initial state, satisfying principle of
optimality. W

Algorithm 2: Recursive procedure r(P, f,7) for dynamic programming

Data: Matrix of the edge probabilities P; current tree f; leaf vertex i of f
Result: f,s(f). f is the best continuation of f and has ¢ as its root.
if ¢ is a variable then

L return i, 1

N =

w

for each unused vertex and variable 7 do

fi=/f+0,j) (grow tree f with the edge (i, 7));
fj, s(fj) =r(P, f;,7) (find optimal continuation for f;);

'y

(S}

~

f =argmaxs(f; + (i,7)) (select optimal continuation for f);

[

s(f) = maxy, s(f; + (i,5));
return f, s(f)

BN

®

11



3.5. Parametrisation

In previous sections the method for building mathematical expressions was introduced. Next
step is to expand it to parametric case. It allows the method to work on real data and provides
better approximation quality.

Suppose the nonparametric mathematical expression f is an output of some recovery

algorithm from previous sections. From the section [2.1]

f=giogao---og, (9)

where g; is a nonparametric primitive function. To parametrise model f, let us parametrise
each primitive function g;:

9i(X, 41, o) = i1gi(X) + o (10)

The parameters of model f are the parameters of its primitive functions:

f(x) = f(x,a) (11)

The resulting function is differentiable and the optimal parameters are found using gradient
descent.

The proposed method is described in algorithm 3 and algorithm 4.

Algorithm 3: Training procedure
Data: Meta learning dataset ® = {D; = (X;,y:), fi}!"4
Result: Optimal meta model g
1 for each base problem D; do
2 remove parameters (constants) from model f;;
3 represent model f; with adjacency matrix Zy, of its corresponding tree I'y,;
4 represent base problem D; with a vector d; = [vec(X;), yi]”

5 train multi label classifier g, on the set of pairs {(d;,Zy,)};

Algorithm 4: Inference procedure

Data: Base problem D = (X,y)

Result: Optimal model f

represent base problem D with a vector d = [vec(X),y];
predict probability matrix Py : Py = gae(d);

recover adjacency matrix Zy : Zy = grec(Py);
parametrise the model f — f(a);

find optimal a using gradient descent;

[SLUN SR VI
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4. COMPUTATIONAL EXPERIMENT

The proposed method was tested on generated and real data. The goal of the experiment is
to compare variations of the algorithm on synthetic data, and then compare its performance
with symbolic regression on the real data. All the experiments were conducted on 1-D time

series data.

4.1. Synthetic data

The goal of this experiment is to prove that meta learning method works and test different
variations of it. For all the experiments in this study we chose the following properties of

the models:
e the depth of the tree doesn’t exceed 10,
e Binary operators: +, X,
e Unary operators: sin, cos,exp,log,%,\/f, 22

The full scheme of generating synthetic data can be found in the algorithm 5. The
difference between parametric and nonparametric setup is the presence of the parameters in

the tree on the step

Algorithm 5: Generate data for synthetic experiment
Result: Synthetic dataset ©

1 fori=1,...,mdo
2 sample n points x = {z;}}_; uniformly from [—5, 5];
3 create random tree I'y, (start building tree from root “*”, sampling operators or

variables with equal probabilities);

4 generate target variable y and add gaussian noise: 1y, = f;(x1) + N(0,0.05);
base problem D; = (x,y);

6 add problem-model pair (D;, f;) to the meta learning dataset ©;

BN

split dataset ® into train ®ipain and test Oy ;

4.1.1. Nonparametric approach

In this experiment the size of the dataset ® is 5000, |Dain| = 4500, |Diest| = 500. Greedy
algorithm and two variations of dynamic programming were tested as recovery functions.
Random forest, neural network with 2 hidden layers and logistic regression were variations

of classification functions.
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The examples of generated models for the test set are shown on the figure[2l The red dots
are generated data and coloured lines are models, obtained with various recovery functions.

Random forest was used as a classification algorithm for generation of these examples.

