Исследование способов оценки качества тематических моделей на банковских транзакциях

Василий Алексеев

МФТИ, ИАД Отчёт по НИР

Осень 2018

Содержание

- 1 Задача
- 2 Модели
 - Тематическая
 - Иерархическая + тематическая
 - Тематическая наоборот
 - Кластеризация графов активностей
- 3 Результать

С чем работаем: примеры транзакций

	client_id_way4	cardnumber	trans_date	amount_rur	trans_crncy
0	158860021	77090664	2014-01-01	-50.0	RUR
1	65191298	193075454	2014-01-01	-50.0	RUR
2	68478688	169746069	2014-01-01	-2000.0	RUR

- client_id_way4 идентификатор пользователя
- cardnumber номер карты
- trans_date дата проведения транзакции
- amount_rur сумма транзакции
- trans_crncy валюта

Постановка задачи

- U множество пользователей (Users)
- ullet $V\subset\mathbb{R}$ денежные суммы (Values)
- C множество МСС кодов (Codes)
- $A \subseteq V \times C$ виды покупательской активности (Actions)
- *M* моменты времени (Moments)
- ullet $H(u)\subseteq M imes A$ история покупательской активности $u\in U$
- ullet H(u)
 ightarrow h = (m, v, c) транзакция

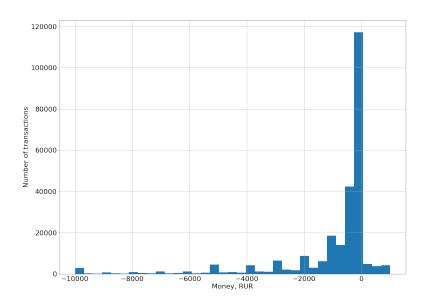
Считаем, что $\exists \mathcal{T}-$ множество покупательских профилей, $|\mathcal{T}|\ll |U|-$ и отображение $f^*\colon U\to 2^\mathcal{T}$, такие что

- $|f^*(u)| \ll |\mathcal{T}| \ \forall u \in U$
- $|f^{*-1}(t)| \ll |U| \ \forall t \in \mathcal{T}$
- ullet $f^*(u_i)\cap f^*(u_j)
 eqarnothing$ \Leftrightarrow пользователи u_i и u_j похожи

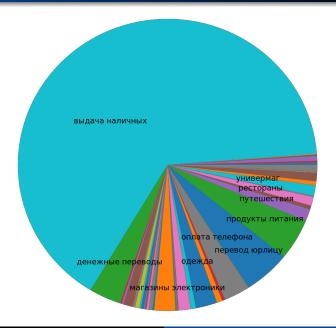
ДНК

Дано

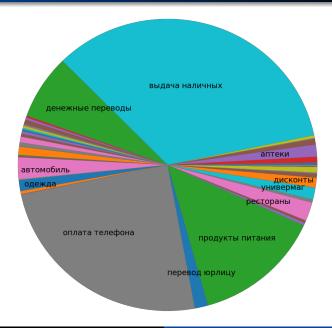
- пользователи *U*
- истории их покупок $H(u) \ \forall u \in U$

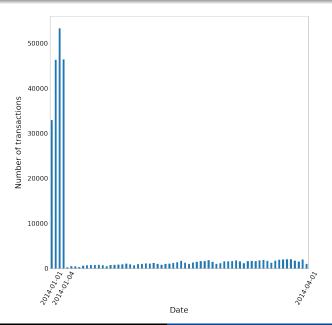

Найти

- ullet интерпретируемое множество профилей ${\mathcal T}$
- ullet соответствующую функцию $f^*\colon U o 2^{\mathcal T}$


Данные

- 92682 пользователей
- 300000 транзакций
- 77 категорий МСС кодов, 244 МСС кодов
- разные валюты: 200000 транзакций в рублях, ...
- деньги могут тратиться/начисляться
- 50000 из 300000 транзакций с невалидными МСС кодами и валютами
- временной интервал 4 месяца: от января до апреля 2014 года


Данные. Распределение трат пользователей


Данные. Потраченные деньги по МСС категориям

Данные. Количество транзакций по МСС категориям

Данные. Транзакции по дням

Содержание

- Задача
- Модели
 - Тематическая
 - Иерархическая + тематическая
 - Тематическая наоборот
 - Кластеризация графов активностей
- 3 Результать

Тематическая модель

Аналогия с тематическим моделированием

- ullet Документ история транзакций пользователя $H(U) \leftrightarrow D$
- ullet Слова возможные действия внутри транзакции $A \leftrightarrow W$
- $p(a \mid u) = \sum_{t \in T} p(a \mid t)p(t \mid u)$
- $\Phi \equiv \big(p(a \mid t) \big)_{A \times T} \Theta \equiv \big(p(t \mid u) \big)_{T \times U}$

Ho

 $|A|=|\,\mathbb{R} imes C|=|\,\mathbb{R}\,|$, поэтому для того, чтобы использовать тематические модели, надо будет перейти от A к \widetilde{A} , $|\widetilde{A}|<\infty$

Модальности

$\widetilde{A} = C$

- ullet Сколько раз c_i встречается в истории H(u)
- ullet Суммарные траты по c_i для u

$\widetilde{A} = C \times C$

Совстречаемости c_i, c_i в окне

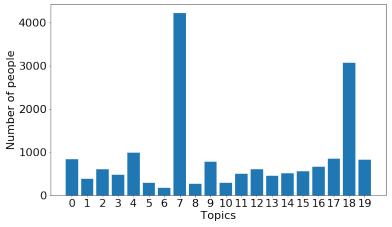
- ullet по времени: $|t_i-t_j|$
- ullet по числу транзакций: $ig|ig\{(t,m,c)\in H(u):t\in [t_i,t_j]ig\}ig|$

$\widetilde{A} = \widetilde{V} \times C$

Категории трат $\widetilde{V} \leftarrow V \subset \mathbb{R}$, $|\widetilde{V}| < \infty$ по

- всем транзакциям всех пользователей
- ullet транзакциям с данным c_i всех пользователей
- всем транзакциям данного пользователя

Модальность: количество c_i


Примеры тем (по количеству МСС категорий)

- книги, жкх, путешествия
- дом, путешествия, активный отдых
- дети, аптеки, загородный дом

Примеры тем (по количеству МСС кодов)

- продукты питания, дом, кинотеатры
- интернет-продажи, ремонт
 25% молодых, 60% средних лет, 15% пожилых
- аптеки, косметология, ветеринары и зоотовары 15% молодых, 25% средних лет, 60% пожилых

Модальность: количество c_i (МСС категория)

 $topic_7$ = "денежные переводы"; $topic_{18}$ = "продукты питания"

Модальность: суммарные траты по c_i

Примеры тем (при учёте знака при числе траты)

- автомобиль (-), азартные игры (+), авиа (+)
- дом (-), ремонт (-), ночные клубы (-)

Примеры тем (при учёте валюты)

- одежда (RUR), авиа (RUR), дьютифри (RUR), путешествия (SEK), универмаги (EUR)
- косметология (RUR), одежда (RUR), интернет продажи (EUR), услуги интернета (RUR), b2b магазины (RUR)
 65% молодых, 30% средних лет, 5% пожилых
- продукты питания (RUR), ресторары (RUR), косметология (RUR), цветочные магазины (RUR) 45% жен, 55% муж
- дом (RUR), путешествия (THB), путешествия (TRY), одежд (THB), косметология (THB)

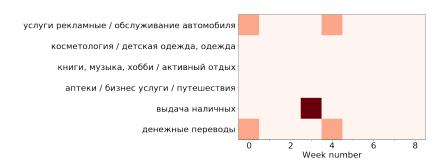
Модальность: совстречаемости c_i, c_j

Примеры тем (окно в 5 транзакций)

- алкоголь/рестораны, универмаги/одежда, одежда/дом
- рестораны/ночные клубы, ночные клубы/рестораны

Примеры тем (окно в 1 день)

 универмаги/дисконты, рестораны/косметология, автомобиль/косметика
 60% муж, 40% жен

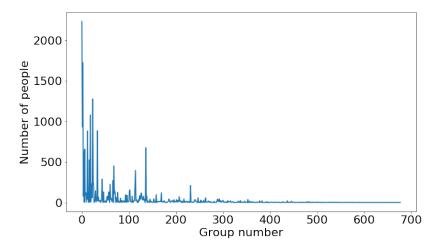

Модальность: категории трат

Примеры тем (тратам на u_i)

- видеоигры (medium), активный отдых (medium), видеоигры (low), одежда (medium), путешествия (high) 20% молодых, 65% средних лет, 15% пожилых
- услуги рекламные (low), книги и хобби (low), азартные игры (low), книги (medium), азартные игры (relatively-high)
 5% молодых, 35% средних лет, 60% пожилых
- аптеки (medium), рестораны (relatively-high), продукты питания (relatively-high), услуги рекламные (medium), аптеки (high)
 10% молодых, 25% средних лет, 65% пожилых

Изменение профилей пользователей со временем

- Обучение на данных без выделенной группы пользователей
- Разбиение временного интервала по неделям
- Построение Θ для этих пользователей



Иерархическая + тематическая

- $u \mapsto \mathbf{v} = \mathbf{counts}_c \odot \mathbf{money}_c$
- 2 топ-компоненты \boldsymbol{v} образуют имя группы
- Объединяем *и* с одинаковыми топ-компонентами *v*
- Внутри каждой группы тематическое моделирование

