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Pattern recognition and Regression:  
Two particular cases of Dependence estimation  

The generalized scenario: 
nx  – real-world objects observable  

            through real-valued features  
y  – a hidden property of each object  

( ) : ny f x  – the unknown dependence that exists if reality  

 ( , ), 1,...,j jy j Nx  – the set of precedents (training set) 

ˆˆ ( ): ny f x  – it is required to generate a decision rule applicable to each nx   

ŷ y                        (to approximately restore the dependence)  

If           this is regression estimation                ( ) : ny f x   

If  1,1    this is two-class pattern recognition     ( ) : 1,1ny f  x   

Generalized Linear Model (GLM) of the hidden dependence  
John Nelder. Generalized Linear Models. Journal of the Royal Statistical Society.  
                     Series A, Vol. 135, Issue 3, 1972, pp. 370-384. 

( | , ) :

         Parameters of the model:

T nz b b






 x a a x
 

the generalized linear model of the dependence  
na  – direction vector, b  – bias unction  
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The Generalized Linear Model (GLM) of the dependence  
 

( | , ) :

( , ):

T nz b b

q y z 

 



 

 

x a a x
 

generalized linear feature of the entity represented 

by its initial feature vector nx   

link function, convex in z  for any y  

 ˆ( | , ) argmin , ( | , )
y

y b q y z b


x a x a  decision rule  
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Particular cases  

Regression    Two-class pattern recognition   1,1   

2( , ) ( ) :q y z y z      lim ( 1, ) , lim ( 1, ) 0,

lim ( 1, ) 0, lim ( 1, ) .
z z

z z

q y z q y z

q y z q y z
 

 

    

    
 

z  0  z  y  

 ( , )q y z

 0  z  

( , )q y z  

ln 2  

1y    
1y   
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 Logistic Regression  

 ( , ) ln 1 exp( )q y z yz     

Support Vector Machine (SVM) 

 ( , ) max 0, 1q y z yz    
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The commonly adopted principle of learning from precedents:  
Regularized empirical risk minimization  

Set of precedents (training set):  ( , ), 1,...,j jy j Nx   

It is required to choose two parameters  ,n b a  of the linear model  

Criterion: Minimization of the loss within the bounds of the training set  

( , )EmpR b a  
1

N
 

1

( , ) min
N

T

j j

j

q y b


  a x  
empirical risk in the training set,  
instead of the average risk over  
“all the feasible” real-world entities 

However, if n N , there exist a continuum of minimum points 1( , ) nb a .  

Regularized empirical risk minimization – finding the shortest vector among them  
 

1

( , ) ( , ) min( , )
N

T T n

j j

j

J b q y b b


     a a a a x a

 

the simplest ridge regularization,  
0 1  ,   i.e.,  0    

2 2

1 1

2 | |, | |
( , | ) ( , ) min

, | |

n N
Ti i

j j

i ii j

a a
J b q y b

a a
 

   
         

 a a x  
a more sophisticated 
selective ridge 
regularization 

   ˆ( ) : 0 1,...,ii a n      
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a more sophisticated 
selective ridge 
regularization 

Selectivity parameter 0 .    As  grows, the penalty | |ia  drives to zero the 
coefficients at redundant features, which weakly contribute to diminishing of the 
empirical risk.  

Result of optimization – a small subset of active features:    ˆ( ) : 0 1,...,ii a n      
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Selective regularized empirical risk minimization 

2 2

1 1

2 | |, | |
( , | ) ( , ) min

, | |

n N
Ti i

j j

i ii j

a a
J b q y b

a a
 

   
         

 a a x .  In scalar form:  

2 21 ,

1 1 1

2 | |, | |
( ,..., , | ) , min

, | |

n N n
i i

n j i j i

i ii j i

a a
J a a b q y a x b

a a
  

    
            

    
problem of convex 
optimization with 
( 1) variablesn









 

What will be interesting to us is the computational complexity of dependence estimation  
In the general case, the computational complexity is polynomial relative to n .  
 

In practice, the number of features is often much greater than the training set size n N   
If n  is large, the polynomial computational complexity relative to n  is inadmissible.  
 

We are going to prove that this is not the case for dependence estimation.  
The computational complexity will be polynomial with respect to N  and linear to n .  
To show this, it is enough to put the problem of selective regularized empirical risk 
minimization in the so-called disjoint form:  

2 2 1 1

1 1

,

1

2 | |, | |
( , ) min( ,..., , , ,..., | ),

, | |

, 1,..., .

n N
i i

j j n N

i ii j
n

j i j i

i

a a
q y z a a b z z

a a

z a x b j N

 



    
          

   


 


 

Such a disjoint 
writing allows for a 
dual formulation of 
the problem 
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The dual formulation and numerical solution  
of the disjoint empirical risk minimization problem  

2 2 1 1

1 1

,

1

2 | |, | |
( , ) min( ,..., , , ,.

