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Abstract

The electron plasma density, 𝑛𝑒, is a fundamental parameter of plasma, a critical param-
eter for wave particle simulations and key to understanding the role of plasma waves in
the formation and decay of the Earth’s radiation belts. It is a crucial parameter that
is required for the prediction of the evolution of the space environment and is also im-
portant for the analysis of satellite anomalies that have occurred in the past. In August
2012 NASA (The National Aeronautics and Space Administration) launched two iden-
tical spacecraft, namely the Van Allen probes, to provide the most detailed picture of
the Earth’s radiation belts ever seen. The information collected from these probes allows
better protection of satellites and understanding of how space weather affects communi-
cations and technology on Earth.

There are numerous existing techniques to measure electron plasma density either
directly or indirectly. Determining the electron density from intense upper-hybrid band
emissions is considered to be the most reliable passive technique. The Electric and Mag-
netic Field Instrument Suite and Integrated Science (EMFISIS) on board the Van Allen
Probes mission makes routine electric field measurements in the frequency range of 10
to 487 kHz in order to identify the frequency of the upper hybrid resonance band, thus
providing an accurate estimation of the electron density. In previous missions, the plasma
resonance bands were manually identified, and there have been few attempts to do robust,
routine automated detection.

This thesis presents an algorithm for automatic inference of the electron number den-
sity from plasma wave measurement made onboard the Van Allen Probes mission. It
accomplishes this by using feedforward neural networks to infer upper hybrid resonance
frequency 𝑓𝑢ℎ𝑟, used then to determine the electron number density. The design and imple-
mentation of the algorithm are described, as well as the results of the inference. The com-
parison with the Automated Upper-hybrid Resonance Detection Algorithm (AURA) [1]
is also presented.
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Chapter 1

Introduction

1.1 Objectives and Motivation

The goal of this research is to design an algorithm for automatic determination of the

electron number density from plasma wave measurement made onboard the Van Allen

Probes mission. This NASA mission is a part of the Living With a Star program and

it aims to provide the most detailed picture of the Earth’s radiation belts ever seen

[8]. The radiation belts are donut-shaped belts around the Earth that consist of very

highly energised particles. Amounts of radiation in these belts can be very damaging to

anything exposed to it (satellites, etc.). The information collected from the Van Allen

probes allows better protection of satellites and understanding of how space weather

affects communications and technology on Earth.

Electron density (plasma density) is the fundamental parameter of plasma that is

required for the prediction of the evolution of the space environment and is also important

for the analysis of satellite anomalies that have occurred in the past. In all previous

missions, it was identified manually, and this is a very hard and time-consuming process

that soon will be impossible to handle due to the growth of available data. That is why

the possibility to obtain plasma densities values automatically is essential for many future

simulations of the Earth surroundings.

1.2 Outline

The rest of this thesis is organized as follows. In Chapter 2 we present the background

material about the Van Allen Probes mission, plasma density, technique employed in this
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work to derive electron densities and the Automated Upper-hybrid Resonance Detection

Algorithm (AURA). In Chapter 3 we describe neural networks apparatus used to solve

the problem at hand. Chapter 4 contains a thorough description of the data obtained

from the spacecraft and used in this work. Chapter 5 describes the methodology and

the workflow of neural network design and implementation. Finally, we present results

of the computational experiments in Chapter 6 and conclude and discuss further work in

Chapter 7.

6



Chapter 2

Relevant Research

2.1 Plasma Density

This section gives the basic definitions and background required for understanding what

plasma density is and why this parameters is so important for the scientific community.

2.1.1 Basic Definitions

Plasma. Plasma is one of the four fundamental states of matter, the others being solid,

liquid, and gas. A plasma has properties unlike those of the other states. Plasma is a

partially ionized gas containing an equal number of positive and negative charges, as well

as some other number of none ionized gas particles [4].

Electrical conductivity of plasma. The presence of a significant number of charge

carriers makes plasma electrically conductive so that it responds strongly to electromag-

netic fields. Like gas, plasma does not have a definite shape or a definite volume unless

enclosed in a container. Unlike gas, under the influence of a magnetic field, it may form

structures such as filaments, beams and double layers [4].

Plasma density. The term "plasma density" by itself usually refers to the "electron

density", that is, the number of free electrons per unit volume. The electron density is

how many free (not bound to an atom) electrons there are in a given volume. Since all

plasmas have some degree of ionization, this means that there are electrons that have

been stripped from atoms, and are moving around, while the atoms are converted into

ions [4].

Plasma density units. In plasma physics, choice of units can depend on the size

of the plasma, or simply preference. Typically scientists and engineers use electrons per
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𝑐𝑚3 or electrons per 𝑚3. In the literature, the electron density is written as a number

followed by 𝑐𝑚−3 or 𝑚−3. The choice of 𝑐𝑚3 or 𝑚3 stems from using either CGS units or

MKS units. It often depends on the length and volume scales that apply to the situation.

So, for laboratory-sized plasmas, 𝑐𝑚3 are often used, while for things like inter-stellar or

inter-galactic medium, 𝑚3 makes more sense.

2.1.2 Application to Wave Particle Simulations

The electron plasma density, 𝑛𝑒, is a fundamental parameter of plasma, a critical param-

eter for wave particle simulations and key to understanding the role of plasma waves in

the formation and decay of the Earth’s radiation belts. It is a crucial parameter that is

required for the prediction of the evolution of the space environment and is also important

for the analysis of satellite anomalies that have occurred in the past.

The following list describes several important applications of plasma density:

• Plasma density is particularly important in deposition processing and etching pro-

cess since rate of etching and deposition rates are function of plasma density [5];

• Other processing parameters like uniformity, number of radicals and processing time

depend on plasma density [6];

• Variation in plasma density can provide notification about instabilities in plasma

due to pressure disturbance and unstable input power [5];

• Ion density and other plasma parameter like Debye length, plasma frequency, and

dielectric property of plasma can be measured from electron density [7].

2.2 The Van Allen Probes Mission

2.2.1 Mission Brief Overview and Science Objectives

On August 30, 2012 NASA launched the Van Allen Probes (formerly known as the Radi-

ation Belt Storm Probes (RBSP)) spacecraft to provide the most detailed picture of Van

Allen radiation belts ever seen [2], [8].

The Van Allen radiation belts were discovered in 1958 and are two (and sometimes

more) giant swaths of radiation in the near-Earth space environment. They are comprised

of high-energy ion and electrons that are trapped on Earth encircling orbits as a result of
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the dipolar structure of the Earth’s intrinsic magnetic field. The inner belt is fairly stable,

but the outer belt swells and shrinks with solar activity. When the outer belt swells, this

region of dangerous radiation expands to include the orbits of the International Space

Station and many other satellites. Space weather can disrupt satellites, cause power grid

failures and disrupt GPS communications.

