Generative machine learning models
for scenario simulation

Vadim Strizhov

Geneva, 2023

1/32

Generate a scenario with a probabilistic model
Terms:

@ scenario is a time series realization of a reconstructed stochastic
process,

o machine learning selects a reconstruction model to fit data,

o model generates data of same distribution.

The goal: to reconstruct true distribution of data

The method: Principal Component Analysis (as autoencoder)

Assumptions:
@ time series are relatively short,
@ variance of each time series is high,

@ covariance of some time series is high.

2/32

One-state scenario forecasting model
25

24
2.3 2.3|{ —History
—— Forecast
22 22
21
g 21
2
s 2
1.9)
319
18 st
17 18
16 17
15 16
20 40 60 80 100 120 140 160
Hours
=7 =] 15
{ H 5 10 15 20
5 — Hours
. The design matrix is
.
|-
15
T 1T
4
L ST I
8 == ’
25
3 - T
. ~
the forecasting model y = w' X,

the forecast y;.1 = w'x;.
2 4 6 8 10 12 14 16 18 20 22 20
Hours 3/32

Singular Spectrum Analysis and state space

@ Construct the Hankel matrix with time series,

Xl _X1 X2 X3 e Xn i

X2 X2 X3 X4 coo Xp+1
X=|X3| = |X3 Xa X5 ... Xpy2

L Xt] Xt Xt+1 Xt4+2 --. Xtdn |

@ Decompose the matrix and take the k first components,
n
X=X1+-+X,=UAVT = Zxkukv[.
k=1

@ Reconstruct the time series by anti-diagonal average

X = meanX(i,j), i+j=t—1

State space models describe the change of state x in time % =f(z)

Define the state space by vectors {x1,..., x;}, the phase trajectory X.

4/32

Model of the phase trajectory in the state space

— Phase trajectory

2s(t 1)

=75 7
—100 100

s(t-2) [|{s(t
0 H 3
t,s

/ dim(s) = 1000 —_— dim(x) = 4
Reduce dimensionality with the principal component analysis, autoencoder
z = WTx where W is an orthogonal (rotation) matrix. The first principal
components are given by Singular Values Decomposition

VMV =XTU, theSVDis X = UAVT

5 /32

The model complexity and the phase trajectory

2n

3n/4

MAPE

e

7 \; 05 '&/A\\\
J)V“’ XA X

%! A'A:A; ;A' ;‘0% AL “ " \’ SN

(X 'a“.

n/2

Number components

Length

The length is n, here a point of the phase trajectory x; € R", the
complexity is k. The encoder is

z =WT x
1xk kxnnx1

6/ 32

Canonical correlation analysis

To control the scenario, it reconstructs dependencies in design space, target
space, and align in-between. The forecasting model is f = WAQ.

1l MR My

cov(t,u) — max

Quadratic programming feature selection for multicorrelated signal decéding by
R. Isachenko and V. Strijov, 2022, Expert Systems

7/32

https://www.sciencedirect.com/science/article/abs/pii/S0957417422011988

The simplest generative model

Probabilistic principal component analysis: to reconstruct the initial data,
sample from the normal distribution

p(x)

x=WTz+p+e~N(©Od%.
deterministic stoc?(astic

Denote by p(z) distribution in latent space, and p(x | z) in the data space
given the latent variable z.

A latent space-based estimation of distribution algorithm for large-scale global
optimization by W. Dong et al., 2018, Soft Computing
8 /32

https://link.springer.com/article/10.1007/s00500-018-3390-8

Select an optimal manifold, given a mixture

40

20

o

—20

—40

Type 1
T pe 2

L

Time series

Sty e

Second principal component
o

-1 0 1
First principal component

0 400

Second principal component

Phase trajectory for type 1
—=—Phase trajectory for type 2

First principal component 9 /32

The simplest generative model, a mixture

Each data cluster has its own mean and variance.

PCA reveals manifolds and reduces data dimensionality. Shall we use a
deterministic or a probabilistic manifold?

Latent Variable Models by J.M. Tomczak, 2021, Chapter
10 / 32

https://link.springer.com/chapter/10.1007/978-3-030-93158-2_4

Generative versus discriminative models
The variable x is either probabilistic or deterministic.

