	Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	

APPROXIMATION OF MINIMUM WEIGHT k-SIZE CYCLE COVER PROBLEM

Michael Khachay and Katherine Neznakhina 1
mkhachay@imm.uran.ru

¹Krasovsky Institute of Mathematics and Mechanics S.Kovalevskoy, 16, Ekaterinburg, 620990, Russia

> IIP-2014, Crete October 10, 2014

Intro		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Ahs	tract			

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight *k*-Size Cycle Cover Problem (Min-*k*-SCCP).
- Related problems
 - Min-1-SCCP is Traveling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - Min-*L*-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Intro		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Abs	tract			

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight *k*-Size Cycle Cover Problem (Min-*k*-SCCP).
- Related problems
 - Min-1-SCCP is Traveling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - Min-*L*-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Intro		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Abs	tract			

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight *k*-Size Cycle Cover Problem (Min-*k*-SCCP).
- Related problems
 - Min-1-SCCP is Traveling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - Min-*L*-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Intro		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Abs	tract			

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight *k*-Size Cycle Cover Problem (Min-*k*-SCCP).
- Related problems
 - Min-1-SCCP is Traveling Salesman Problem (TSP)
 - Vertex-Disjoint Cycle Cover Problem
 - k-Peripatetic Salesmen Problem
 - Min-*L*-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Abstract — Motivation

• Nuclear Power Plant dismantling problem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Abstract — Motivation

• Nuclear Power Plant dismantling problem

• high-precision metal shape cutting problem

Abstract - ctd.

Results

- Min-k-SCCP is strongly NP-hard and hardly approximable in the general case
- **2** Metric and Euclidean cases are intractable as well
- **③** 2-approximation algorithm for Metric Min-k-SCCP is proposed
- Polynomial-time approximation scheme (PTAS) for Min-2-SCCP on the plane is constructed

Intro		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
C				

Contents

- Problem statement
- 2 Complexity and Approximability

3 Metric Min-k-SCCP

- Preliminary results
- Algorithm

PTAS for Euclidean Min-2-SCCP on the plane

- Preprocessing
- PTAS sketch
- Structure Theorem
- Dynamic Programming
- Derandomization

Definitions and Notation

Standard notation is used

- \mathbb{R} field of real numbers
- \mathbb{N} field of rational numbers
- \mathbb{N}_m integer segment $\{1, ..., m\},\$
- \mathbb{N}_m^0 segment $\{0, ..., m\}$.
- G = (V, E, w) is a simple complete weighted (di)graph with loops, edge-weight function $w : E \to \mathbb{R}$

 Intro
 Problem statement
 Complexity
 Metric Min-k-SCCP
 PTAS for Min-2-SCCP
 Conslusion

 Minimum
 Weight
 k-Size
 Cycle
 Cover
 Problem
 (Min-k-SCCP)
 Conslusion

Input: graph G = (V, E, w).

Find: a minimum-cost collection $\mathcal{C} = C_1, ..., C_k$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_k} V(C_i) = V$.

ション ふゆ マ キャット マックシン

Intro Problem statement Complexity Metric Min-k-SCCP PTAS for Min-2-SCCP Conslusion Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP)

Input: graph G = (V, E, w).

Find: a minimum-cost collection $\mathcal{C} = C_1, ..., C_k$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_k} V(C_i) = V$.

min
$$\sum_{i=1}^{k} W(C_i) \equiv \sum_{i=1}^{k} \sum_{e \in E(C_i)} w(e)$$

s.t.
$$C_1, \dots, C_k \text{ are cycles in } G$$

$$C_i \cap C_j = \emptyset$$

$$V(C_1) \cup \dots \cup V(C_k) = V$$

ション ふゆ マ キャット マックシン

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Metric and Euclidean Min-k-SCCP

Metric Min-k-SCCP

- $w_{ij} \ge 0$
- $w_{ii} = 0$
- $w_{ij} = w_{ji}$
- $w_{ij} + w_{jk} \ge w_{ik} \quad (\{i, j, k\})$