Scientists know that the belts shrink and swell in response to incoming energy from

the sun, but they do not know exactly how. The Van Allen Probes, the second mission in

NASA’s Living With a Star program, helps scientists to understand that. The mission’s

general objectives are to [2], [8]:

• Discover which processes (singly or in combination) accelerate and transport the

particles in the radiation belt, and under what conditions;

• Understand and quantify the loss of electrons from the radiation belts;

• Determine the balance between the processes that cause electron acceleration and

those that cause losses;

• Understand how the radiation belts change in the context of geomagnetic storms.

The Van Allen Probes takes its place as part of a fleet of spacecraft that may someday

help predict space weather before it even impacts Earth’s surroundings [9].

2.2.2 Spacecraft Brief Overview

The Van Allen Probes mission consists of two identical spacecraft designed and built at

the Johns Hopkins University Applied Physics Laboratory (JHU/APL) [2].

These two spacecraft fly in nearly identical eccentric orbits that cover almost the

entire radiation belt region. The spacecraft orbits have apogee altitudes between 30,050

kilometers and 31,250 km, perigee altitudes between 500 km and 675 km, and inclination

of 10 degrees from the equator (see Figure 2-1) [2].

Both spacecraft have nine-hour orbital periods. The orbits are designed to allow one

observatory to lap the other approximately every 75 days. Apogees that differ slightly

(by approximately 100 km) allow for simultaneous measurements to be taken over the

full range of observatory separation distances during the course of the mission. Thus,

scientists can, for the first time, measure changes in the radiation belts over both space

and time.
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Figure 2-1: Spacecraft orbits [2].

Several facts about spacecraft are given below [2].

Dimensions. Each satellite main body is approximately 1.8 m across by 1.3 m tall

(the spacecraft span with EFW instrument wire booms fully deployed is 101.7 m, tip to

tip, and the spacecraft height with EFW instrument axial booms deployed is 12 m, tip to

tip).

Mass. The total mass of each spacecraft at launch is 647.6 kilograms for spacecraft

A and 666.6 kg for spacecraft B; which includes spacecraft systems with mass of 444 kg

on spacecraft A and 463 kg on spacecraft B; instruments with mass of 129.6 kg on each

spacecraft and fuel with mass of 56 kg onboard each spacecraft. Spacecraft B has more

mass because it carries more mechanical systems and pieces related to attachment to and

separation from both the launch vehicle and spacecraft A. Apart from those differences,

the design of the two spacecraft is identical.

Ground Stations. Twin satellites communicate with Earth using three ground sta-

tions. The primary ground station is the 18-meter satellite dish at the Johns Hopkins

University Applied Physics Laboratory in Laurel, Md. The two other ground stations are

part of the Universal Space Network (USN) and are 13-meter dishes located at different

points on the globe (Hawaii and Australia) to maximize coverage.

Power. The spacecraft battery provides enough power for full science operations

during times when the spacecraft are in Earth’s shadow and sunlight cannot reach their

solar panels. The daily eclipse times vary throughout the mission, depending on when

the spacecraft launch, though the longest eclipse period is 115 minutes.

Instruments. Each RBSP spacecraft carries an identical set of five instrument suites

(Figure 2-2):

• The Energetic Particle, Composition, and Thermal Plasma Suite (ECT);

• The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFI-

SIS);
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• The Electric Field and Waves Suite (EFW);

• The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE);

• The Relativistic Proton Spectrometer (RPS).

Figure 2-2: The Van Allen Probes spacecraft and instruments; instruments are in identical
locations on both spacecraft [3].

In this thesis, data measurements from the EMFISIS instrumentation suite will be

considered. The specifics of its design are presented next.

2.2.3 The Electric and Magnetic Field Instrument Suite and In-

tegrated Science (EMFISIS) Instrumentation Suite

Science Objectives. The Electric and Magnetic Field Instrument Suite and Integrated

Science (EMFISIS) focuses on the important role played by magnetic fields and plasma

waves in the processes of radiation belt particle acceleration and loss [10]. It provides

the essential plasma wave measurements of magnetic and electric fields to understand

the physics of the interactions between the waves and charged particles that are respon-

sible for acceleration, transport and loss of radiation belt particles. Additionally, the

EMFISIS measurements of steady or slowly varying magnetic fields will provide infor-

mation on much lower frequency phenomena such as the variations in the ring current

that encircles Earth, and ultra-low frequency waves which transport particles. These field
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measurements, combined with excellent coverage of particle measurements from other in-

struments and investigations, are revealing the clearest picture ever obtained of radiation

belt physics [2].

Design Details. The EMFISIS instrumentation suite measurements of DC magnetic

fields and a set of wave electric and magnetic field 3D measurements covering the frequency

range from 10 Hz up to 12 kHz (and up to 500 kHz).

The need to measure wave properties across the relevant frequency ranges and to

measure the DC magnetic field both for background field determination as well as to

measure very low frequency waves drives the design to measure 3D vector quantities.

For waves between 10 Hz and 12 kHz, EMFISIS makes 3D measurements of both the

electric and the magnetic field. Below 10 Hz, EMFISIS measures only the magnetic field.

However, this measurement can be combined with the 3D EFW electric field data to

have a full set of electromagnetic vector quantities. Above 12 kHz, only a single electric

component is measured from 10 to 500 kHz with decreasing response above 400 kHz due

to frequency roll-off in the EFW signals.

The highest frequency for the EMFISIS 3D wave measurements is set by the desire

to fully measure both lower and upper band whistler-mode chorus1. This sets the upper

frequency response at 12 kHz. The desire to measure the upper hybrid line2 and the

intensity of electron cyclotron harmonics drives the requirement to measure the electric

field up to at least 400 kHz. A single electric field component is sufficient to satisfy this.

Any of the three EFW dipole pairs can be used for the high frequencies, but it is expected

that one of the spin-plane dipoles will provide the best sensitivity and lowest noise. The

high frequency receiver is designed to measure up to 500 kHz, but the signal provided by

EFW rolls off, significantly, above 400 kHz [13].

Suite Overview. EMFISIS comprises two sensors: a tri-axial fluxgate magnetometer

(MAG) and a tri-axial AC magnetic search coil magnetometer (MSC). MAG consists

of three sensors to measure the background steady or slowly varying magnetic fields

and ultra-low frequency waves, and MSC senses quickly varying wave magnetic fields.