41 — sin(x)+x mean — x3+x mean
3 sin(x) +Vx greedy 400 xe*+x greedy
—— sin(x) + x prob —— xe* prob
. X e [ «  xe¥+x
2 sin(x) X 4 t\ 3001

200

> 0 >
100
-1
-2 04 e= —
-3
—100
-4
4 0 0 2 4 Za 0 0 2 4
X X
a b
—— x? mean 2] — log(2x) mean
25 x+x2 greedy log(Vx +sin(x)) greedy
— x? prob 1{ — log(x) prob
. 2
20 X o log(xVecwsx))
04
>‘15 >—l’
10 —27
_3]
5
_4]
0
“4 2 0 2 4 4 =2 0 2 4
X X
¢ d

Figure 2: Performance of nonparametric approach on the test set.

These examples shows that proposed method not only approximates data well, but also
recovers the structure of the model correctly in most cases. This observation proves, that
in parametric case we will achieve high quality not because parameters tuning, but because
of correct structure prediction. Full results are shown in the table [Il The numbers in the
table is an error of meta model on the test set, as defined in @ Random forest is the
classification method of highest quality in our experiments. As expected the performance of

greedy algorithm as a recovery function is worse than dynamic programming.
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Table 1: Results in a nonparametric case.

Random Forest | Neural network | Logistic regression
Greedy algorithm 5.45 5.81 6.3
DP (tree likelihood) 5.41 5.65 5.97
DP (mean probability) 5.32 5.72 6.12

4.1.2. Parametric approach

The setup of the experiment in parametric settings is the same, as in nonparametric case.
Our conclusions from nonparametric case stay true in parametric case as well. Random
forest is the best classifier, and greedy algorithm has larger error than dynamic programming
on the test set. The examples of models for the test set, obtained from random forest and
tree likelihood recovery function are shown in the figure [3l Red dots are ground truth data

and blue line is a predicted model. The results of the experiment are shown in the table

2.4+
1.0 2.24

2.04
0.9

1.8

0.8 1.05e0:82V1.26sin(1.22cos(x))

0.7

0.6

—— 0.16 + 0.86c0s(0.4 + 0.725in(x))-. o
.

1.64
1.4

1.2

esin(Vcos(x)

e cos(y0.96sin(x)) 1.01 .
0.5
-4 -2 0 2 4 4 ) ) 5 2
X X
a b
—— (log2x)? 44 —— (0.53x—1.15)-(0.44 + 1.46c0s(2.58 + 1.13x))
2 o (log2x)? s sin(x —8.64)log(x)

15
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Figure 3: Performance of parametric approach on the test set.



Table 2: Results in a parametric case.

Random Forest | Neural network | Logistic regression
Greedy algorithm 7.02 7.13 7.35
DP (tree likelihood) 6.88 6.93 7.01
DP (mean probability) 6.92 6.94 6.99

These examples show that parametric method correctly recovers underlying model from
the data. Even if it fails to predict the structure exactly, introduction of parameters allows
model to have low error. In some cases the structure and the parameters are recovered

exactly.

4.2. Real data

The goal of the experiment on the real data is to show that the proposed method is faster
than symbolic regression, without significant drop in quality of the predicted models. The
real experiment is conducted on three time series datasets.

To compare the performance of meta model and symbolic regression, we need to fit the
latter on each base problem. The algorithm 6 shows the procedure for extracting meta

learning dataset from real time series data.

Algorithm 6: Generate data for real experiment
Result: Real dataset ©

1 fori=1,...,mdo

2 sample a segment of n points from time series: x = {z;}7_;, ¥ = {vi}7—1;

3 find the optimal approximating model f; for the segment using symbolic
regression;

4 base problem D; = (x,y);
add problem-model pair (D;, f;) to the meta learning dataset ©;

6 split dataset ® into train i and test Dy

In this experiment we compare the quality of models obtained from meta model and from
symbolic regression. We also compare the time of finding optimal model on the step [3| and
of inference procedure of meta model (algorithm 4). The greedy algorithm is selected as a
recovery function for the fastest inference of the proposed method. The random forest with

500 estimators is selected as a classification function in all of the following experiments.

Accelerometer time series. The first real data of our experiment are accelerometer time
series [19]. Time series are measurements of acceleration from wrist-worn accelerometer. The

sampling rate is 32Hz. There are 14 different activities present in the data (walking, going

16



upstairs, eating etc.). Time series were collected from activity of 16 people. Each class for
each person was divided into segments of length n = 100. Total number of sampled segments
m = 3000, 2500 of them are train problems and 500 are test. The example of time series
segment for walking and corresponding symbolic regression model are shown on figure [4]
Mean error and mean inference speed of symbolic regression and proposed approach on
test data is shown in table [3] The proposed approach significantly lowers inference type
without damaging quality of the model. This is desirable pattern and proves the correctness

of our method.