Lagrange mu

.., | ),
,

ltiplier

| |

, 1,..., , s  ;

n N
i i

j j n N

i ii j
n

j i j i j

i

a a
q y z a a b z z

a a

z a x b j N

 



    
          
 


 


 


 

disjoint writing  
of the empirical 
risk minimization 
problem  

n  – number of features,  N  – number of training objects.  
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The dual formulation and numerical solution  
of the disjoint empirical risk minimization problem  

2 2 1 1

1 1

,

1

2 | |, | |
( , ) min( ,..., , , ,.

Lagrange mu

.., | ),
,

ltiplier

| |

, 1,..., , s  ;

n N
i i

j j n N

i ii j
n

j i j i j

i

a a
q y z a a b z z

a a

z a x b j N

 



    
          
 


 


 


 

disjoint writing  
of the empirical 
risk minimization 
problem  

n  – number of features,  N  – number of training objects.  
Theorem. The solution of the disjoint problem is completely defined by: 

1) solution 1
ˆ ˆ( ,..., )N   of the convex dual problem  

2

2
1 ,

1 1 1

sup inf1

1 1ˆ ˆ( ,..., ) argmin max 0, inf ( , ) ,
2 2

1 1
0, ( ) ( ), 1,..., ;

2 2

n N N

N j j i j j
z

i j j

N

j j j jj

x q y z z

g y g y j N


  



          
                          

       
 

  


 

Polynomial computational complexity in the number of raining objects N   

2) independent computing 1,...,i n   
 
 

2
2

, ,1
2

2

, , ,1 1

ˆ ˆ0,              ( ) ,
ˆ

ˆ ˆ ˆ, ( ) .

N

j j i j j ij

i N N

j j i j j i j j ij j

x x
a

x x x



 

    


    



 
. 

Linear computational complexity in the number of features n   
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Regularization path along the selectivity axis 
The dual problem once again:  

2

2
1 ,

1 1 1

sup inf1

1 1ˆ ˆ( ,..., ) argmin max 0, inf ( , ) ,
2 2

1 1
0, ( ) ( ), 1,..., ;

2 2

n N N

N j j i j j
z

i j j

N

j j j jj

x q y z z

g y g y j N


  



          
                          

       
 

  


  

 
 

2
2

, ,1
2

2

, , ,1 1

ˆ ˆ0,              ( ) ,
ˆ

ˆ ˆ ˆ, ( ) .

N

j j i j j ij

i N N

j j i j j i j j ij j

x x
a

x x x



 

    


    



 
 

The selectivity parameter 0     – the main hyperparameter of the dependence 

estimation problem.  
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2
2

, ,1
2

2

, , ,1 1

ˆ ˆ0,              ( ) ,
ˆ

ˆ ˆ ˆ, ( ) .

N

j j i j j ij

i N N

j j i j j i j j ij j

x x
a

x x x



 

    


    



 
 

The selectivity parameter 0     – the main hyperparameter of the dependence 

estimation problem. If 0  , the criterions possess no selectivity property at all, and 

all the estimated components of the direction vector remain active. On the contrary, 
when the selectivity grows  , all the direction vector components become zero. 

It is easy to find the maximal value of selectivity 0  that completely suppresses all 

the features.  
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, ,1
2

2

, , ,1 1

ˆ ˆ0,              ( ) ,
ˆ
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j j i j j ij

i N N
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It is enough to vary selectivity in the interval 00     . 

The idea: To divide this interval into a number of subintervals in logarithmic scale  

1 1 00 ...
      

m m        
        

 

Each next value k  will almost coincide with the previous one 1k , and the iteration 

process will converge at each step after one or two iterations.  
 
The entire regularization path 00      takes, as a rule, almost the same time as 

solving the dual problem for a single selectivity value .  
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Regularization path along the selectivity axis 
 

An experimental result. Regression estimation problem in a set of stock market data 
(Return-based analysis of an investment portfolio)  

 
Number of observations 240N    

Number of features (known returns of stock market indexes)  
The sought-for regression coefficients 650n  :   capital sharing to be estimated  
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Conclusions 
 

Under some quite lenient assumptions, the traditional formulation of the generalized 
linear dependence estimation problem results in the convex problem of regularized 
empirical risk minimization.  
 
This problem inevitably has polynomial computational complexity in the number of 
features, what is in crucial conflict with the assumption on the huge dimension of the 
feature vectors. 
 
We proposed an alternative disjoint formulation of the generalized linear dependence 
estimation problem, which is not only of linear computational complexity in the 
number of features, but also easily parallelizable.  
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Thank you!  

 

Questions? 
 

 

 


