APPROXIMATION OF MINIMUM WEIGHT k-SIZE CYCLE COVER PROBLEM

Michael Khachay and Katherine Neznakhina ${ }^{1}$ mkhachay@imm.uran.ru
${ }^{1}$ Krasovsky Institute of Mathematics and Mechanics S.Kovalevskoy, 16, Ekaterinburg, 620990, Russia

IIP-2014, Crete
October 10, 2014

Abstract

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min- k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Abstract

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min- k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Abstract

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Abstract

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min- k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Abstract - Motivation

- Nuclear Power Plant dismantling problem

Abstract - Motivation

- Nuclear Power Plant dismantling problem

- high-precision metal shape cutting problem

Abstract - ctd.

Results

(1) Min- k-SCCP is strongly NP-hard and hardly approximable in the general case
(2) Metric and Euclidean cases are intractable as well
(3) 2-approximation algorithm for Metric Min- k-SCCP is proposed
(1) Polynomial-time approximation scheme (PTAS) for Min-2-SCCP on the plane is constructed

Contents

(1) Problem statement
(2) Complexity and Approximability
(3) Metric Min- k-SCCP

- Preliminary results
- Algorithm

4 PTAS for Euclidean Min-2-SCCP on the plane

- Preprocessing
- PTAS sketch
- Structure Theorem
- Dynamic Programming
- Derandomization
(5) Conslusion

Definitions and Notation

Standard notation is used

- \mathbb{R} - field of real numbers
- \mathbb{N} - field of rational numbers
- \mathbb{N}_{m} - integer segment $\{1, \ldots, m\}$,
- \mathbb{N}_{m}^{0} - segment $\{0, \ldots, m\}$.
- $G=(V, E, w)$ is a simple complete weighted (di)graph with loops, edge-weight function $w: E \rightarrow \mathbb{R}$

Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP)

Input: graph $G=(V, E, w)$.
Find: a minimum-cost collection $\mathcal{C}=C_{1}, \ldots, C_{k}$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_{k}} V\left(C_{i}\right)=V$.

Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP)

Input: graph $G=(V, E, w)$.
Find: a minimum-cost collection $\mathcal{C}=C_{1}, \ldots, C_{k}$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_{k}} V\left(C_{i}\right)=V$.
$\min \quad \sum_{i=1}^{k} W\left(C_{i}\right) \equiv \sum_{i=1}^{k} \sum_{e \in E\left(C_{i}\right)} w(e)$
s.t.
C_{1}, \ldots, C_{k} are cycles in G

$$
\begin{aligned}
& C_{i} \cap C_{j}=\varnothing \\
& V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)=V
\end{aligned}
$$

Metric and Euclidean Min- k-SCCP

Metric Min-k-SCCP

- $w_{i j} \geqslant 0$
- $w_{i i}=0$
- $w_{i j}=w_{j i}$
- $w_{i j}+w_{j k} \geqslant w_{i k}(\{i, j, k\})$

Euclidean Min- k-SCCP

- For some $d>1, V=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$
- $w_{i j}=\left\|v_{i}-v_{j}\right\|_{2}$

Instance of Euclidean Min-2-SCCP

Complexity

Known facts

- (Karp, 1972) TSP is strongly NP-hard
- (Sahni and Gonzales, 1976) TSP can not be approximated within $O\left(2^{n}\right)($ unless $P=N P)$
- (Papadimitriou, 1977) Euclidean TSP is NP-hard

Complexity

Theorem 1
 For any $k \geqslant 1$, Min- k-SCCP is strongly NP-hard.

Complexity

Theorem 1

For any $k \geqslant 1$, Min- $k-S C C P$ is strongly NP-hard.

Proof idea

- Reduce TSP to Min- k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min- k-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

Complexity

Theorem 1
 For any $k \geqslant 1$, Min- k-SCCP is strongly NP-hard.

Proof idea

- Reduce TSP to Min- k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min- k-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

Corollary

- Min- k-SCCP also can not be approximated within $O\left(2^{n}\right)$ (unless $P=N P)$
- Metric Min- k-SCCP and Euclidean Min- k-SCCP are NP-hard as well

Minimum spanning forest

- k-forest is an acyclic graph with k connected components
- For any k-forest F, weight (cost)

$$
W(F)=\sum_{e \in E(F)} w(e)
$$

- k-Minimum Spanning Forest (k-MSF) Problem

Kruskal's algorithm for k-MSF

(1) Start from the empty n-forest F_{0}.
(2) For each $i \in \mathbb{N}_{n-k}$ add the edge

$$
e_{i}=\arg \min \left\{w(e): F_{i-1} \cup\{e\} \text { remains acyclic }\right\}
$$

to the forest F_{i-1}.
(c) Output k-forest F^{*}.