Euclidean Min-k-SCCP

• For some d > 1, $V = \{v_1, \dots, v_n\} \subset \mathbb{R}^d$

•
$$w_{ij} = \|v_i - v_j\|_2$$

Instance of Euclidean Min-2-SCCP

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

		Complexity	Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Con	nplexity				

Known facts

- (Karp, 1972) TSP is strongly NP-hard
- (Sahni and Gonzales, 1976) TSP can not be approximated within $O(2^n)$ (unless P = NP)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• (Papadimitriou, 1977) Euclidean TSP is NP-hard

		Complexity	Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Con	nplexity				

Theorem 1

For any $k \ge 1$, Min-k-SCCP is strongly NP-hard.

		Complexity	Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Con	nplexity				

Theorem 1

For any $k \ge 1$, Min-k-SCCP is strongly NP-hard.

Proof idea

- Reduce TSP to Min-k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min-*k*-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

		Complexity	Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Con	nplexity				

Theorem 1

For any $k \ge 1$, Min-k-SCCP is strongly NP-hard.

Proof idea

- Reduce TSP to Min-k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min-*k*-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

Corollary

- Min-k-SCCP also can not be approximated within $O(2^n)$ (unless P = NP)
- Metric Min-*k*-SCCP and Euclidean Min-*k*-SCCP are NP-hard as well

- k-forest is an acyclic graph with k connected components
- For any k-forest F, weight (cost)

$$W(F) = \sum_{e \in E(F)} w(e)$$

ション ふゆ マ キャット マックシン

• k-Minimum Spanning Forest (k-MSF) Problem

Kruskal's algorithm for k-MSF

- Start from the empty *n*-forest F_0 .
- **2** For each $i \in \mathbb{N}_{n-k}$ add the edge

 $e_i = \arg\min\{w(e): F_{i-1} \cup \{e\} \text{ remains acyclic}\}$

ション ふゆ マ キャット マックシン

to the forest F_{i-1} .

3 Output k-forest F^* .

Kruskal's algorithm for k-MSF

- Start from the empty *n*-forest F_0 .
- **2** For each $i \in \mathbb{N}_{n-k}$ add the edge

 $e_i = \arg\min\{w(e): F_{i-1} \cup \{e\} \text{ remains acyclic}\}$

うして ふゆう ふほう ふほう ふしつ

to the forest F_{i-1} .

3 Output k-forest F^* .

Theorem 2

 F^* is k-Minimum Spanning Forest.

Following to the scheme of well-known 2-approx. algorithm for Metric TSP.

Wlog. assume k < n.

Algorithm:

- 0 Build a k-MSF F
- **2** Take edges of F twice
- **③** For any non-trivial connected component, find a Eulerian cycle
- Iransform them into Hamiltonian cycles
- Output collection of these cycles adorned by some number of isolated vertices

ション ふゆ マ キャット マックシン

	Problem statement	Complexity	Metric Min-k-SCCP	PTAS for Min-2-SCCP 00000000000000000000000000000000000	Conslusion
Algorith	m				
Cor	rectness nrc	of			

Assertion

Approximation ratio:

$$2(1-2/n) \leqslant \sup_{I} \frac{APP(I)}{OPT(I)} \leqslant 2(1-1/n)$$

Running-time:

 $O(n^2 \log n).$

Proof sketch

Consider optimal cycle cover C (with weight OPT). Removing the most heavy edge from any non-empty cycle transform it into some spanning forest F(C) with cost SF. Then

$$MSF \leq SF \leq OPT(1-1/n),$$

where

 $APP \leq 2 \cdot MSF \leq 2(1-1/n)OPT.$

			Metric Min-k-SCCP 00000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Algorith	m				
LOW	or hound	instance			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

