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Abstract

This note covers message-passing formulations of different approximate infer-
ence algorithms such as expectation propagation, variational inference and Gibbs
sampling. For each algorithm the general framework is described, as well as the
assumptions that lead to the message-passing formulation. Derivations of message
formulas are also provided.

1 Notation

We denote groups of random variables by X, possibly with subscripts, while single
variables are denoted by x (again, with subscripts). For instance, xj ∈ Xi means
that the variable xj belongs to the group of variables Xi. We also use shortened
notation X\j for X \ xj .

In all the sections P (X) stands for the distribution being approximated, while
Q(X) stands for an approximation. Marginals

∫
X\j P (X)dX\j and

∫
X\j Q(X)dX\j

are denoted by P (xj) and Q(xj).

2 Introduction

The task of an approximate inference algorithm is to approximate given unnormal-
ized probability distribution P (X) with some other distribution Q(X) of a simpler
form. In practice, P (X) usually corresponds to a posterior distribution over X
obtained from some joint distribution P (X,Z) by fixing Z to an observed value,
and we are interested in a normalized approximation which will allow to compute
posterior expectations or some other characteristics that depend on the normalizer.

It can be useful to provide some factorization of the approximated P (X) explic-
itly, like

P (X) ∝
∏
i

fi(Xi), (1)

since this additional structure can then be exploited by inference algorithms. Fac-
torized probability distributions are usually represented using Bayesian networks,
Markov random fields or factor graphs, a nice generalization of the former two.
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Quality of the approximation is usually measured using Kullback-Leibler (KL)
divergence

KL
(
P1(X) ||P2(X)

)
=

∫
X

P1(X) ln
P1(X)

P2(X)
dX. (2)

Note that this measure is non-symmetric, and, thus, gives us two ways to measure
the approximation quality. We will call KL

(
Q(X) ||P (X)

)
, acting as a function

of Q, forward KL-divergence, while KL
(
P (X) ||Q(X)

)
will be called reverse KL-

divergence. Both forward and reverse KL-divergence are members of a richer family
of distance measures between probability distributions known as α-divergence fam-
ily [1].

3 Expectation Propagation

3.1 Useful fact about reverse KL-divergence

Let’s say we want to approximate P (X) using a fully-factorized approximation

Q(X) =
∏
j

Q(xj), (3)

where each of the factors Q(xj) comes from a distribution family Fj . If we choose
reverse KL-divergence as a quality measure for our approximation, we can write it
down as a function of Q as

KL
(
P (X) ||Q(X)

)
=

∫
X

P (X) ln
P (X)

Q(X)
dX =

= const−
∫
X

P (X) lnQ(X)dX = const−
∑
j

∫
X

P (X) lnQ(xj)dX =

= const−
∑
j

∫
xj

lnQ(xj)
[ ∫

X\j
P (X)dX\j

]
dxj =

= const +
∑
j

KL
(
P (xj) ||Q(xj)

)
, (4)

where by P (xj) we denote the corresponding marginal of the distribution P (X).
That is, in order to fit a fully factorized approximation to a distribution P (X), we
need to set each marginal Q(xj) to a KL-projection of a corresponding marginal of
the distribution P (X):

Q(xj) = arg min
q∈Fj

KL
(
P (xj) || q(xj)

)
. (5)

3.2 EP framework

In the EP framework [2] one approximates distribution P (X) of the form (1) with

Q(X) =
1

Z̃

∏
i

f̃i(Xi), (6)
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which has the same factorization as P (X). Terms of the approximation are first
initialized to some probability distributions and then iteratively refined one-by-one
using

Q\i(X) :=
Q(X)

f̃i(Xi)
, (7)

Q(X) := arg min
q

KL
( 1

Z
Q\i(X)fi(Xi) || q(X)

)
, (8)

f̃(Xi) := Z̃
Q(X)

Q\i(X)
. (9)

That is, each factor is removed from the approximation, and then added again in
such a way that the new approximation is close to the one having the true factor
instead of the approximate one. This process is known as local KL-divergence min-
imization, and it doesn’t guarantee to minimize KL-divergence between P (X) and
Q(X), although in practice the results are quite similar.

Factors of the approximation are usually constrained to some distribution family,
which is rich enough, but allows to compute KL-projection (8) efficiently. The most
notable example is exponential family, KL-projection on which can be performed
solely by computing the moments of the distribution being approximated [3].

3.3 EP with fully-factorized approximations

Imagine we want to approximate given distribution P (X) of the form (1) with a
fully factorized approximation

Q(X) =
∏
i

f̃i(Xi) =
∏
i

∏
xj∈Xi

f̃ij(xj) =
∏
xj

∏
i:xj∈Xi

f̃ij(xj) =
∏
xj

Q(xj) (10)

using the EP framework. Using the result from section 3.1, the update (8) for factor
f̃i(Xi) will result in projecting marginals∫

X\j

1

Z
Q\i(X)fi(Xi)dX

\j (11)

to a corresponding Q(xj). This marginals can be represented as∫
X\j

1

Z
Q\i(X)fi(Xi)dX

\j =

=

∫
X\j

1

Z
fi(Xi)

∏
l 6=i

∏
xm∈Xl

f̃lm(xm)dX\j =

=
∏
k 6=i

xj∈Xk

f̃kj(xj)

∫
X

\j
i

1

Z
fi(Xi)

∏
xm∈X\j

i

∏
l 6=i

xm∈Xl

f̃lm(xm)dX
\j
i = Q̃(xj), (12)

where all the factors not dependent on variables from Xi were integrated to one
since the corresponding approximation terms are normalized distributions, and the
factors dependent only on xj were moved out of the integral. Note that if xj /∈ Xi,
terms under the integral are independent of xj and integrate to one. Thus, the
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corresponding marginals already match Q(xj), and we should be concerned only
about xj ∈ Xi. For the latter case we now have the an update expression

Q(xj) =
∏

i:xj∈Xi

f̃ij(xj) := arg min
q

KL
(
Q̃(xj) || q(xj)

)
, (13)

or, since on each EP iteration we refine only one factor f̃i,

f̃ij(xj) :=
arg minq KL

(
Q̃(xj) || q(xj)

)
∏

k 6=i
xj∈Xk

f̃kj(xj)
. (14)

3.4 Message formulas

Expression (14) can be interpreted in terms of messages from factors to variables
and vise versa. Let us define a message from variable xj to factor fi as

µxj→fi(xj) =
∏
k 6=i

xj∈Xk

f̃kj(xj), (15)

and a message from factor fi to variable xj as

µfi→xj
(xj) =

=
arg minq KL

( ∫
X

\j
i
f(Xi)

∏
k:xk∈Xi

µxk→fi(xk)dX
\j
i || q(xj)

)
µxj→fi(xj)

. (16)

It can be now seen that the approximation update (14) corresponds to first sending
messages from all the variables to the factor fi, and then using the outgoing message
from the factor fi as a new approximation. So, the outgoing messages from factors
represent the approximations, and, thus, we can rewrite (15) as

µxj→fi(xj) =
∏
k 6=i

xj∈Xk

µfk→xj (xj). (17)

Note that messages do not correspond to a normalized probability distributions,
while approximation marginals (products of all the incoming messages to a variable)
are guaranteed to be normalized.

3.5 EP and belief propagation

One important thing to note about (16) is that if the projected distribution can
be represented exactly in the distribution family of q(xj) (which is the case, for
example, with discrete or Gaussian models), then message from xj in numerator
and denominator cancels out and (16) turns into

µfi→xj (xj) =

∫
X

\j
i

f(Xi)
∏
k 6=j

xk∈Xi

µxk→fi(xk)dX
\j
i , (18)

which is a well-known belief propagation (BP) message. Thus, BP is a particular
case of EP with fully-factorized approximations. However EP is more general, since
it provides a recipe for handling distributions in which BP messages are too complex
to deal with.
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4 Variational Inference

4.1 Variational inference framework

In variational inference framework one seeks an approximation of the fully-factorized
form

Q(X) =
∏
j

Q(xj), (19)

which minimizes the forward KL-divergence KL
(
Q(X) ||P (X)

)
. It can be shown [3]

that in this case approximation factors can be refined one-by-one using the expression

Q(xj) :=
1

Z
exp

{
EX\j∼Q(X) lnP (X)

}
, (20)

where EX\j∼Q(X) denotes the expectation w.r.t. the current approximation over all
the variables except xj .