—— Symbolic regression .
061 . Dpata .
0.4
o
c
i)
©
2 0.2
()]
O
O
<
0.0
-0.21 : , . . ;
0 20 40 60 80 100
Timestamp

Figure 4: Example of time series segment

Table 3: Results comparison on accelerometer dataset

MSE | Inference speed, sec.
Symbolic regression | 0.052 5.12
Meta model 0.054 0.23
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Daily foreign exchange rates. The dataset |20] contains time series of exchange rate
between USD and foreign currency for the period from 31 December 1979 to 31 December
1998. The time series contain 4770 data points. Using algorithm 6 we generate m = 1000
time series segments of length n = 100. The size of the training set and test set is 900
and 100 accordingly. The example of the time series segment and corresponding symbolic
regression model are shown on figure [5]

Mean squared error and mean inference speed of two approaches are shown in the table
The proposed meta learning method provides 20x speedup of inference type in comparison
with symbolic regression approach. Moreover, the models from meta model are marginally

worse than those, obtained with symbolic regression.

1.85]

—— Symbolic regression o o
« Data . o O

1.80 1

=
-
ul

=
~
o

Exchange rate

=
o))
o

0 20 40 60 80 100
Day

Figure 5: Example of time series segment

Table 4: Results comparison on exchange dataset

MSE | Inference speed, sec.
Symbolic regression | 0.012 6.02
Meta model 0.014 0.28
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Stock prices. The dataset [21]| contains time series of IBM common stock closing prices
for the period from 2 Jan 1962 to 31 Dec 1965. The time series contain 1008 data points.
Using algorithm 6 we generate m = 500 time series segments of length n = 100. The size
of the training set and test set is 400 and 100 accordingly. The example of the time series
segment and corresponding symbolic regression model are shown on figure [6]

Comparison of the two approaches on the stock data is shown in[p] The speedup and the
performance of the proposed method is very similar to the result on the exchange dataset.

Meta learning approach gives great speedup without big sacrifice in a quality of the models.

4801
—— Symbolic regression R

4704 < Data

460 -

& B
B Ul
o o

S
w
o

Stock price

420 -

410 -

400 + .

0 20 40 60 80 100
Day

Figure 6: Example of time series segment

Table 5: Results comparison on stock price dataset

MSE | Inference speed, sec.

Symbolic regression | 3.13 6.34
Meta model 3.22 0.31

4.3. Discussion

Our experiments show that meta learning approach for generating symbolic regression models
indeed works. In nonparametric case its predictions are mostly accurate. Dynamic program-

ming paradigm to tree recovery outperforms greedy strategy in terms of quality of models.
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Nonetheless greedy strategy can be more useful in applications, because the speed of model
generation is much greater. Experiments on parametric data show that parameters allow
proposed method to recover good model, even if the structure was wrongly predicted. This
implies that introducing parameters improves method’s robustness and allow it to approxi-
mate real data. In the experiment on the real datasets, the speed of building models using
proposed method is significantly greater that that of symbolic regression. Meta learning
approach is thus suitable for applications where the speed of building interpretable models

is of high importance.

Future work. Proposed method has several shortcomings which will be addressed in future
work. First, it is important to expand the method to multi dimensional case. Second, we
hope to make the approach work on data without order. Both these points require different
approach to encoding of the base problem, which is efficient and is not dependant on the
order of objects in the data. The other goal which we have for future work is to make the
method work end-to-end, i.e. build differentiable mapping from the space of base problems

to the space of valid model trees.
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5. CONCLUSION

This study is dedicated to generating models in a form of mathematical expressions. We pro-
pose meta learning approach to automate this process and avoid costly symbolic regression.
The meta learning problem is posed as prediction of the tree structure of the model. The
meta learning dataset are pairs of base problems and corresponding models. The two-staged
algorithm for predicting tree structure was proposed. We proposed several variations of tree
recovery. Parametric and nonparametric cases were described.

The computational experiment was conducted on synthetic and real data. The experi-
ments on synthetic data proved the ability of the meta learning approach to find good models
for unseen data. Experiment on real time series of accelerometer and financial data showed

effectiveness of the proposed approach in comparison with symbolic regression.
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