			Metric Min- k -SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Algorith	ım				
Low	ver bound -	2-forest			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Lower bound - approximation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Lower bound - better approximation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- number of nodes n = 4p + 2
- APP = 8p
- $OPT \le 4p + 2 + 2\varepsilon(2p 1)$
- for approximation ratio r we have

$$r \ge \sup_{\varepsilon \in (0,1)} \frac{8p}{4p + 2 + 2\varepsilon(2p - 1)} = \frac{4p}{2p + 1} = 2(1 - 2/n)$$

ション ふゆ マ キャット マックシン

PTAS for Euclidean Min-2-SCCP on the plane

Definition

For a combinatorial optimization problem, Polynomial-Time Approximation Scheme (PTAS) is a collection of algorithms such that for any fixed c > 1 there is an algorithm finding a (1 + 1/c)-approximate solution in a polynomial time depending on c.

ション ふゆ マ キャット マックシン

For an arbitrary instance of Min-2-SCCP, there exists one of the following alternatives (each of them can be verified in polynomial time)

- The instance in question can be decomposed into 2 independent TSP instances;
- Inter-node distance can be overestimated using some function that depends on OPT linearly.

(日) (日) (日) (日) (日) (日) (日) (日)

Consider a set S of diameter D in d-dimensional Euclidean space, let R be a radius of the smallest containing sphere. Then

$$\frac{1}{2}D \leqslant R \leqslant \left(\frac{d}{2d+2}\right)^{\frac{1}{2}}D.$$

In particular, in the plane:

$$\frac{1}{2}D \leqslant R \leqslant \frac{\sqrt{3}}{3}D. \tag{1}$$

ション ふゆ マ キャット マックシン

• Construct 2-MSF consisting of trees T_1 and T_2 .

let D₁, D₂ be diameters of T₁ and T₂, and R₁, R₂ be radii of the smallest circles B(T₁) and B(T₂) containing the trees T₁ and T₂. Denote D = max{D₁, D₂} and R = max{R₁, R₂}.

• Construct 2-MSF consisting of trees T_1 and T_2 .

let D₁, D₂ be diameters of T₁ and T₂, and R₁, R₂ be radii of the smallest circles B(T₁) and B(T₂) containing the trees T₁ and T₂. Denote D = max{D₁, D₂} and R = max{R₁, R₂}.

• Construct 2-MSF consisting of trees T_1 and T_2 .

let D₁, D₂ be diameters of T₁ and T₂, and R₁, R₂ be radii of the smallest circles B(T₁) and B(T₂) containing the trees T₁ and T₂. Denote D = max{D₁, D₂} and R = max{R₁, R₂}.

		Complexity	Metric Min-k-SCCP	PTAS for Min-2-SCCP	
				000000000000000000000000000000000000000	
Preproc	essing				

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

ション ふゆ マ キャット マックシン

		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Preproce	ssing			

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $C = \{C_1, C_2\}$ such that $C_1 \cap T_1 \neq \emptyset$ and $C_1 \cap T_2 \neq \emptyset$.

		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Preproce	ssing			

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $C = \{C_1, C_2\}$ such that $C_1 \cap T_1 \neq \emptyset$ and $C_1 \cap T_2 \neq \emptyset$.

		Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Preproce	ssing			

Define $\rho(T_1, T_2)$ as a distance between centers of circles $B(T_1)$ and $B(T_2)$.

Assertion

If $\rho(T_1, T_2) > 5R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G(T_1)$ and $G(T_2)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $C = \{C_1, C_2\}$ such that $C_1 \cap T_1 \neq \emptyset$ and $C_1 \cap T_2 \neq \emptyset$.

Then C_1 contains at least two edges, spanning T_1 and T_2

		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Preproc	cessing			
Ъ	11 1			

Proof (ctd.)