4.2 Variational message passing

For a factorized distribution of the form (1) update (20) can be written as

Q(xj) :=
1

Z
exp

{
EX\j∼Q(X)

∑
i

ln fi(Xi)
}

=

=
1

Z

∏
i

exp
{
E
X

\j
i ∼Q(X)

ln fi(Xi)
}

=

=
1

Z ′

∏
i:xj∈Xi

exp
{
E
X

\j
i ∼Q(X)

ln fi(Xi)
}
, (21)

where all the factors not dependent on the variable xj were absorbed in the normal-
izing constant. If we define message from a variable to a factor as

µxj→fi(xj) = Q(xj) (22)

and message from a factor to a variable as

µfi→xj (xj) =

∫
X

\j
i

ln fi(Xi)
∏
k 6=j

xk∈Xi

µxk→fi(xk)dX
\j
i , (23)

variational update (21) can be seen as a message passing procedure, in which each
factor receives messages representing factors of the current approximation from
neighboring variables, evaluates the expectation with some variable excluded and
sends the result to that variable. The variable then, after receiving results from all
the neighboring factors, updates the corresponding approximation factor. So, (22)
can be rewritten as

µxj→fi(xj) ∝
∏

k:xj∈Xk

µfk→xj (xj). (24)

Note that messages for variational message passing look quite similar to the EP
messages. Notable differences are that
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• message from a variable to a factor also depends on the incoming message from
that factor; EP also has similar “cyclic dependency” in a message from factor
to a variable, but it vanishes when no KL projection is required;

• computing message from a factor to a variable involves averaging logarithm
of a factor instead of factor itself. For certain problems (like learning the
parameters of a Gaussian) it leads to a much simpler message computations
than for EP. Several examples are given in [4].

In practice it is useful to restrict all the factors in the model to be conjugate,
because otherwise the complexity of the approximations will grow with the number
of iterations. A more detailed discussion of this issue, as well as a possible solution,
can be found in [4].

5 Gibbs Sampling

5.1 Gibbs sampling framework

Gibbs sampling [3] is quite different from EP and variational inference, since instead
of trying to build an approximate representation of P (X), it samples from the true
distribution in a MCMC fashion, that is, generates a sequence of samples from
distributions that tend to converge to P (X). It is achieved by sampling each variable
in turn, conditioned on the rest of the variables:

xnew1 ∼ P (x1 | X\1),

xnew2 ∼ P (x2 | X\1\2, xnew1 ),

xnew3 ∼ P (x3 | X\1\2\3, xnew1 , xnew2 )

and so on.

5.2 Gibbs sampling as message passing

Let’s take a look at the form of the conditional distribution over xj if P (X) is
represented in a factorized form (1):

P (xj | X\j) =
1

Z ′

∏
i

fi(Xi) =
1

Z ′′

∏
i:xj∈Xi

fi(xj , X
\j
i ), (25)

where all the factors independent of xj were absorbed in the normalizing constant.
So, if we define a message from a factor to a variable as

µfi→xj
(xj) = fi(xj , X

\j
i ), (26)

and a message from a variable to a factor as

µxj→fi(xj) = sample
[ 1

Z

∏
k:xj∈Xk

µfk→xj
(xj)

]
, (27)

then we can think of Gibbs sampling as of message passing procedure, in which every
variable receives messages from the neighboring factors, multiplies them together
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and normalizes the result to obtain a posterior distribution, which it then uses to
sample the new value. This value is then sent back to all the neighboring factors.

In a practical implementation of a message passing framework it would be reason-
able to constrain all the incoming messages to a variable to have the same functional
form, so that the posterior distribution can be obtained from the incoming messages
automatically. This will, however, restrict sampler to models with conjugate factors
only. An alternative is to provide a procedure that can sample from distribution
represented as any possible product of incoming messages, which seems to be a quite
hard goal to achieve.
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