Additionally, to measure wave electric fields, the Waves instrument uses signals from the
1Whistler mode waves are right-hand circularly polarized electromagnetic waves propagating at fre-

quencies less than the local gyrofrequency (the frequency at which non-relativistic charged particles circle
the magnetic field) [11].

2In plasma physics, an upper hybrid oscillation is a mode of oscillation of a magnetized plasma. It
consists of a longitudinal motion of the electrons perpendicular to the magnetic field.

The frequency of long wavelength oscillations is a "hybrid", or mix, of the electron plasma and electron
cyclotron frequencies, 𝜔2 = 𝜔2

𝑝𝑒 + 𝜔2
𝑐𝑒 [12]. It is a higher frequency than either because the additional

restoring force leads to a higher oscillation frequency.
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EFW (AC electric fields) experiment and a tri-axial search coil magnetometer. Signals

from these sensors are detected with receivers in a Main Electronics Box (MEB), which

collects and processes all of the measurements. More specifically, the Main Electronics

Box consists of [2], [13]:

• The Low Voltage Power Supply – converts primary spacecraft power to voltages

used by the rest of the suite;

• The Central Data Processing Unit – controls the suite and handles data transfer to

and from the central spacecraft systems;

• The Waves component (four boards):

– two FFT engine boards;

– the AC electric field receiver;

– the AC magnetic field receiver;

• The MAG drive, sampling, and heater control board.

The specification of the MAG and the Waves instruments will be reviewed more thor-

oughly next, since the data from these instruments are exploited in this work.

2.2.4 The Fluxgate Magnetometer (MAG)

The EMFISIS Magnetometer is a wide-range, high performance triaxial fluxgate magne-

tometer system. Its signal processing, analog to digital converter (A/D) and interface

electronics are implemented in a single electronics card that is protected by the Main

Electronics Box of the Van Allen Probes Spacecraft. The Magnetometer’s Flux Gate and

Search Coil Booms are attached to two opposing solar arrays of the spacecraft and extend

3 meter from the edge of the Spacecraft Bus. MAG measures 3D vector magnetic fields

essential for understanding of particle distributions that are critically dependent on the

local and global magnetic fields and their time variation providing a full vector magnetic

field vector at a rate of 64 vectors/s, corresponding to a frequency range of 0 – 30 Hz.

Magnetometer specifications are given in Table 2.1 [14].
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Table 2.1: Magnetometer Specifications.

Features Specifications

Data Rate ∼ 3 kbs, depending on compression

Sampling Cadence 64 vectors/s

Ranges 0± 256 nT 0± 4096 nT 0± 65536 nT

Resolution 0± 0.001 nT 0± 0.16 nT 0± 2 nT

Accuracy 0.1 nT (sensor alone, with spacecraft 5 nT)

Frequency Range 0 – 30 Hz

2.2.5 The Waves Instrument

The Waves magnetic sensor is comprised of three search coil antennas mounted in a tri-

axial configuration installed on the boom opposite from the magnetometer boom to reduce

any interference. The axial booms of Van Allen Probes have a length of 12 meters from

tip to tip while the spin plane booms are 40 and 50 meters in length [3].

The goal of the EMFISIS Waves Instrument is quantitative determination of the effect

of plasma waves in the radiation belts on particles present in the Belts. The Waves

instrument provides two types of wave measurements [13]:

1) A three axis electric and magnetic field measurement covering the frequency range of

10Hz to 12kHz. The electronics and the electric field signals for the Waves Instrument are

provided by the EFW experiment and consists of differential voltages from opposing EFW

spherical sensors, and by the Waveform Receiver (WFR) of the Waves instrument. By

combining both electric and magnetic measurements, digitized simultaneously by common

electronics, Waves provides a full vector of electric and magnetic field measurement that

enables calculation of key quantities such as Poynting flux, polarization, planarity, and

ellipticity for key wave moves such as VLF hiss, magnetosonic equatorial noise, and chorus

[3].

2) A single axis electric field measurement over the frequency range 10–400 kHz pro-

vided by the High Frequency Receiver (HFR) of the Waves instrument in order to measure

the spectrum of electron cyclotron harmonic emissions and the frequency of the upper hy-

brid resonance band to determine background plasma electron density.

There are also two modes of operation: survey and burst modes. Burst modes provide
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continuous waveforms or very high temporal resolution spectral matrices (30 ms resolu-

tion), while in a survey mode spectral densities are collected every 6 s. In survey mode,

all digital waveforms are Fourier transformed using a floating point fast Fourier transform

(FFT) on board [13].

2.3 Determining the Electron Density from Upper-Hybrid

Band Resonance Frequency

There are numerous existing techniques to conduct these measurements either directly,

such as direct particle counting techniques with various types of plasma instruments, or

indirectly (quasi-thermal noise spectroscopy [15]; using the spacecraft potential as a proxy

for the electron density [16]; determining the electron density from intense upper-hybrid

band emissions [17] etc.). Determining the electron density from intense upper-hybrid

band emissions is still considered to be the most reliable passive technique [18]. In this

thesis, this method is employed.

We use the technique described by Mosier et al. [19] to derive electron number density,

𝑛𝑒, profiles from the intense plasma noise bands typically observed near the upper hybrid

frequency. The upper hybrid frequency, 𝑓𝑢ℎ𝑟 (where uhr in the subscript stands for Upper-

Hybrid Resonance) is a combination of the electron cyclotron frequency, 𝑓𝑐𝑒, and the

electron plasma frequency, 𝑓𝑝𝑒:

𝑓𝑢ℎ𝑟 =
√︁(︀

𝑓 2
𝑐𝑒 + 𝑓 2

𝑝𝑒

)︀
. (2.1)

The electron cyclotron frequency is a function of the magnetic field strength, 𝐵, and

the electron plasma frequency is a function of the electron number density, 𝑛𝑒. In SI

system these frequencies are given as

𝑓𝑐𝑒 =
|𝑞𝑒|𝐵
2𝜋𝑚𝑒

, 𝑓𝑝𝑒 =
1

2𝜋

√︃
𝑞2𝑒𝑛𝑒

𝑚𝑒𝜀0
, (2.2)

where 𝑞𝑒 is the charge of electron, 𝑚𝑒 is the mass of an electron, and 𝜀0 is the permittivity

of free space.

In the EMFISIS data, the intense UHR noise band typically extends from 𝑓𝑢ℎ𝑟 down to

𝑓𝑝𝑒 with a generally less intense emission extending down to the z-mode cutoff frequency

given by:
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𝑓𝑧 =
1

2

[︁(︀
𝑓 2
𝑐𝑒 + 4𝑓 2

𝑝𝑒

)︀ 1
2 − 𝑓𝑐𝑒

]︁
. (2.3)

The upper limit of the noise band at 𝑓𝑢ℎ𝑟 is usually the most pronounced cutoff in the

data.