* Discriminative Model

- p(y|x) .

g e VT 0 g

1] g, 0
: y=1

| r' /

1 1

* Generative Model

(z,9)
g The Bayes' rule
'-':;‘) y=10 p(x,y)

& < 1)P0)
2 p(x | y)p(y
Y y=1 p(y|x)=—-"""""
== p(x)

Fig 1. From a Machine Learning course by Google

Discriminative: in the logistic regression x is not a random variable,
-1
p(y | x) = (1+exp(—w'x)) .

Generative: in the naive Bayesian x is a random variable, here it is normally

distributed,

p(x | yk) =

exp — = (x — cx)>.

1
\/ 2770,3 2ai

11/ 32

Neural network with stack of autoencoders

y 4.‘.4- ".4.4.4- X

f= '1’"T1 zi_ 10 W] 1z p0---0o Wlzi o W] x
X

k nax1 nixnx1
Neural network errgr Autoencoder reconstruction error
E, = (vi — f(x)) Ex = |lx — r(2)|

Types of autoencoders

PCA skip block metric multi-linear
wiw-=1, w=1, xTWx >0 wx

Autoencoder transform: z = (1 + exp(— WTx + b))_1

Reconstruction decoder: % = r(z(x))

12 /32

Autoencoder: probabilistic or deterministic?

Reconstructed
Input <o Ideally they are identical. ------------------ > inpur

x~x

Bottleneck!
Encoder Decoder
X : /
9 fo x

An compressed low dimensional
representation of the input.

8» translates the original high-dimensional x to the
low-dimensional latent z.
Decoder fy reconstructs original X ~ x with the loss function

(-0 Gt)

low-dim latent z

From Autoencoder to Beta-VAE by L. Weng, 2018, GitHub

13/ 32

https://lilianweng.github.io/posts/2018-08-12-vae/

Variational autoencoder

Reconstructed

Input <o Ideally they are identical. ~ ~-=------=-=-=---oooooe .

, input

X R X
— Probabilistic Encoder —
7¢(2x)
Sampled
latent vector
Probabilistic
o - 4’. . | x’
Po(x|z)
Std. dev
_ An compressed low dimensional
Z=p+oQe representation of the input.

- e~ N(0,I) L

Encoder g(z | x) = NNenc(x, ¢) outputs p,(x) and o ,hi(x) Decoder
px | z,0) = NNgec outputs x of similar distribution.

It is probabilistic decoder: conditional probability py(x | z) defines a
generative model, similar to decoder fy(x | z) and probabilistic encoder:
the approximation function g4(z | x) similar to g4(z | x).

From Autoencoder to Beta-VAE by L. Weng, 2018, GitHub

14 / 32

https://lilianweng.github.io/posts/2018-08-12-vae/

Variational autoencoder

Input <

Ideally they are identical.
x~x

Probabilistic Encoder

94(2[x)

Sampled
latent vector

Probabilistic

Reconstructed
input

Po(x|2)

Std. dev

z=p+o0e
e~ N(0,I)

An compressed low dimensional
representation of the input.

Pobability to generate real-data samples § = arg max ST log po(x;) the
data generation procedure uses encoding vector
po(xi) = [po(xi | z)pe(z)dz Approximate it with g4(z | x)
To generate a sample x; that looks like real data
@ sample z; from the prior distribution p;(z)
@ then generate x; from the conditional distribution py(x | z = z;)

From Autoencoder to Beta-VAE by L. Weng, 2018, GitHub

15 / 32

https://lilianweng.github.io/posts/2018-08-12-vae/

Graphical model of the Variational autoencoder

Encoder (as an inverse decoder)

|Q po(z) | 9e(z]%) ~ po(zlx)
z ~N(0,1) "l 2 po(x|2) o

0 Sampler
Po(%)

Decoder

—> X

Loss function to teach the network parameters

Lyae(¢. 0) = log pg(x) + Dki(q(z | x) || pe(z | X)) =

J/

distribution:Iook similar
_Ez~q¢(z\x) log pg(X ‘ Z) + DL (q¢(z ’ X) H pg(Z)),

g?), 0= arg min Lyag

Design of Variational Autoencoder for Generation of/ by A,. Das et al., 2021,
Innovation in Power Eng.
16 / 32

https://link.springer.com/chapter/10.1007/978-981-16-7076-3_39

Multi-modal distribution of data and
uni-modal prior
Forward and reversed KL divergence

DKL(p I q) = /_oo p(x) log ZEX dx

matches two distributions in different ways.