- By the condition, the weight of each of them is greater than 3R
- Remove them and close the cycles inside $B(T_1)$ and $B(T_2)$

うして ふゆう ふほう ふほう ふしつ

• Obtain the lighter 2-SCC

			Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Preproce	essing				
Prol	blem decom	position			

Statement

If $\rho(T_1, T_2) \leq 5R$ then the maximum inter-node distance D(G) for the graph G is no more than $\frac{7\sqrt{3}}{3}OPT$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

			Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Preproc	essing				
Pro	blem decom	position			

Statement

If $\rho(T_1, T_2) \leq 5R$ then the maximum inter-node distance D(G) for the graph G is no more than $\frac{7\sqrt{3}}{3}OPT$.

Proof sketch

- In our case $D(G) \leqslant 7R$
- Due to Young's inequality and $D \leqslant MSF \leqslant OPT$ we have

$$R \leqslant \frac{\sqrt{3}}{3}D \leqslant \frac{\sqrt{3}}{3} \cdot OPT,$$

うして ふゆう ふほう ふほう ふしつ

• i.e. $D(G) \leq \frac{7\sqrt{3}}{3} \cdot OPT$.

			Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Preproc	essing				
Pro	blem decom	position			

Statement

If $\rho(T_1, T_2) \leq 5R$ then the maximum inter-node distance D(G) for the graph G is no more than $\frac{7\sqrt{3}}{3}OPT$.

Proof sketch

- In our case $D(G) \leqslant 7R$
- Due to Young's inequality and $D \leq MSF \leq OPT$ we have

$$R \leqslant \frac{\sqrt{3}}{3}D \leqslant \frac{\sqrt{3}}{3} \cdot OPT,$$

うして ふゆう ふほう ふほう ふしつ

• i.e. $D(G) \leq \frac{7\sqrt{3}}{3} \cdot OPT$.

In this case Min-2-SCCP instance can be enclosed into some axis-aligned square $\mathcal S$ of size $7/\sqrt{3}\cdot OPT$

		Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
PTAS sk	etch			
Mai	n idea			

Randomized partitioning of the square ${\mathcal S}$ into smaller subsquares and subsequent search for minimum 2-SCC of special kind

- 1) every inter-node segment of its cycles is piece-wise linear and intersects all squares' borders at special points (*portals*) only;
- portals number and locations together with maximum number of intersections (for each border) are defined in advance and depend on accuracy parameter c;

PTAS for Min-2-SCCP

うして ふゆう ふほう ふほう ふしつ

PTAS sketch

Rounded Min-2-SCCP

Definition

Instance of Min-2-SCCP is called *rounded* if

- every vertex of the graph G has integral coordinates $x_i, y_i \in \mathbb{N}^0_{O(n)}$
- for any edge $e, w(e) \ge 4$

Lemma 3

PTAS for rounded Min-2-SCCP implies PTAS for Min-2-SCCP (in the general case)

Set up a regular 1-step axis-aligned grid on the square S with side-length of L = O(n).

ション ふゆ マ キャット マックシン

We are using the concept of quad-tree

Root is the square S. For every square (including the root), make a partition of the square into 4 child subsquares. Repeat it until all child squares will contain no more than 1 node of the instance.

			Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
PTAS s	ketch				
Shif	fted Quad-ti	ree			

Definition

Suppose, $a, b \in \mathbb{N}_L^0$, we call the Quad-tree T(a, b) shifted Quad-tree, if coordinates of its center is

 $((L/2+a) \mod L, (L/2+b) \mod L).$

Child squares of T(a, b), as its center, is considered modulo L

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

		Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP	
Structur	e Theorem			
Defi	nition			

- Consider fixed values $m, r \in \mathbb{N}$.
- For any square S, assign regular partition of its border, including vertices of the square and consisting of 4(m+1) points.
- Such a partition is called *m*-regular partition, and all its elements portals.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

			Metric Min- <i>k</i> -SCCP 000000000	PTAS for Min-2-SCCP			
Structure Theorem							
Defi	nitions						

m-regular portal set

Union of *m*-regular partitions for all borders of not-a-leaf nodes of Quadro-tree T(a, b) is called *m*-regular portal set. Denote it P(a, b, m).