Иерархическая по МСС категориям

- 700 групп, 90-ая персентиль 40 человек в группе
- Оставляем 10% самых населённых. Медиана 100 человек
- В каждой группе тематическая модель на 4 темах

Примеры групп

- книги и хобби / автомобиль
 - автобобиль (топливо), автобобиль (запчасти)
- одежда / рестораны
 - закусочные и рестораны, семейная одежда, аксессуары
 - мужская и женская одежда, закусочные и рестораны
- кинотеатры, театры, цирки / рестораны
 - фаст фуд, кино, театры
 - закусочные и рестораны, кино
- косметология / одежда
 - косметология, аксессуары
 - мужская и женская одежда, продуктовые магазины
 - магазины семеной одежды, денежные переводы

Тематическая наоборот

Идея

По транзакции понять, какой пользователь мог её совершить

$$p(u \mid c) = \sum_{t'} p(u \mid t') p(t' \mid c)$$

$$\Phi' = (p(u \mid t')), \Theta' = (p(t' \mid c))$$

Тематическая наоборот. Переход $\Phi', \, \Theta' \to \Phi, \, \Theta$

$$p(c \mid u) = \frac{p(u \mid c)p(c)}{\sum_{c} p(u \mid c)p(c)}$$

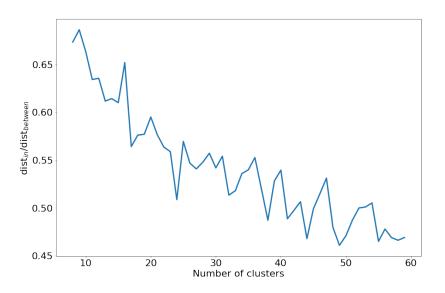
p(c) — частотная оценка по транзакциям пользователей

$$\begin{cases} \theta_{tu} = p(t \mid u) = \frac{p(u \mid t)p(t)}{\sum_{t} p(u \mid t)p(t)} = \frac{\varphi'_{ut}p(t)}{\sum_{t} \varphi'_{ut}p(t)} \\ p(t) = \sum_{c} p(t \mid c)p(c) = \sum_{c} \theta'_{tc}p(c) \end{cases}$$
$$\varphi_{ct} = p(c \mid t) = \frac{p(t \mid c)p(c)}{\sum_{t} p(t \mid c)p(c)} = \frac{\theta'_{tc}p(c)}{\sum_{t} \theta'_{t}p(c)}$$

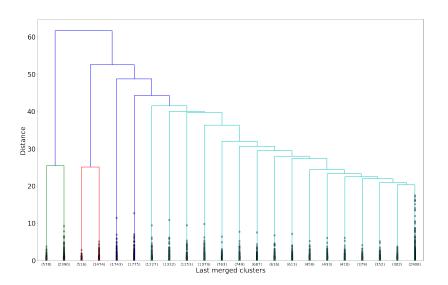
Примеры тем

- автомобиль, ресторан, алгкогольный магазин, универмаг, книги и хобби
- бизнес услуги, авиа, услуги страхования
- b2b магазины, знакомства
 10% молодых, 20% средних лет, 70% пожилые

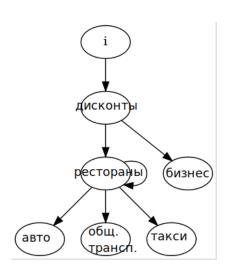
Кластеризация графов активностей


Взвешенный орграф пользовательской активности $g \in \mathcal{G}$

$$u \mapsto g \in G$$


- root фиктивная вершина, из которой начинаются переходы в случае долгого бездействия пользователя и
- $\bullet \ E = \{(root, c_i) \mid c_i \in C\} \cup \{(c_i, c_j) \mid c_i, \ c_j \in C\}$
- $w(c_i, c_j)$ $\propto \# \left(i : \begin{cases} c(h_i) = c_i, \ c(h_{i+1}) = c_j \\ |t(h_i) t(h_{i+1})| \leqslant \text{threshold} \end{cases} \right)$
- $w(root, c_i) \propto \# \left(i : \begin{cases} c(h_i) = c_i \\ |t(h_i) t(h_{i-1})| > \text{threshold} \end{cases} \right)$

$$g \rightarrow \mathbf{v} = \mathbf{w}_e$$


Кластеризация орграфов пользователей. KMeans

Кластеризация орграфов пользователей. Иерархическая

Пример графа

Содержание

- 1 Задача
- 2 Модели
 - Тематическая
 - Иерархическая + тематическая
 - Тематическая наоборот
 - Кластеризация графов активностей
- Отражения предоставляющий предоставляющий

Результаты

- Модальности
- Темы
- Функция качества
- Визуализация