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Topic modeling

Topic modeling an algorithmic tool that help us organize, search and
understand vast amount of information.
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Applications

Exploratory search

Clustering

Recomendation systems

>
>

» Creating annotations

>

> Looking for similar documents in a huge collection
>



Probabilistic Topic Modeling
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Probabilistic Topic Modeling

Consider a set of documents D, dictionary W. Each document d consists
of some words w € W.

» There's a set of latent topics T. Each t € T is a distribution over W:
Pwt = p(w|t)
» Each document d € D has specific distribution over T: 6.4 = p(t|d).

» Bag of words assumption: order of words in d doesn’'t matter.
Words in d are i.i.d. from p(w|d)
» Conditional independence assumption: p(w|d, t) = p(w|t).
> Law of total probability: p(w|d) = >, p(w|t) p(t|d)
~——

——
Pwt (2%
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N = (ngy)wxp — matrix of counts of words in documents
F

= (Ngw/ng) wx p — normalized matrix of counts; ng = >, Naw-

RWXT

Cut)wxT =P € — topic-specific distribution over words.
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Maximization of log-likelihood:

p(N|®,0) H H Z Owtbra) "™ — max

0:d)Txp = © € RT*P — document-specific distribution over topics.
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N = (ngy)wxp — matrix of counts of words in documents
F = (ngw/ng) wxp — normalized matrix of counts; ng = >, Naw-
Owt)wx T = ® € RW*T — topic-specific distribution over words.
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Maximization of log-likelihood:

p(N|®,0) H H Z Owtbra) "™ — max
log p(N|®, O) Z Z Ngw log Z Pwitbrd — max

0:d)Txp = © € RT*P — document-specific distribution over topics.
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ARTM

= (Ngw) wx p — matrix of counts of words in documents

m =

= (Ngw/ng) wx p — normalized matrix of counts; ng = >, Naw-

>
>
> (pu)wxT = ® € RWXT — topic-specific distribution over words.
| 3
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Maximization of log-likelihood:

p(N|®,0) H H Z Owtbra) "™ — max
log p(N|®, O) Z Z Ngw log Z Pwitbrd — max

log p(N|®, ©) ;ndKL (Fq|| (20)q) — max

0:d)Txp = © € RT*P — document-specific distribution over topics.
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ARTM

Non-negative matrix factorization: F~ $0O:

L(D,0) =log p(N|®,0) — max

L(®,0) ==Y ngKL(F4]|(26)q)
d

lll-posed problem: F= 0 = (5)(571)0)
Prior on &, 0:
p(®,O]7) x exp(Y_ TiRi(®,©))

p(N,®@,0|1) = p(N|®,0)p(®,0|T) — rgag
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ARTM

Regularized non-negative matrix factorization: F~ ¢0:

L(®,0) + R(®,0) — max
—— —— $,0
log-likelihood  regularization

L(®,0) anKL Fal (20)a)
0) = ZT,-R,-(@,@)

Ri(®,0) — any differentiable regularization function
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ARTM — regularizers

We can use R(®, O) to:
» Make model better (easy to interpret, coherent topics)

> Smoothing/sparsing (LDA)
R=73 > Butlogpuwt+ > > arlogbu

teTweW deDteT

» Decorellation: R= -7 3= > Qusous
teTse T\t weW

Add soft restrictions to the model
> Semi-supervised regularizer

R= 3 3 PBulogow+ > > aulogbi

teTo weWs deDg te Ty

v

v

Add new information to the model
» Author-topic models

v

Make the model specified for solving specific problem

> Topic models with time
» Topic models for classification

10/27



ARTM — advantages

» Really easy to infer new models
» There is an iterative algorithm for any differentiable R(®, ©) based
on fixed-point iteration method for stationarity conditions

» You can combine any amount of regularizers in one model
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ARTM — problems

How to fit hyperparamters (regularization coefficients 7)?

Current approach: heuristic, manual fitting.
How to fit them automatically is an open problem

» Too many parameters for grid-search

» We don't know what to optimize
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Maximum-evidence approach

p(N|T) = /P(Nl‘b,@)p(‘b, O|7)dPdO — max
Or, if we denote (®,0) as z, and N as x
plxir) = [ plx(z)plzir)dz = Brplxz) — max

We'll use variational infference to optimize it.



Variational inference

Recall our probabilistic model:

p(xlz) = p(N|®,0) = [TTID_ puebea)™
d w t

plzlT) = p(®, 0]7) x exp(3_ TR(®, 0))
We introduce some family of distributions g(z|A) = p(z|x)

_ ) log P ET)
log p(x|7) = F(A,7) = / alzix)log 2 20

(2lA)
= Eq, log p(x|2) — Eq, log Zgjig —log Z(1) — max

s

F (A, 7) — ELBO (evidence lower-bound)
Variational inference can be used to optimize evidence over
hyperparamters of the model.