An example measurement is shown below in Figure 2-3. The top panel is the survey

mode HFR data. The upper hybrid resonance band is indicated. The magnetic field

strength is directly measured by the magnetometer onboard the spacecraft and thus, 𝑓𝑐𝑒,

can be directed determined and is indicated on the spectrogram. The bottom two panels

show slices the electric field power spectral density as a function of frequency at two

specific times. The middle panel is from 7.9 UT when the spacecraft was in the high-

density region. The estimated values 𝑓𝑢ℎ𝑟, 𝑓𝑝𝑒, and 𝑓𝑧 are indicated. The lower panel

shows a slice from 9.9 UT when the spacecraft was in the lower density region. In the

lower density region, strong half harmonics of the electron cyclotron, (𝑛 + 1
2
)𝑓𝑐𝑒, can be

observed, and the 𝑓𝑧 cutoff is not typically observed.

From 8.75 to 9.25 UT, there are fluctuation in the UHR band. These indicate the

presence of density irregularities, and it is important to capture these effects.

In the example above, the UHR band was fairly clear. At other times, the spectrum

is contaminated with a variety of plasma emissions. The main challenge of developing a

robust automated algorithm is to understand and properly deal with the different types of

contaminating emissions. Often the UHR band in the high-density region is fairly clear,

but there is more noise in the lower density region. You can see more examples of orbits

in Appendix A.

2.4 AURA – An Automated Upper-hybrid Resonance

Detection Algorithm

The Van Allen Probes EMFISIS team at the University of Iowa devised the Automated

Upper-hybrid Resonance Detection Algorithm (AURA) to extract electron plasma densi-

ties from wave observations of the upper-hybrid resonance band, 𝑓𝑢ℎ𝑟, in dynamic spec-

tra [1].

The authors use technique similar to described in 2.3 to derive electron densities

from the upper-hybrid resonance band, 𝑓𝑢ℎ𝑟. To detect 𝑓𝑢ℎ𝑟 AURA employs a restricted

searching approach to detect a relative peak frequency signal embedded in an individual
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Figure 2-3: An example measurement. The top panel is the survey mode HFR data. The
bottom two panels show slices the electric field power spectral density as a function of
frequency at two specific times.

spectrum. This approach is based on a rule of hysteresis that assumes each successive

spectrum contains a peak frequency associated with 𝑓𝑢ℎ𝑟 near the previously identified

spectral record (i.e., there is not a large change in frequency of the binned signal within

a 6 s sampling time step).

AURA is used for a semi-automated 𝑓𝑢ℎ𝑟 extraction process. It does an excellent job

of automatically finding 𝑓𝑢ℎ𝑟 with little or no manual intervention when the spectrum
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is simple. For example, these are such orbits for which the spacecraft never leaves the

plasmasphere or when geomagnetic conditions are very quiet.

To assess algorithm’s performance, the authors split orbits data into 3 types: A, B,

and C:

• Type A refers to 70% of the HFR orbit spectrograms from mission start (September

2012) to full MLT coverage (July 2014) successfully digitized into density records

with less than 1/4 visually determined as needing correction (a single orbit at 6 sec

cadence may contain as many as 4000 points).

• Type B constitutes 20% of the data set that is contaminated by 1/4 to 1/2 misiden-

tified records, but nevertheless is quickly remedied by manual inspection.

• The final category, Type C, coincides with high geomagnetic activity where severe

convection erodes the plasmasphere to low L shells and is observed as strong emission

after a plasmapause crossing.

According to the results presented in the paper, the highest level of success, class A,

requires less than 25% of the data points to be corrected for a given orbit. Class B requires

25 to 50% of the data points to be corrected. The remaining class C represent challenges,

typically occurring during high geomagnetic activity in which a large portion of the outer

part of the orbit presents interpretational difficulties in finding the upper hybrid band

for a number of reasons. Typically, these orbits exhibit very low densities in the plasma

trough.
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Chapter 3

Nonlinear Regression with Neural

Networks

Regression analysis is used when one wants to predict a continuous dependent variable

from a number of independent variables. Nonlinear regression is a form of regression

analysis, in which observational data are modelled by a function, which is a nonlinear

combination of the model parameters and depends on one or more independent variables.

In this thesis, we solve exactly such problem, i.e. we predict plasma density from a set

of independent variables (features), using feedforward neural networks, one of the models

in machine learning that are widely-used and quite effective for many problems. In this

chapter, the theory behind them is described.

3.1 Problem Statement

Let there be given a sample set of 𝑀 pairs (x𝑖, 𝑦𝑖). Also, the regression model 𝑓(w,X) is

given, which depends on a set of parameters w = (𝑤1, ..., 𝑤𝑁) and independent variables

X.

It is necessary to find a set of parameters that would minimise the sum of residuals:

𝑆 =
𝑀∑︁
𝑖=1

𝑟2𝑖 , (3.1)

where a residual is 𝑟𝑖 = 𝑦𝑖 − 𝑓(w,x𝑖), for 𝑖 = 1, ...,𝑀 .
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3.2 Neural Networks for Regression

The problem stated in the previous section consists essentially in finding a mapping 𝑓

from X to y:

y = 𝑓(w,X), (3.2)

where transfer function (TF) 𝑓 can be any function, and it depends on X and on a set of

parameters w. This empirical mapping can be performed using conventional tools (linear

and nonlinear regression).

In many real-world problems, linear models are not sufficient to capture the real-world

phenomena, and thus nonlinear models are necessary. In this case, TF 𝑓 is a nonlinear

function, and we need to implement a particular type of nonlinearity a priori. This may not

always be possible, because we may not know in advance what kind of nonlinear behavior

a particular TF demonstrates, or this nonlinear behavior may be different in different

regions of the TF’s domain. If an inappropriate nonlinear regression function is chosen,

it may represent a nonlinear TF with less accuracy than with its linear counterpart [20].

In this situation (TF is nonlinear and the form of nonlinearity is not known), we need

a more flexible, self-adjusting approach that can accommodate various types of nonlinear

behavior representing a broad class of nonlinear mappings. Neural networks (NNs) are

well-suited for a very broad class of nonlinear approximations and mappings.

3.3 Feedforward Neural Networks

The Feedforward Neural Network is one of the most common and the first type of artificial

neural networks devised. Artificial neural network is basically a complex mathematical

function (model), which mimics a biological neural networks in the living brain in the

simplest fashion [21]. Similarly to linear classification and regression methods, neural

networks yield outputs in the following form [22]:

𝑦(x,w) = 𝑓(
𝑁∑︁
𝑗=1

𝑤𝑗𝜑𝑗(x)), (3.3)

where 𝑓 is a nonlinear activation function, w is a vector of weights, and 𝜑 are nonlinear

basis functions.

The Feedforward Neural Network (FNN) is the most basic and widely used artificial

neural network. FNNs have achieved success in a number of domains (e.g., [23], [24], [25]),
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most notably in large vocabulary continuous speech recognition [26], where they were

directly responsible for considerable improvements over previous highly-tuned, state-of-

the-art systems.

Figure 3-1: General architecture of the Feedforward Neural Network.

General architecture of the FNN is presented in Fig. 3-1. It consists of a number of

layers of artificial neurons that are arranged into a layered configuration. The input layer

consists of the inputs to the network. Then follows a hidden layer, which consists of any

number of neurons placed in parallel. Each neuron performs a weighted summation of the

inputs, which then passes a nonlinear activation function. There might be several hidden

layers in the network. The network output is formed by another weighted summation of

the outputs of the neurons in the hidden layer. This summation on the output is called

the output layer [21].

Formally, a feedforward neural network with 𝑙 hidden layers is parameterized by 𝑙+ 1

weight matrices (𝑊0, ...,𝑊𝑙) and 𝑙+1 vectors of biases (𝑏0, ..., 𝑏𝑙). The ultimate goal then

is to find the optimal set of parameters (weights and biases) of the network. It is done

by training, during which parameters of the network are adjusted incrementally until the

training data satisfy the desired mapping as well as possible.
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Chapter 4

Data

In this thesis, data from the Electric and Magnetic Field Instrument Suite and Integrated

Science (EMFISIS) instrumentation suite was used. Description of the instrument can be

found in Section 2.2.3, and description of the data produced by the instrument and used

in this thesis is presented in this chapter.

4.1 Van Allen Probes Data Processing

Data acquired by the individual spacecraft is stored aboard the vehicle before being

downlinked to the Mission Operations Center which then relays the data to the Science

Operations Center for each of the instruments. It is then processed and categorised by

levels. There are 5 Data Levels [14], [13]:

• L0 Data (Level 0) is the raw data downlinked from the spacecraft. This data is

in binary format and data volume varies between the different instruments: ECT:

450MB/day; EMFISIS: 500MB/day; EFW: 130MB/day; 414MB/day; RPS: 50MB/-

day.

• L1 Data is achieved at the Science Operations Center by initial data processing. It

is larger in volume and includes CDF or CSV formatting. For some instruments,

L1 data is available within 8 hours, but for others L1 data will be available 14 days

after receipt.

• L2 Data include calibrated data and initial analysis and is available 1 month after

acquisition.
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• L3 Data includes in depth data analysis with additional values gained from raw

data. Events are time-stamped, calibrated and all background noise is removed.

• L4 Data products are high level data sets that include global maps, phase space

density data as well as in depth analysis. L4 data is available after one year of data

processing for all instruments (except RPS, for which L4 Data in the form of Global

Maps is available within 9 days).

In this thesis, L2 and L4 Data products were used for building a model to infer plasma

densities. The detailed description of these products is given in the next sections.

4.2 L2 Data: Van Allen Probes Plasma Wave Observa-

tions

L2 Data used here are Plasma Wave Observations obtained by the EMFISIS instrument

suite. We used the data measurement from the magnetometer (MAG) and from the HFR

component of the Waves instrument. The data were retrieved from the EMFISIS official

website [14].

The data is presented as a set of files in Common Data Format (CDF) format (this

is a self-describing data format for the storage of scalar and multidimensional data in

a platform- and discipline-independent way [27]). The data is time-ordered and non-

duplicating. All the data were parsed into MATLAB files.

Tables 4.1 and 4.2 shows the data products used after parsing and their brief descrip-

tion. These data were used to create features to fit the regression model to infer plasma

densities. This process is described in Chapter 5. It is also worth mentioning that all

the data at the web server is organised in term of days (for each day there are files with

corresponding information). In this work, we arranged the data in terms of orbits, i.e. for

each particular orbit there is corresponding data. In the tables below and throughout all

the work this arrangement is used.
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Table 4.1: HFR data used.

Feature name Dimensions Units Description

Epoch [1×𝑛] 𝑛𝑠 Default time

Spectra [82×𝑛] 𝑉 2/𝑚2/𝐻𝑧 HFR Spectra Data

Frequencies [82×1] 𝐻𝑧 HFR center band

frequencies

Table 4.2: MAG data used.

Feature name Dimensions Units Description

Epoch [1×𝑛′] 𝑛𝑠 Default time

𝑓𝑐𝑒 [1×𝑛′] 𝐻𝑧 Electron cyclotron frequency

𝐿 [1×𝑛′] Earth-radii Magnetic field lines

MLT [1×𝑛′] Hours Magnetic local time

4.3 L4 Data: Electron Densities

L4 Data products used here are upper hybrid frequencies and electron densities. L4 prod-

ucts were generously provided through the courtesy of William Kurth and the EMFISIS

team.

The densities were derived using AURA, an Automated Upper-hybrid Resonance de-

tection Algorithm, described earlier in Section 2.4. This data is in CDF format as well

and is also time-ordered and non-duplicating.

Table 4.3 shows the data products used. These data were used as target variables in

the training and for comparison analysis.
Table 4.3: L4 data used.

Feature name Dimensions Units Description

Epoch [1×𝑛′′] 𝑛𝑠 Default time

𝑓𝑢ℎ𝑟 [1×𝑛′′] 𝐻𝑧 Upper hybrid frequency

𝑛𝑒 [1×𝑛′′] 𝑚−3 Plasma density
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4.4 Data Examples

Example spectrograms of Waves HFR data are presented in Figure 4-1. More examples

of spectrograms can be found in Appendix A.
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(a) (b)

(c) (d)

(e) (f)

Figure 4-1: Example spectrograms of Waves HFR data.

26



Chapter 5

Methodology

This chapter contains a thorough description of the experimental set-up used in this thesis

project, as well as the software written to process the collected data. For a more general

description of the theory behind neural networks, please refer to Chapter 3.

5.1 Problem Statement

A set of measurements S is given such that

S = {s1, ..., s𝑀}. (5.1)

The element s𝑖 of the set S is a measurement from EMFISIS (includes spectra, 𝑓𝑐𝑒, 𝐿,

MLT) at a particular moment of time. Let y = {𝑦1, ..., 𝑦𝑀} be a set of target variables,

which are upper hybrid frequencies 𝑓𝑢ℎ𝑟.

