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Introduction Machine Learning Motivation

Machine Learning Motivation

Consider a machine learning problem with a vector of parameters y € R and a
loss function L(A, y), where A is a training set of / samples, and each sample is a
vector of R™. The dataset is divided into n parts A; and placed on n different
machines.

n

L(Aay) = Z L(Alay) — m]ilgi (1)
i=1 ve

n

p(y) =D @ily) — min (2)

Rd
i—1 ye
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Introduction Time-Varying Network

Time-Varying Network

Time-varying network is represented by a sequence of graphs {Gx}%2;, where
every Gy = (V, Ex) is a connected undirected graph.
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Distributed Optimization on Static Networks Communication Matrix

Communication Matrix

Definition
Let G = (V, E) be a connected undirected graph. Then its Laplacian is defined as
-1, if (i,j) € E,
[W];j =  deg(i), if i=],

0, otherwise

N
N
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Distributed Optimization on Static Networks Communication Matrix

Communication Matrix

Definition

Let G = (V, E) be a connected undirected graph. Then its Laplacian is defined as

-1, if (i,j) € E,
(W] = { deg(i), ifi=],

0, otherwise

Basic properties :
e W and VW are symmetric and positive semidefinite

@ Vector 1 is the unique (up to a scaling factor) eigenvector associated with
the eigenvalue A =0
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix

Problem

ng,(y — m|n 3)
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix

Problem
ng,(y — m|n 3)

can be equivalently rewritten as

Zcp,-(y, —> m|n (4)
i=1

=..=yn
y, EJRd

Alexander Rogozin (Moscow Institute of Physics and 11 October 2018 7/22



Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix

Problem
ng,(y — m|n 3)

can be equivalently rewritten as

Zcp,-(y, —> m|n (4)
i=1

=..=yn
y, EJRd

or, using Laplacian properties,

= i(yi) — min 5
;sO(y) min (5)

where we denote Y = [y; ... y,] € R9*".
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix

Problem
ng,(y — m|n 3)

can be equivalently rewritten as

Zcp,-(y, —> m|n (4)
i=1

=..=yn
y, EJRd

or, using Laplacian properties,

= i(yi) — min 5
;sO(y) min (5)

where we denote Y = [y; ... y,] € R9%". This brings us to the minimization
problem

f(X) = max [-(x, Y\/W>—¢(Y)} — min (6)

YeRdxn XeRdxn
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Reformulation via Communication Matrix
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix

We define

Y(X) = arg max [— (X, YVW) — dD(Y)},
YERIxn
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix

We define
Y(X) = argmax | — (X, YVW) — dD(Y)},

yERdxn L

Z=-XVW,
¥(2) = arg max :<z, Y) — <b(v)]

Y€Rd><n
[ n
= argmax | > ((zi,yi) — so,-(yi))] ;
yERdxn Li=1

<
L
\

= [)71(21)7 ...,)7,,(2”)}
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Distributed Optimization on Static Networks Communication Matrix

Reformulation via Communication Matrix

We define
Y(X) = argmax | — (X, YVW) — ¢(Y)} ,
yERdxn L

Z=-XVW,
¥(Z) = argmax [(Z, V) — <b(v)]

Y€Rd><n L
[ n
= argmax | > ((zi,yi) — so,-(yi))] ;
yERdxn Li=1

Y/(Z) = [5/1(21)7 “'ay/n(zn)}

and it follows that
Y(Z) = V(- XVW) = Y(X).

Moreover, the gradient of this dual function is defined as
VFX) = -YX)VW = - Y(-XVW)VW = -V (Z)VW
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Distributed Optimization on Static Networks Distributed Gradient Descent

Distributed Gradient Descent

Specifically, a gradient descent algorithm on this dual function, would be
X = Xk 4 ay(X)vw

or equivalently
ZM = zk oY (ZwW,

Note that each of the agents' subproblems

yi(z) = arg max [{yi, zi) — pi(yi)] (7)

can be computed locally.
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Distributed Optimization on Static Networks Distributed Gradient Descent

Distributed Gradient Descent

Specifically, a gradient descent algorithm on this dual function, would be
X = Xk 4 ay(X)vw

or equivalently
ZM = zk oY (ZwW,

Note that each of the agents' subproblems

yi(z) = arg max [{yi, zi) — pi(yi)] (7)

can be computed locally.

Require: Each agent i € V locally holds ¢;, z; and some iteration number K.
for k=0,1,2,--- ,K — 1 do
1. Solve subproblem in Eq. (7) and obtain ¥;(zf).
2. Send ¥;(zF) to every neighbor and receive ji;(z¥) from every neighbor.
3. Take a gradient step.
end for
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Distributed Optimization on Static Networks Connection of graph and dual function properties

Connection of graph and dual function properties

Theorem

Let omax(W) be the largest eigenvalue and &min(W) be the least nonzero
eigenvalue of WTW = W?, where W is the Laplacian of the communication
graph G = (V,E). Let ®(Y) be Lo-smooth and pe-strongly convex w.r.t. || - || .
Then f(X) = max ( —(XVvW,Y) — ¢(Y)) is strongly convex with constant

YeRIxn

_ VvV &min(W)

pr = Y27 on the subspace (Ker W)L and smooth with constant
Lo

Lp = YW o e,

Ho
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Algorithm and Results = Time-Varying Setting

Time-Varying Setting

When the network topology changes, the Laplacian matrix of the graph changes
as well, which defines a sequence of graph Laplacians {W,}%2,. As a result,

contrary to the fixed network setup, we work with a sequence of dual functions
fi(x), such that