Kruskal's algorithm for k-MSF

(1) Start from the empty n-forest F_{0}.
(2) For each $i \in \mathbb{N}_{n-k}$ add the edge

$$
e_{i}=\arg \min \left\{w(e): F_{i-1} \cup\{e\} \text { remains acyclic }\right\}
$$

to the forest F_{i-1}.
(3) Output k-forest F^{*}.

Theorem 2

F^{*} is k-Minimum Spanning Forest.

2-approximation algorithm for Metric Min- k-SCCP

Following to the scheme of well-known 2-approx. algorithm for Metric TSP.
Wlog. assume $k<n$.
Algorithm:
(1) Build a k-MSF F
(2) Take edges of F twice
(3) For any non-trivial connected component, find a Eulerian cycle
(9) Transform them into Hamiltonian cycles
(3) Output collection of these cycles adorned by some number of isolated vertices

Correctness proof

Assertion

Approximation ratio:

$$
2(1-2 / n) \leqslant \sup _{I} \frac{A P P(I)}{O P T(I)} \leqslant 2(1-1 / n)
$$

Running-time:

$$
O\left(n^{2} \log n\right)
$$

Proof sketch

Consider optimal cycle cover \mathcal{C} (with weight OPT).
Removing the most heavy edge from any non-empty cycle transform it into some spanning forest $F(\mathcal{C})$ with cost SF.
Then

$$
M S F \leqslant S F \leqslant O P T(1-1 / n)
$$

where

$$
A P P \leqslant 2 \cdot M S F \leqslant 2(1-1 / n) O P T .
$$

Lower bound - instance

Algorithm

Lower bound - 2-forest

$2 p$
2p

Algorithm

Lower bound - approximation

$2 p$

Algorithm

Lower bound - better approximation

Lower bound - discussion

- number of nodes $n=4 p+2$
- $A P P=8 p$
- $O P T \leq 4 p+2+2 \varepsilon(2 p-1)$
- for approximation ratio r we have

$$
r \geq \sup _{\varepsilon \in(0,1)} \frac{8 p}{4 p+2+2 \varepsilon(2 p-1)}=\frac{4 p}{2 p+1}=2(1-2 / n)
$$

PTAS for Euclidean Min-2-SCCP on the plane

Definition

For a combinatorial optimization problem, Polynomial-Time Approximation Scheme (PTAS) is a collection of algorithms such that for any fixed $c>1$ there is an algorithm finding a
$(1+1 / c)$-approximate solution in a polynomial time depending on c.

Instance preprocessing

For an arbitrary instance of Min-2-SCCP, there exists one of the following alternatives (each of them can be verified in polynomial time)
(1) The instance in question can be decomposed into 2 independent TSP instances;
(2) Inter-node distance can be overestimated using some function that depends on OPT linearly.

Young's inequality

Consider a set S of diameter D in d-dimensional Euclidean space, let R be a radius of the smallest containing sphere.
Then

$$
\frac{1}{2} D \leqslant R \leqslant\left(\frac{d}{2 d+2}\right)^{\frac{1}{2}} D .
$$

In particular, in the plane:

$$
\begin{equation*}
\frac{1}{2} D \leqslant R \leqslant \frac{\sqrt{3}}{3} D . \tag{1}
\end{equation*}
$$

Instance preprocessing - ctd.

- Construct 2-MSF consisting of trees T_{1} and T_{2}.

- let D_{1}, D_{2} be diameters of T_{1} and T_{2}, and R_{1}, R_{2} be radii of the smallest circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$ containing the trees T_{1} and T_{2}. Denote $D=\max \left\{D_{1}, D_{2}\right\}$ and $R=\max \left\{R_{1}, R_{2}\right\}$.

Instance preprocessing - ctd.

- Construct 2-MSF consisting of trees T_{1} and T_{2}.

- let D_{1}, D_{2} be diameters of T_{1} and T_{2}, and R_{1}, R_{2} be radii of the smallest circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$ containing the trees T_{1} and T_{2}. Denote $D=\max \left\{D_{1}, D_{2}\right\}$ and $R=\max \left\{R_{1}, R_{2}\right\}$.