Together with the set S a set 𝑉 = 𝑉 (S) is given. The set 𝑉 = 𝑉 (S) is called a

vocabulary and contains knowledge about the set of measurements. The vocabulary is

obtained as the result of measurement structure analysis and used for model generation.

By 𝐺 = {𝑔1, ..., 𝑔𝑁} we denote an expert-given set of primitive functions such that

each function 𝑔𝑗 maps an object s𝑖 to an element (𝑖, 𝑗) of the design matrix X:

𝑔𝑗 : (b𝑗, s𝑖, 𝑉 ) ↦→ 𝑥𝑖𝑗 ∈ R1, (5.2)

where b𝑗 is the set of parameters of the primitive function 𝑔𝑗.
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Let 𝑓 be a nonlinear mapping from X to y such that

𝑓 : (w,X) ↦→ y ∈ R𝑀 , (5.3)

where w is a set of parameters of the model.

To find the optimal parameters ŵ we need to minimize a loss function 𝑆(w|𝑓,X,y)

such that

ŵ = argmin
w∈R𝑁

𝑆(w|𝑓,X,y), (5.4)

where the loss function is given as

𝑆(w|𝑓,X,y) =
1

𝑀

𝑀∑︁
𝑖=1

(𝑓(w,x𝑖)− 𝑦𝑖)
2. (5.5)

5.2 Design Matrix Description

The input data is a pattern in per se. If the key attributes or features characterizing the

data can be extracted, the problem encountered can be easily solved. However, feature

extractions are usually dependent upon the domain-specific knowledge.

As was mentioned in the problem statement that an expert-given set of primitive

functions 𝐺 = {𝑔1, ..., 𝑔𝑁} produces design (or feature) matrix X ∈ R𝑀×𝑁 from the given

set of measurements S. The element s𝑖 of the set S is a measurement from EMFISIS

at a particular moment of time that includes spectra, 𝑓𝑐𝑒, 𝐿, MLT (these parameters

are described in detail in Chapter 4) with a corresponding 𝑓𝑢ℎ𝑟. Here, we will describe

features produced by these functions.

In the feature extraction process, we relied on assumptions what characteristics and

measurement are related and influence the upper hybrid frequencies values. Table 5.1

shows the 88 features produced.

All features are time dependent. As described in Chapter 4, 𝑓𝑐𝑒, 𝐿 and MLT mea-

surement were provided by the magnetometer, and the spectra – by the HFR component

of the Waves instrument. These instruments have different cadence, i.e. the frequency

of taking routine measurement, which means that the number of measurement for the

duration of an orbit is not the same for the two instruments. In order to provide 𝑓𝑐𝑒,

𝐿 and MLT measurement for each measurement in the spectra, linear interpolation was

performed.

As target variables log10 𝑓𝑢ℎ𝑟 were used.
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Table 5.1: Features used in the design matrix.

Feature Description Possible values

log10 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 Decimal logarithm of the spectrum R

log10 𝑓𝑐𝑒 Decimal logarithm of electron cy-

clotron frequency

R

𝐿 Magnetic field lines R

𝐾𝑝 index Global geomagnetic storm index Ranges from 0 to 9

MLT Magnetic local time Ranges from 0:00 to

24:00

𝑓𝑏𝑖𝑛𝑚𝑎𝑥 Frequency bin of the largest element

of the Waves HFR spectrum

{1, 2, ..., 82}

𝑛 Order of the Waves HFR spectrum in

the spectrogram

R ∈ [0; 1]

At the moment, there is data available for 2,425 orbits. Spectral data for each orbit

comprises approximately 5,000 spectra (measurements are conducted with a 6 seconds

cadence). It is total of ∼ 12, 000, 000 data points. But the dataset of available upper

hybrid frequencies is labeled for 1091 orbits. Thus, the total number of samples in the

constructed design matrix turned out to be ∼ 5, 100, 000 points.

5.3 Neural Network Design and Implementation

Feedforward Neural Networks were employed to solve the problem stated above. For more

detailed discussion and rationale behind this choice please refer to Chapter 3. This section

describes the experimental setup and the workflow for neural network design.

5.3.1 Neural Network Design Workflow

The general workflow for the neural network design process has the following major steps:

1. Collect data;

2. Clean data;
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3. Split data;

4. Preprocess data;

5. Create the network;

6. Train the network;

7. Validate the network;

8. Use the network.

Data collection was discussed in Chapter 4. Details of the other steps are discussed

in the following sections.

5.3.2 Data Cleaning

Sometimes, data may contain missing or corrupted records. Data cleaning is the process

of detecting and correcting or removing corrupt or inaccurate records from a data set.

Here, in the design matrix obtained by features extraction, some data points contained

NaNs 1. NaNs in data are caused by linear interpolation that as was already mentioned

was applied to some measurement for the reason of different cadence of instruments. All

data points containing NaNs were removed from the dataset.

Dataset after cleaning comprised 4,077,993 time points.

5.3.3 Data Split

Data was randomly split into three parts: training, validation, and test sets. Training set

is used to train neural networks, validation set is used for model selection. Test set was

left aside for the whole process of training, feature and model selection. It was used in

the very end to evaluate the performance of the model.

The ratio of the split is 0.34 : 0.33 : 0.33. Generally, the split is something like

0.7 : 0.15 : 0.15, or even 0.8 : 0 : 0.2 when the dataset is small (in this case cross-

validation is usually conducted for model and feature selection). But in our case, the

large size of the dataset allows such almost even split [28].
1NaN stands for not-a-number – numeric data type value representing an undefined or unrepresentable

value.
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(a) (b)

Figure 5-1: An example spectrogram of Waves HFR data (a) before and (b) after noise
line removal.

5.3.4 Data Preprocessing

Data preprocessing converts raw data and signals into data representation suitable for

application through a sequence of operations. The objectives of data preprocessing in-

clude size reduction of the input space, data normalization, noise reduction, and feature

extraction. Feature extraction process was described in the previous section. Here, noise

reduction and data normalization will be discussed.

Noise Reduction

A sequence of data may involve useful data, noisy data, and inconsistent data. Prepro-

cessing is applied to reduce the noisy and inconsistent data [28].

After careful data analysis and manual inspection, it was identified that some data

contains noise lines that are caused by interference from other instruments on board (an

example is shown in 5-1a). Some of these noise lines can significantly contaminate the

calculations of 𝑓𝑢ℎ𝑟. Such noise lines were removed from the spectra. An example of the

spectra before and after the removal is presented in Figure 5-1.