(X) = " (=XV/Wi) = max (7<X, YV/W) - ¢(Y)> . (8)

eRdxn
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Algorithm and Results = Time-Varying Setting

Time-Varying Setting

When the network topology changes, the Laplacian matrix of the graph changes
as well, which defines a sequence of graph Laplacians {W,}%2,. As a result,
contrary to the fixed network setup, we work with a sequence of dual functions
fi(x), such that

(X) = " (=XV/Wi) = max (7<X, YV/W) - ¢(Y)> . (8)

eRdxn

Assuming that, even though the network changes with time, the network remains
connected. Then, all W, have the same nullspace :

Ker(Wi) = {y1 = ... = yn} = Ker(v/Wi)
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Algorithm and Results = Time-Varying Setting

Time-Varying Setting

When the network topology changes, the Laplacian matrix of the graph changes
as well, which defines a sequence of graph Laplacians {W,}%2,. As a result,
contrary to the fixed network setup, we work with a sequence of dual functions
fi(x), such that

(X) = " (=XV/Wi) = max (7<X, YV/W) - ¢(Y)> . (8)

eRdxn

Assuming that, even though the network changes with time, the network remains
connected. Then, all W, have the same nullspace :

Ker(Wi) = {y1 = ... = yn} = Ker(v/Wi)

Since ®(Y') does not change, all f(X) have a common point of minimum and the
same value of minimum due to the strong duality.
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Algorithm and Results = Distributed Nesterov Method

Distributed Nesterov Method

Consider fast gradient method

1
Yit1 = Xk — Zka(Xk), (92)
VE—1 VE—1
=1 - 9b
Xk+1 < + NG Yi+1 \/E+1Yk7 (9b)
with initial points yp = xo and k = ﬁ
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Algorithm and Results = Distributed Nesterov Method

Distributed Nesterov Method

Consider fast gradient method

1
Ykl = Xk — Zka(Xk), (9a)
k—1 k—1
Xk41 = <1 + ﬁ—i— 1) Yk+1 — \\/[E—Flyk’ (9b)

with initial points yp = xo and k = ﬁ Its distributed version is the following :

Require: Each agent i € V locally holds ¢; and some iteration number N.
1: Choose 2} = Zj for all i € V
2. for k=0,1,2,--- ,N—1do

3 Jilz) = argmax|(zF,y) — i)
y€ERd
4. Send ¥;(zF) to every neighbor and receive )"/j(zjk) from every neighbor.
n
~k -
5. M=z -1 Zl[Wk]UYJ(ij)
J:

. k+1 _ VE=1\ sk+1  VE—1lsk
6: z = <1+ \/E+1>zi nriZi

7: end for
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Algorithm and Results = Results

Distributed Nesterov Method

Definition

Introduce
Omax = Sup{amax(Wk)} < 00, (103)
k>0

Ormin = Iigf;) {Umin(Wk)} > 0. (10b)
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Algorithm and Results = Results

Distributed Nesterov Method

Definition

Introduce
Omax = Sup{amax(Wk)} < 00, (103)
k>0

Orin = inf {rn( Wi} > 0. (10b)

Then every f(X) is u-strongly convex on (Ker W)L and L-smooth on R”, where

o= \/ETW, | — %ﬁ:ax by Theorem 2.
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Algorithm and Results | Results

Main Theorem

Theorem

Let ® be a uqe-strongly convex Ley-smooth function and assume that there is a
sequence of undirected connected graphs {Gx} with no more than m changes at
the moments ny, ..., n,. Then, the sequence {zX} generated by the distributed
Nesterov method has the following property : for any N > n,, it holds that

L+u R?

fn(Zn) — F* < K™ A
M{2n) T @

where Omax and 0, are defined in (10), L = ¥ max,,u = Y7 Ormin

ZN:(Z{V?"' ;Z,{,V), R= ||X0—X*||2’,‘$: m and/y_ \/El_l‘

1
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Algorithm and Results | Results

Results

Corollary

Let ® be a pe-strongly convex Lo-smooth function. Denote L = \/@’ 0= f£:
where Omax, Omin are defined in (10). Assume that there is a sequence of graphs
{Gx} with no more than m changes. Then, for any ¢ > 0, the sequence {z*}
generated by the distributed Nesterov method has the following property : for any

k> N +1, it holds that

fN(Zk) — f* < g

where

L R? L R?
N> k- log </§’"—;'u) =Ko x(W)- (mlogn+|og( - € ))7

€ 2

and x(W) = 4/ 9"“* is the condition number of the sequence of graphs
Gk = (V, Ex).
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Algorithm and Results | Results

Optimality

Nesterov method reaches the optimal iteration complexity of Q(+/k - x(W)log 1)
for decentralized algorithms obtained in the paper Bach et al "Optimal Algorithms
for smooth and strongly convex distributed optimization in networks", arXiv :
1702.08704, 2017.
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Numerical Experiments

Numerical Experiments

The synthetic rigde regression problem is defined as

1
min —

1
min = 1b - Hzll3 + 5ellz] (11)

The regularization constant is set to ¢ = 0.1. Thus, each agent has access to a
subset of points such that

bT=[ b | by |-+| by ] and H'=[H | H |---| H ]
~—~ ~— ~—~ ~—~ ~—~ ~—~
Agent 1 Agent 2 Agent n Agent 1 Agent 2 Agent n

where b; € R! and H; € R/ for each agent i € V. Therefore, in this setup each
agent / € V has a private local function

1 1
fi(xi) £ == |lbi — Hixill5 + 5

C
.
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Numerical Experiments

Change every 10 iterations
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Numerical Experiments

Change every 1000 iterations
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Numerical Experiments
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