Instance preprocessing - ctd.

- Construct 2-MSF consisting of trees T_{1} and T_{2}.

- let D_{1}, D_{2} be diameters of T_{1} and T_{2}, and R_{1}, R_{2} be radii of the smallest circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$ containing the trees T_{1} and T_{2}. Denote $D=\max \left\{D_{1}, D_{2}\right\}$ and $R=\max \left\{R_{1}, R_{2}\right\}$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ such that $C_{1} \cap T_{1} \neq \varnothing$ and $C_{1} \cap T_{2} \neq \varnothing$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ such that $C_{1} \cap T_{1} \neq \varnothing$ and $C_{1} \cap T_{2} \neq \varnothing$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ such that $C_{1} \cap T_{1} \neq \varnothing$ and $C_{1} \cap T_{2} \neq \varnothing$.

Then C_{1} contains at least two edges, spanning T_{1} and T_{2}

Problem decomposition

Proof (ctd.)

- By the condition, the weight of each of them is greater than $3 R$
- Remove them and close the cycles inside $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$

- Obtain the lighter 2-SCC

Problem decomposition

Statement

If $\rho\left(T_{1}, T_{2}\right) \leqslant 5 R$ then the maximum inter-node distance $D(G)$ for the graph G is no more than $\frac{7 \sqrt{3}}{3} O P T$.

Problem decomposition

Statement

If $\rho\left(T_{1}, T_{2}\right) \leqslant 5 R$ then the maximum inter-node distance $D(G)$ for the graph G is no more than $\frac{7 \sqrt{3}}{3} O P T$.

Proof sketch

- In our case $D(G) \leqslant 7 R$
- Due to Young's inequality and $D \leqslant M S F \leqslant O P T$ we have

$$
R \leqslant \frac{\sqrt{3}}{3} D \leqslant \frac{\sqrt{3}}{3} \cdot O P T,
$$

- i.e. $D(G) \leqslant \frac{7 \sqrt{3}}{3} \cdot O P T$.

Problem decomposition

Statement

If $\rho\left(T_{1}, T_{2}\right) \leqslant 5 R$ then the maximum inter-node distance $D(G)$ for the graph G is no more than $\frac{7 \sqrt{3}}{3} O P T$.

Proof sketch

- In our case $D(G) \leqslant 7 R$
- Due to Young's inequality and $D \leqslant M S F \leqslant O P T$ we have

$$
R \leqslant \frac{\sqrt{3}}{3} D \leqslant \frac{\sqrt{3}}{3} \cdot O P T,
$$

- i.e. $D(G) \leqslant \frac{7 \sqrt{3}}{3} \cdot O P T$.

In this case Min-2-SCCP instance can be enclosed into some axis-aligned square \mathcal{S} of size $7 / \sqrt{3} \cdot O P T$

Main idea

Randomized partitioning of the square \mathcal{S} into smaller subsquares and subsequent search for minimum 2-SCC of special kind

1) every inter-node segment of its cycles is piece-wise linear and intersects all squares' borders at special points (portals) only;
2) portals number and locations together with maximum number of intersections (for each border) are defined in advance and depend on accuracy parameter c;

Rounded Min-2-SCCP

Definition

Instance of Min-2-SCCP is called rounded if

- every vertex of the graph G has integral coordinates

$$
x_{i}, y_{i} \in \mathbb{N}_{O(n)}^{0}
$$

- for any edge $e, w(e) \geqslant 4$

Lemma 3

PTAS for rounded Min-2-SCCP implies PTAS for Min-2-SCCP (in the general case)

Quad-trees for rounded Min-2-SCCP

Set up a regular 1-step axis-aligned grid on the square \mathcal{S} with side-length of $L=O(n)$.

We are using the concept of quad-tree

Quad-trees for rounded Min-2-SCCP

Root is the square \mathcal{S}. For every square (including the root), make a partition of the square into 4 child subsquares. Repeat it until all child squares will contain no more than 1 node of the instance.