Not OK Not OK
Forward-KL large Reverse:
OK, KL small
OK, KL sma
Forward KL: D1, (P||Q) Reversed KL: Dkp,(Q||P)

Variational Bayes by E. Jang, 2016, source
17 / 32

https://blog.evjang.com/2016/08/variational-bayes.html

The normalizing flow is a superposition

The flow f1,..., fx must be
@ easily invertible,

@ its Jacobian determinant is easy to compute.

fl ZO) fz(zz 1) f1+1(zz
Q ® - © @ 2

The target distribution log px(zx) = log po(z0) — Z, 1 log (det (27’711)>
Let zo = f; *(z1). Change variables in the pdf so p1(z1) = po(20) (det #)

Flow-based Deep Generative Models by L. Weng, 2018, GitHub
18 / 32

https://lilianweng.github.io/posts/2018-10-13-flow-models/

An example of the flow: piecewise bijective

Y =g(Z)
Generative dirn

pz(2)
pY(Y)

Y

Base distribution, Z Norrznazli?i?‘g{)dirn Target distribution, Y

A monotone function maps sections of data domain to the base
distribution.

To invert the function, sample the base distribution with a gating network.
Use a mixture of experts network.
Normalizing Flows: review by |. Kobyzin et al., 2020, IEEE

19 /32

https://arxiv.org/pdf/1908.09257.pdf

Diffusion models: learn slowly by adding noise

Given the data distribution xg ~ g(x) set:

@ forward diffusion process x; = /1 — Bex¢—1 + /Btz:, sampling i.i.d.
M 7ZT NN(07 I)y

@ sampling g(x:—1|x:) and learning parameters @ of U-Net pg(x;_1|x¢),
@ reverse diffusion process pg(x0.7) = p(x71) H;l po(xt—1]|x¢),
@ slow learning gives pg(xt—1|xt) = N(x¢—1; pg(x¢, t), Lo(xt, t)).

Denoising diffusion probabilistic models by J. Ho, 2020 ArXiv
20 / 32

https://arxiv.org/abs/2006.11239

An example of training a diffusion model

The forward trajectory

q(XO:T)

The reverse trajectory

po(Xo:7)

The drifting term
Mo (Xe,t) — Xy

Deep unsupervised

https://arxiv.org/abs/1503.03585

Building complex generative models

The main challenge is to estimate the normalizing constant

Zyp = /exp(fg(x))dx

é;f 0 (lx) efo) L

e]
o — (%)
Unknown data @ % L%a: Lol

distribution Normalizing constant

Approximate unknown true distribution with a neural
network

Model distribution

. T _d
Normalizing for Gaussian distribution Z, = 27~ 2

Score-based generative modeling through SDEs by Yang Song et al., 2020, ArXiv

22 /32

Score-based generative model via Neural SDEs

SDE smoothly transforms a complex data distribution to a known prior
distribution by slowly injecting noise.

11

To reverse the SDE compute the score V

xlog pe(x) Of the distribution at each t.

Data Forward SDE Reverse SDE Data

Prior
dz = f(z,t)dt + g(t)dw 4}@— dz = [f(z,t) — ¢*(t)V., logps (z)] dt + g(t)dw

Score-based generative modeling through SDE by Y. Song, 2022, ArXiv

23 /32

https://arxiv.org/pdf/2011.13456.pdf

Create a test generative model

A 30-second project. Request for a code

. You

python, create a simple variational autoencoder and generate periodic time-series

ChatGPT

Define the model
VAE (models.Model):
__init_ (self, encoder, decoder, xxkwargs):
super(VAE, self).__init__(skkwargs)
self.encoder = encoder
self.decoder = decoder
self.total_loss_tracker = tf.keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = tf.keras.metrics.Mean(
name="reconstruction_loss"
)

self.kl_loss_tracker = tf.keras.metrics.Mean(name="k1l_loss")

Run with a useful optimizer

vae = VAE(encoder, decoder)
vae.compile(optimizer=tf.keras.optimizers.Adam())

This code is generated by ChatGPT 3.5

https://chat.openai.com/

The generated time series

Generated Sample 1

0.251 ‘ ‘ e e e Tated Sample 2 . .
0.501
0.25 ‘ ‘ ~Cenerated Sample 3 _ . .
0.50 1
0.25 e e nerated Sample 4
0.50 1
025 ‘ : o e TaTed Sample 5 : :
8221 T
025 ‘ - - ample 6 . T
0.50 1
025 ~"{enerated Sample 7
0.50 1
0.25 ‘ : Generated Sample 8 . r
o.sui
0.25 ‘ . ~"(;ehierated Sample 9 . .
0.50 1
0.25 e Benerated Sample 10
0.50 1
0.25