Normalization

For many practical problems, the units used to measure each of the input variables can

skew the data and make the range of values along some axes much larger than others.

This results in unnecessarily complex relationships by making the nature of the mapping

along some dimensions much different from others. This difficulty can be circumvented by

normalizing (or scaling) each of the input variables so that the variance of each variable
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is equal. Scaling the data equalises the importance of variables. A large value input

can dominate the input effect and influence the model accuracy of the neural network

system [29].

Several algorithms can be used to normalize the data. Here, min-max normalization

was used.

Min-max normalization is a linear scaling algorithm. It transforms the original input

range into a new data range (typically 0-1). It is given as

𝑦𝑛𝑒𝑤 =

(︂
𝑦𝑜𝑙𝑑 −𝑚𝑖𝑛1

𝑚𝑎𝑥1 −𝑚𝑖𝑛1

)︂
(𝑚𝑎𝑥2 −𝑚𝑖𝑛2) +𝑚𝑖𝑛2, (5.6)

where 𝑦𝑜𝑙𝑑 is the old value, 𝑦𝑛𝑒𝑤 is the new value, 𝑚𝑖𝑛1 and 𝑚𝑎𝑥1 are the minimum and

maximum of the original data range, and 𝑚𝑖𝑛2 and 𝑚𝑎𝑥2 are the minimum and maximum

of the new data range (here 0 and 1 accordingly). Since the min-max normalization is a

linear transformation, it can preserve all relationships of the data values exactly.

In terms of features, "row-wise" normalization was applied to the spectra only. Other

features (𝑓𝑐𝑒, 𝐿, etc.) were normalized in a "non-row-wise" way. For such features, it is

worth mentioning that normalization is applied to the training set before being used to

train the network, and exactly the same pre-processing should be done to the test set, if

we are to avoid peculiar answers from the network.

5.3.5 Training Routine

After the data has been collected, the next steps are to create the network and to train

it. This section will describe the experimental setup and the specific parameters used for

training will be described in the next two sections.

Matlab Neural Network Toolbox was used to create and train the model. This toolbox

provides functions and apps for modeling complex nonlinear systems that are not easily

modeled with a closed-form equation. Neural Network Toolbox supports supervised learn-

ing with feedforward networks [30].

Using Matlab’s function feedforwardnet(hiddenSizes) a feedforward neural

network was created. This function creates a multilayer feedforward network consisting

of a series of layers specified by hiddenSizes that is a row vector of one or more hidden

layer sizes.

To train the network train(net, X, y) was used, where net is the network cre-

ated, X is the training sample, and y are the target variables. It trains a network according
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to net.trainFcn and net.trainParam specified by the user (or using default val-

ues). Parameter trainFcn defines algorithm used for training the network. Parameter

net.trainParam indicates the training parameter values such as maximum number of

epochs to train, performance goal, learning rate, minimum performance gradient, momen-

tum constant, etc. Parameters used in this setup are shown in Table 5.2.

Table 5.2: Training parameter values used in the experimental setup.

Parameter Value Description

net.trainFcn Scaled conju-

gate gradient

backpropagation

algorithm

Training algorithm

net.trainParam.goal 1e-5 Performance goal

net.trainParam.min_grad 1e-5 Minimum performance gra-

dient

net.trainParam.epochs 1000 Maximum number of

epochs to train

Scaled conjugate gradient backpropagation algorithm was chosen for training here,

since it performs well over a wide variety of problems, particularly for networks with a

large number of weights. The SCG algorithm is faster for large networks than any other

algorithms presented in the toolbox, and it has relatively modest memory requirements

[31].

5.3.6 Validation

Validation of networks with different sets of parameters was conducted after the training

procedure to determine optimal parameters of the model. During the series of experiments

with different neural networks architectures, the best suitable model was chosen. Figure

5-2 shows the plot of the error of different models vs. the number of neurons in their

hidden layers. Red solid curve shows the results for the training set, blue dashed curve

shows results for the validation set. The neural network with 80 neurons in the hidden

layer was selected as the best model since it shows the best performance on the validation
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set, and as the number of neurons in the hidden layer increases the performance decreases.

Figure 5-2: Error of different models vs. the number of neurons in their hidden layers.
Red solid curve shows the results for the training set, blue dashed curve shows results for
the validation set.

5.3.7 Neural Network Usage

The final step of the pipeline under consideration is usage of the neural network. The

details of it are described below.

After applying final neural network model to the data, the post-processing procedure

of the output was done. The main reasoning behind this step consists in the following.

The output of the network represents signal plus noise. We can try to reduce the noise

and increase accuracy since we have the knowledge of how the upper hybrid frequency is

usually identified manually. Basically, this frequency corresponds to one of the peaks of

the spectrum. In many cases, it is the largest peak in the spectrum, but in some cases

(when other harmonics are presented in the spectra, and also during geomagnetically

active times) it may not be the peak that is maximum in value, as peaks corresponding

to other harmonics are larger in value [1]. Thus, we use the neural network output

as an approximation of the upper hybrid frequency, and to infer the exact values we

search for the maximum value in the corridor around this approximate value of upper

hybrid frequency. Example of the output of neural network and post-processed output is

presented in Figure 5-3. Computational experiment showed that the accuracy increases

by 4.8% (for the selected model on validation set) with this preprocessing.
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(a)

(b)

Figure 5-3: An example of the output of the model on the spectrogram of Waves HFR
data (a) before and (b) after post-processing step.
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Chapter 6

Results

This chapter describes the main results of this project. In the first section, statistical

results and characteristics of the electron densities determined by the proposed algorithm

are given together with AURA’s statistics. In the second section, these results are com-

pared with the ones obtained by AURA. Next, expert evaluation of both results are given

and the dataset constructed with the aid of the algorithm proposed is described.

6.1 Statistical Results

Figure 6-1 shows the average electron density 𝑛𝑒 as determined from the Van Allen Probes

mission data by the algorithm proposed in the project and using AURA. The density 𝑛𝑒

is plotted versus 𝐿. As it can be seen from this plot, these two distributions obtained by

different algorithms are identical and almost overlap.

Figure 6-2 is like Figure 6-1 except that the data is separated into four groups according

to MLT and shown just for the algorithm proposed in the work. The thin solid curve

corresponds to the midnight sector MLT = 21 – 03, the thin dashed curve corresponds

to dawn MLT = 03 – 09, the thick solid curve corresponds to noon MLT = 09 – 15,

and the thick dashed curve corresponds to dusk MLT = 15 – 21. It is clear that the

density is depleted in the dawn sector (MLT = 03 – 09). Alternately, one might say that

there is a greater probability of plasmatrough density in the dawn local time sector (the

plasmapause is typically at its lowest L shell near dawn).

Similarly, in Figure 6-3 the data was separated into two groups, geomagnetically quiet

times with 𝐾𝑝 < 1.2 (solid blue curve) and active times with 𝐾𝑝 > 2 (dashed red curve).

Figure 6-3 shows that during more active times (𝐾𝑝 > 2), the density is depleted.
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Figure 6-1: Average electron density 𝑛𝑒 as determined from the Van Allen Probes mission
data versus 𝐿 using the proposed algorithm (blue solid line) and obtained by AURA (red
dashed line).

Figure 6-2: Average electron density 𝑛𝑒 as determined from the Van Allen Probes mission
data versus 𝐿 using the proposed algorithm. The data is plotted for different MLT regions,
21 – 03 (thick solid blue curve), 03 – 09 (thin dashed blue curve), 09 – 15 (thick dashed
red curve), and 15 – 21 (thin solid red curve).

6.2 Comparison with AURA

For the legitimate comparison with AURA, all available data was categorized into three

types (A, B, C). This partition was described in full detail in Section 2.4, but just to

remind the reader here is the brief summary of this division:

• Type A: 70% of the HFR orbit spectrograms successfully digitized into density

records with less than 1/4 failure to determine the correct densities (visually deter-
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Figure 6-3: Average electron density 𝑛𝑒 as determined from the Van Allen Probes mission
data versus 𝐿 using the proposed algorithm. Data is plotted for 𝐾𝑝 < 1.2 (solid blue
curve) and 𝐾𝑝 > 2 (dashed red curve).

mined as needing correction).

• Type B: 20% of the data set that is contaminated by 1/4 to 1/2 misidentified records,

but is remedied by manual inspection.

• Type C: 10% of data (which coincides with high geomagnetic activity) with failure

> 1/2 and concealed signal.

The distribution of the types obtained here is the same as above, i.e. Type A: 70%,

Type B: 20%, Type C: 10%. Figure 6-4 shows the plot of the average divergence of the

proposed algorithm from the AURA in % vs. data types. From this plot, one can see that

the two algorithms yield identical results for orbits of type A since this type corresponds

to orbits with frequency profiles that are the easiest to infer. Difference for type B is also

not very significant, but difference for type C comprises 14 %. This is due the uncertainty

of the upper hybrid frequency determination that appears during the geomagnetically

active times when the electron densities are low. Discussion on this divergence in the

results continues in the next section.

6.3 Results Evaluation

Examples of the work of the algorithm are presented in Figures 6-5 – 6-9. White curves

are the 𝑓𝑢ℎ𝑟 inferred by the algorithm described in this work. Red curves represents the
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Figure 6-4: Average divergence of the electron density 𝑛𝑒 prediction of the proposed
algorithm and AURA as determined from the Van Allen Probes mission data versus
types.

results obtained by AURA. Figures 6-5, 6-6 shows the sample results yielded for orbits

of type A. As we can see from this plot red curve almost completely overlap with the

white, which means that the results of the two algorithms are almost identical (the slight

difference can be seen in the zoomed part of Orbit 1040 in Figure 6-7), and there are no

difficulties in determining the resonance line by the proposed algorithm.

Figure 6-5: Here and thereon red curves represents the results obtained by AURA, white
curves are 𝑓𝑢ℎ𝑟 inferred by the algorithm described in the thesis. In this case, the results
of both algorithms basically overlap (white line cannot be seen).
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Figure 6-6: For this orbit, the results are almost the same. We can see a slight difference
in derived upper hybrid frequencies in Figure 6-7 that is zoomed part of this orbit.

Figure 6-7: Zoomed part of orbit 1040 showing the difference in derived upper hybrid
frequencies.

Figures 6-8, 6-9 show more complicated case of types B and C on the examples of

orbits 100 and 105. Each case presented in the figure contains explanation in the caption.
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Figure 6-8: This is orbit of type B, which is of the moderate complexity for determining
𝑓𝑢ℎ𝑟. Here, we can see that the results almost identical except for the part from 12:45 until
14:20. Both algorithms shows instability in this region, and it is hard to judge visually
which algorithm yields more precise results.

Figure 6-9: This example shows the orbit of type C, which is the most difficult type for
determining 𝑓𝑢ℎ𝑟. We can see the difference of the results in the low density region, which
represents the most difficult part of the orbit.
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6.4 Application

Datasets of the electron densities inferred using the algorithm proposed in this work for

both RBSP-a and RBSP-b spacecraft for all available orbits are available at

http://bitly.com/RBSP_electron_densities.

Data is presented as .mat files (MATLAB) with a separate file for each orbit. Each

file contains the fields presented in Table 6.1. Data is time ordered.

Table 6.1: Data fields.

Field name Dimensions Units Description

Epoch [1×𝑛] 𝑛𝑠 Default time

f_uhr [1×𝑛] 𝐻𝑧 Upper hybrid frequency

n_e [1×𝑛] 𝑚−3 Plasma density

f_ce [1×𝑛] 𝐻𝑧 Electron cyclotron frequency

L [1×𝑛] Earth-radii Magnetic field lines

Kp [1×𝑛] Ranges from 0 to 9 Global geomagnetic storm in-

dex

MLT [1×𝑛] Hours Magnetic local time
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

In this thesis, the procedure of automated electron densities extraction from spectrograms

of Waves HFR measurement was proposed and described. Also, the algorithm was com-

pared with AURA - algorithm for semiautomated densities detection. Computational

experiment on the Waves HFR data was conducted and it shows that the algorithms

yield identical results on the orbits easy for upper hybrid resonance line detection (≈1%

divergence), and comparable results on the difficult orbits with concealed signal (≈14%

divergence). This means that the algorithm proposed in the thesis is a reliable automatic

procedure that can be used as another alternative to derive electron densities from the

data obtained from the Van Allen mission and possibly future missions. The dataset of

electron densities obtained by this algorithm for all orbits available at the moment was

constructed and put online.

7.2 Further Work

The procedure proposed in the thesis bases the determination of upper hybrid resonance

line on neural networks. As future steps, we plan to try other machine learning algorithms

for the upper hybrid resonance line detection. Also, we plan to apply the algorithm

proposed on data from other missions, making necessary adjustments in the algorithm

design, and based on that implement a system for electron densities derivation that can

be used over different datasets automatically.
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Appendix A

Data Types

Examples of Type A
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Examples of Type B
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Examples of Type C
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