Reparametrization trick

Stochastic optimization problem:

z~p(2)

E, (z,A) — max

VAE.f(z, A) =2

1 m
VaEAzA) = E.Vaflz,\) ~ — > Vaflzi A)
i=1

We can use stochastic gradient descent
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Reparametrization trick

What if probability p(z) depends on A?
z~ p(z|A) = pa(2)

E,, flz) — max

V)\IEzf(Z) —7
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Reparametrization trick

Let's assume that if z~ g(z|A) = g,
= g(e, A), where ¢ ~ qq

VaEq, (2) = Eq Vaflgle, N)) NvaA glen A

Example:

ZNN(”HE); A= (X))
gle,A) = p+ 3% e~ N(0,])
Vg, flz) = Eq, fln+ 21/25)

Estimation has low variance.



Gradients of ELBO

Reparametrization trick for g(z|\):

z=g(e,A); €~ qo

B B q(zlA)
F(A, 1) =Eq4, logp(x|z) — Eg, log o(z]) log Z(T)
oOF
ox — La Valog p(xlgle, A)) — Eq, Valog g(gle, A)[A)
+ g, Va log p(g(e, A)|T)

oF .
o = Eq, V- log p(g(e, A)|T) — Eq, V- log Z(T)

(1)
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Algorithm

Algorithm 1 Sketch

Data: Flow of data x; learning rate
Result: A\, T
initialize A and T
repeat
x < {Get mini-batch}
Sample € < qq
Compute stochastic estimations of g—f and g—f according to (1)
T=T— K5 // or any other stochastic-gradient-kind
A=A— ng—f // optimization algorithm, e.g. AdaGrad
until convergence
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Logistic-normal distribution

e~N(p,X); z=Pe) = z~PN(u, X)),

— C— _eela) ;
where P(x) =z = z; = S exp(x) softmax function
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Logistic-normal distribution — Properties

Distribution over simplex S, = {x: x; > 0;> . x; = 1};
Similar to Dirichilet, but never exactly the same;
Although can be approximated with Dirichilet with large «
No analytical solution for mode/mean /variance.

We can write down component-wise median: P(u)

vV v.v. v v Yy

Easy to sample from
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Reparametrization of q

z=g(e,\) = P(diag(e)e + n); €~ N(0,I)
z~ P(N(p, diag(c)))

where X denotes (u, o).
Individual vector of parameters p and o for each column of ® and ©

g

log g(g(e, A)) = log qo(e) + log ae‘ —log qo(e) + Y _(log ¢+ log o)
k
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Recall gradients of ELBO

=g(e,N); e~ N(0,1)

OF N
N Eq, Valog p(x]2) — Eq, Valog g(2|\) + Eq4, Va log p(2|7)
OF N
o = Eq, V- logp(2|T) — Eq, V1 log Z(T)

> log p(x|z) — log-likelihood of our model

log p(z|7) = >, 7iRi(z) — regularization term.
Eq,Valogq(z|A) = Eq, VY, (log zx + log i) + const
Valogp(zT) =3, TiVARi(Z)

Eq,Vrlog p(z|T) = Eq, R(2)

Vrlog Z() = Ep(zr)R(2)

vV v v v Y

(2)

23 /27



How to optimize with Z(7) unknown?

V:logZ(t) = ]Ep(z|7') R(2)

We need samples from p(z|T)
» Contrastive divergence
> After sampling z; ~ g do a few iterations of MCMC (starting from
z;) to obtain samples from p(z|T).
» Importance sampling
> 2(7) = By 2253

q0(2)
_ _1 R(2)p(z|T)
> Epar)R(2) = zim) Bao q:(z)T

> We use the same samples z; ~ gy to estimate Z(7) and g,

q0(2)

R(2)p(z|T)
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Review

Our algorithm
» Our algorithm is scalable on data size

» Time of each iteration on one batch of D docs with N total words is
O(N+ TD+ TW) (no DW term)

» ..or O(N+ T?>D+ TW) with decorrelation

> Returns both fitted regularization coeffitients 7 and
matri whole distribution over (®,0).

> Coefficients 7 and distributions (®, ©) are fitted simultaneously as
long as algorithms iterates over data (over batches)
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Questions still not answered

» What to do with that distribuition (what is the final answer)

> Sample from it (probably multiple times)
» Return median P(u)
> Compute mode argmaxg o q(®, O|\)

> Is maximum-evidence approach really going to work in this scenario?

» How to organize online-learning process carefully?
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Thank you for your attention!