Shifted Quad-tree

Definition

Suppose, $a, b \in \mathbb{N}_{L}^{0}$, we call the Quad-tree $T(a, b)$ shifted Quad-tree, if coordinates of its center is

$$
((L / 2+a) \bmod L,(L / 2+b) \bmod L) .
$$

Child squares of $T(a, b)$, as its center, is considered modulo L

Definition

- Consider fixed values $m, r \in \mathbb{N}$.
- For any square S, assign regular partition of its border, including vertices of the square and consisting of $4(m+1)$ points.
- Such a partition is called m-regular partition, and all its elements - portals.

Definitions

m-regular portal set

Union of m-regular partitions for all borders of not-a-leaf nodes of Quadro-tree $T(a, b)$ is called m-regular portal set. Denote it $P(a, b, m)$.

(m, r)-approximation

Suppose, π is a simple cycle in the Min-2-SCCP instance graph G (on the plane), $V(\pi)$ is its node-set. Closed piece-wise linear route $l(\pi)$ is called (m, r)-approximation (of the cycle π) if

1) node-set of the route $l(\pi)$ is a some subset of $V(\pi) \cup P(a, b, m)$,
2) π and $l(\pi)$ visit the nodes from $V(\pi)$ in the same order,
3) for any square (being a node of $T(a, b)), l(\pi)$ intersects its arbitrary edge no more than r times, and exclusively in the points of $P(a, b, m)$.

Once more definition

(k, m, r)-cycle cover
k-scc consisting of (m, r)-approximations is called (k, m, r)-cycle cover
Obviously, an arbitrary ($1, m, r$)-cycle cover contains the only (m, r)-approximation which is a Hamiltonian cycle.
Let us consider ($2, m, r$)-cycle covers...

Structure Theorem for Euclidean Min-2-SCCP

Theorem 4

- Suppose $c>0$ is fixed,
- L is size of square \mathcal{S} for a given instance of rounded 2-MHC.
- Suppose discrete stochastic variables a, b are distributed uniformly on the set \mathbb{N}_{L}^{0}.
- Then for $m=O(c \log L)$ and $r=O(c)$ with probability at least $\frac{1}{2}$ there is $(2, m, r)$-cycle cover which weight is no more than $\left(1+\frac{1}{c}\right) O P T$.

Dynamic Programming

$(2, m, r, S)$-segment

Let some $(2, m, r)$-cycle cover C and some node S of the tree $T(a, b)$ be chosen. A family of partial routes $C \cap S$ is called $(2, m, r, S)$-segment (of the cover C).

Bellman equation

Task $\left(S, R_{1}, R_{2}, \kappa\right)$

Input.

- Node S of the tree $T(a, b)$.
- Cortege $R_{i}: \mathbb{N}_{q_{i}} \rightarrow(P(a, b, m) \cap \partial S)^{2}$ defines a sequence of the start-finish pairs of portals $\left(s_{j}^{i}, t_{j}^{i}\right)$ which are crossing-points of ∂S by (m, r)-approximation l_{i}.
- Number κ is equal to the number of cycles of the building ($2, m, r$)-cycle cover, intersecting the interior of S.

Output minimum-cost $(2, m, r, S)$-segment.
Denote by $W\left(S, R_{1}, R_{2}, \kappa\right)$ value of the task $\left(S, R_{1}, R_{2}, \kappa\right)$.

$$
W\left(S, R_{1}, R_{2}, \kappa\right)=\min _{\tau} \sum_{i=I}^{I V} W\left(S^{i}, R_{1}^{i}(\tau), R_{2}^{i}(\tau), \kappa^{i}(\tau)\right)
$$

Derandomization

Denote by $\operatorname{APP}(a, b)$ a weight of the approximate solution constructed by DP for the tree $T(a, b)$.

$$
P\left(A P P(a, b) \leqslant\left(1+\frac{1}{c}\right) O P T\right) \geqslant 1 / 2,
$$

Hence, there is a pair $\left(a^{*}, b^{*}\right) \in \mathbb{N}_{L}^{0}$, for which the equation

$$
O P T \leqslant A P P\left(a^{*}, b^{*}\right) \leqslant(1+1 / c) O P T
$$

is valid.

Theorem 5

Euclidean Min-2-SCCP has a Polynomial-Time Approximation Scheme with complexity bound $O\left(n^{3}(\log n)^{O(c)}\right)$.

Conclusion and Open Problems

- The proposed PTAS seems to be easily extendable onto Min- k-SCCP in d-dimensional Euclidean space
- Due to well-known PCP theorem there is no PTAS for Metric Min- k-SCCP. But, what about approximation threshold value for this problem?

Thank you for your attention!