0 200 400 600 800 1000

This code is generated by ChatGPT 3.5
25 / 32

https://chat.openai.com/

To program a simple project
Set an object to sample
describe a type of relations between time series (none, multi-linear, metric)
@ a point in a phase trajectory
@ set of points in trajectories
@ a dynamic graph in a graph trajectory
@ CCA source and target trajectories
Set a generation model to tune
put forward a hypothesis on data distribution; it makes optimization criteria to tune NN
@ variational auto-encoder
@ normalizing flow model
@ diffusion probabilistic model
Set an external utility function

it selects a type of model and structure of the neural network
Select performance measurement routine and dataset

26 / 32

Generative model for Canonical Correlation

Analysis
Source Forecast an Target
nxd portfolio selection nXxs
Encoder Decoder
Penc Pdec 77bdec ¢enc

T Latent space of U
nX K generative model’ nx K

@ Approximates both spaces, design and target
@ Reduce the dimensionality of spaces, select the connected data
@ Select a subset of target time series

Decoder
Enc0d01 de ec 3
Penc Emm—

Source Latent space Target

27 / 32

Convergent cross mapping as a distance function

Hx HV

The time series y depends on the time series x, if in the
neighbourhood (x, x") € Hy there exists a Lipschitz continuous map

oHyx — Hy such that py, (o(x,x")) = Lpn,(x,).

28 / 32

High variance and high co-variance in time series

Dynamic graph reflects dependencies between the time series.
X, € RET Ay y(m,1) G(m, 1)

To reconstruct the dependencies
@ define distance between points of the phase trajectories,
@ make low-rank decomposition, prune the dependency graph,

@ reconstruct time series.

29 / 32

Convolution with an engineered utility function

L _J
L 1 . |
) 120 . .
O 110;‘
;E; x 1003;"'"'
O . .
> 90 o
L]
80 -
w 150
<@
[eN
E 100- IS
> 50 2
5 - . 2
(@]
g 0 | |
z 70 80 90 100 110 120 13

X Volumes

There given the histogram {x;, g;} and the utility function L(z, x), for
example, or (z — x)2. Find the forecast % as

m
X = argmin Zg,-L(z,x,-).

z€{x1,-xm} i1 30 / 32

Tools to create generative models

General purpose
@ PyTorch, TensorFlow (Keras, TFP), and JAX
@ DCGAN, Torch-GAN and Conditional GAN
@ Google AutoML
Generative models and collections
@ Pytae: most common variational autoencoder models
@ UNet diffusion: denoising diffusion probabilistic model in PyTorch
@ PGMC: collection of generative models in PyTorch
CCA and Graph networks
@ DeepCCA: deep canonical correlation analysis
@ DGCCA: deep generalized canonical correlation analysis:

@ pyRiemann: Biosignals classification with Riemannian geometry

31/ 32

https://github.com/clementchadebec/benchmark_VAE
https://github.com/lucidrains/denoising-diffusion-pytorch/tree/main
https://github.com/znxlwm/pytorch-generative-model-collections
https://github.com/Michaelvll/DeepCCA
https://github.com/arminarj/deepgcca-pytorch
https://pyriemann.readthedocs.io/en/latest/

Articles to read

@
@

®© © 66606

©@ e

Introduction to Probabilistic Programming by A. Das, 2020, ayandas

Foundation of Variational Autoencoder (VAE) by A. Das, 2020,
ayandas

From Autoencoder to Beta-VAE by L. Weng, 2018, GitHub
Flow-based Deep Generative Models by L. Weng, 2018, GitHub
Normalizing Flows: review by |. Kobyzin et al., 2020, IEEE

Variational Inference with Normalizing Flows by D.J. Rezende, S.
Mohamed, 2015, ArXiv

Score-Based Generative Modeling through Stochastic Differential
Equations by Y. Song et al., 2015, ArXiv

Denoising diffusion probabilistic models by J. Ho, 2020 ArXiv

Deep unsupervised learning using Nonequilibrium Thermodynamics by
J. Sohl-Dickstein et al., 2015, ArXiv

An Intuitive Tutorial to Gaussian Processes Regression by J. Wang,
2020, ArXiv

32/ 32

 https://ayandas.me/blog-tut/2020/05/05/probabilistic-programming.html
https://ayandas.me/blog-tut/2020/01/01/variational-autoencoder.html
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2009.10862