(m, r)-approximation

Suppose, π is a simple cycle in the Min-2-SCCP instance graph G (on the plane), $V(\pi)$ is its node-set. Closed piece-wise linear route $l(\pi)$ is called (m, r)-approximation (of the cycle π) if

- 1) node-set of the route $l(\pi)$ is a some subset of $V(\pi) \cup P(a, b, m)$,
- 2) π and $l(\pi)$ visit the nodes from $V(\pi)$ in the same order,
- 3) for any square (being a node of T(a, b)), $l(\pi)$ intersects its arbitrary edge no more than r times, and exclusively in the points of P(a, b, m).

			Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP	
Structur	e Theorem				
Onc	e more defi	nition			

(k, m, r)-cycle cover

 $k\mbox{-scc}$ consisting of $(m,r)\mbox{-approximations}$ is called $(k,m,r)\mbox{-cycle}$ cover

Obviously, an arbitrary (1, m, r)-cycle cover contains the only (m, r)-approximation which is a Hamiltonian cycle. Let us consider (2, m, r)-cycle covers...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Structure Theorem for Euclidean Min-2-SCCP

Theorem 4

- Suppose c > 0 is fixed,
- L is size of square S for a given instance of rounded 2-MHC.
- Suppose discrete stochastic variables a, b are distributed uniformly on the set ℕ⁰_L.
- Then for $m = O(c \log L)$ and r = O(c) with probability at least $\frac{1}{2}$ there is (2, m, r)-cycle cover which weight is no more than $(1 + \frac{1}{c})OPT$.

		Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP	
Dynam	ic Programming			
-	·			

Dynamic Programming

(2, m, r, S)-segment

Let some (2, m, r)-cycle cover C and some node S of the tree T(a, b) be chosen. A family of partial routes $C \cap S$ is called (2, m, r, S)-segment (of the cover C).

			Metric Min-k-SCCP 000000000	PTAS for Min-2-SCCP 00000000000000000000000000000000000	
Dynamic	c Programming				
Bell	man equati	on			

Task (S, R_1, R_2, κ)

Input.

- Node S of the tree T(a, b).
- Cortege $R_i : \mathbb{N}_{q_i} \to (P(a, b, m) \cap \partial S)^2$ defines a sequence of the start-finish pairs of portals (s_j^i, t_j^i) which are crossing-points of ∂S by (m, r)-approximation l_i .
- Number κ is equal to the number of cycles of the building (2, m, r)-cycle cover, intersecting the interior of S.

Output minimum-cost (2, m, r, S)-segment.

Denote by $W(S, R_1, R_2, \kappa)$ value of the task (S, R_1, R_2, κ) .

$$W(S, R_1, R_2, \kappa) = \min_{\tau} \sum_{i=I}^{IV} W(S^i, R_1^i(\tau), R_2^i(\tau), \kappa^i(\tau)),$$

Denote by APP(a, b) a weight of the approximate solution constructed by DP for the tree T(a, b).

$$P\left(APP(a,b) \leqslant (1+\frac{1}{c})OPT\right) \ge 1/2,$$

Hence, there is a pair $(a^*, b^*) \in \mathbb{N}^0_L$, for which the equation

$$OPT \leqslant APP(a^*, b^*) \leqslant (1 + 1/c)OPT$$

うして ふゆう ふほう ふほう ふしつ

is valid.

Theorem 5

Euclidean Min-2-SCCP has a Polynomial-Time Approximation Scheme with complexity bound $O(n^3(\log n)^{O(c)})$.

Conclusion and Open Problems

- The proposed PTAS seems to be easily extendable onto Min-k-SCCP in d-dimensional Euclidean space
- Due to well-known PCP theorem there is no PTAS for Metric Min-k-SCCP. But, what about approximation threshold value for this problem?

ション ふゆ マ キャット マックシン

	Complexity	Metric Min-k-SCCP	PTAS for Min-2-SCCP	Conslusion

Thank you for your attention!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで