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Abstract

Wasserstein gradient flows provide a powerful means of understanding and solving many diffusion
equations. Specifically, Fokker-Planck equations, which model the diffusion of probability mea-
sures, can be understood as gradient descent over entropy functionals in Wasserstein space. This
equivalence, introduced by Jordan, Kinderlehrer and Otto, inspired the so-called JKO scheme to
approximate these diffusion processes via an implicit discretization of the gradient flow in Wasser-
stein space. Solving the optimization problem associated to each JKO step, however, presents
serious computational challenges. We introduce a scalable method to approximate Wasserstein
gradient flows, targeted to machine learning applications. Our approach relies on input-convex
neural networks (ICNNs) to discretize the JKO steps, which can be optimized by stochastic gradi-
ent descent. Unlike previous work, our method does not require domain discretization or particle
simulation. As a result, we can sample from the measure at each time step of the diffusion and
compute its probability density. We demonstrate our algorithm’s performance by computing diffu-
sions following the Fokker-Planck equation and apply it to unnormalized density sampling as well
as nonlinear filtering. The work is based on our article [57].
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Реферат
Градиентные потоки Вассерштайна являются мощным средством, помогающим понять и
решить некоторые диффузионные уравнения. В частности, уравнение Фоккера-Планка, ко-
торое описывает достаточно широкий класс диффузионных процессов, можно представить
как градиентный спуск, минимизирующий энтропийный функционал в пространстве веро-
ятностных мер с метрикой Вассерштайна. В пионерской работе Jordan, Kinderlehrer и Otto
была предложена так называемая JKO схема для аппроксимации диффузионных процессов
с помощью неявной временной дискретизации градиентного потока в пространстве Вассер-
штайна. Вместе с тем, задачи оптимизации, возникающие на каждомшаге JKO схемы, вычис-
лительно трудозатратны. В настоящей работе предложен масштабируемый метод аппрокси-
мации градиентных потоков Вассерштайна, который можно применять в приложениях ма-
шинного обучения. Для параметризации JKO шагов используются выпуклые нейронные се-
ти (ICNNs), оптимизируемые с помощью стохастического градиентного спуска. В отличие
от предшествующих работ, предложенный подход не требует дискретизации пространства
и симуляции частиц. Описан алгоритм создания выборки из распределения градиентного
потока в каждый момент времени и метод вычисления функции плотности этого распреде-
ления. В качестве вычислительного экспериментов было произведено моделирование неко-
торых диффузионных процессов, подчиняющихся уравнениюФоккера-Планка а также были
решены практические задачи, связанные с семплированием из ненормируемой плотности и
нелинейной фильтрацией. Работа основана на статье [57] автора настоящей диссертации с
соавторами.
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1 Introduction

Gradient flows, also known as steppest descent curves are very common field in evolution equations.
Given a functional F : X → R defined on a vector spaceX and initial point x0 ∈ X we seek for a
curve x(t), starting at x0 and minimizing F as fast as possible (Thus we are to solve the equation
x′(t) = −∇F (x(t)) for t ∈ R+). Thorough gradient flows overview can be found in [71]. In the
Euclidean case X = Rn gradient flows are equivalent to ODE. Discretization of this flow leads
to the gradient descent minimization algorithm. The steppest descent curves could be considered
in more general metric spaces [5]. Of the particular interest of our work are gradient flows on the
probability measures space equipped with 2-Wasserstein metric also known asWasserstein gradient
flows. We introduce basic notations and statements as well as give brief theoretical review in the
next subsections.

1.1 Basic Notations and Statements

P2(RD) denotes the set of Borel probability measures onRD with finite second moment. P2,ac(RD)

denotes its subset of probability measures absolutely continuous with respect to Lebesgue measure.
The B(RD) are the Borel sets. For ρ ∈ P2,ac(RD), we denote by dρ

dx
(x) its density with respect to

the Lebesgue measure.

Definition 1. Let µ, ν ∈ P(RD). The coupling of µ and ν denoted as Π(µ, ν) is the set of proba-
bility measures on RD × RD whose first and second marginals are µ and ν respectively, i.e:

Π(µ, ν) =
{
π ∈ P(RD × RD)

∣∣∀A ∈ B(RD) : π(A× RD) = µ(A); π(RD × A) = ν(A)
}

Definition 2. Let T : RD → RD be a measurable function, µ ∈ RD. Then there exists the measure
ν such, that ∀A ∈ B(RD) : ν(A) = µ(T−1(A)). We write ν = T♯µ and designate T♯ to be the
associated push-forward operator between measures.

Our work deals with flows or curves {µt}t∈[0,T ] where µt ∈ P2(RD). Generally speaking,
an arbitrary continuous sequence can be understood as a ”flow” in probability measures space.
However, in order a curve to be analyzable and to make sense from the geometrical point of view
it should satisfy some continuity or smoothness properties. Therefore, we need to define a notion
of closeness between probability measures. And the right notion of closeness which satisfy nice
theoretical properties is the Wasserstein-2 metric defined below.

Definition 3. The (squared) Wasserstein-2 metricW2 between µ, ν ∈ P2(RD) is [78]:

W2
2 (µ, ν)

def
= min

π∈Π(µ,ν)

∫
RD×RD

∥x− y∥22 dπ(x, y), (1)

W2 turns out to be a metric in P2(RD) and the (P2,W2) constitutes complete separable
metric space. It metrizes weak convergence coupled with second moment convergence [13].
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Optimal transportation problem and Brenier’s theorem. The equation (1) is known as
optimal transport problemwith quadratic cost function c(x, y) = ∥x−y∥22. Ameasure π∗ ∈ Π(µ, ν)

which minimizes (1) (it can be not unique) is called optimal transport plan. The optimal transport
problem was introduced by Kantorovich in 20-th century as the relaxed version of the optimal
transport problem due to Monge, firstly considered in the 18-th century [58]:

inf
T :ν=T♯µ

∫
Rd

∥x− T (x)∥22dµ(x) (2)

The optimal map T∗ : RD → RD which minimizes (2) permits straightforward explanation. It
shows the optimal way to ”drag” probability mass of µ to ν given that the transportation cost is
squared euclidean distance ∥x − y∥22. For general measures µ and ν the solution for the Monge’s
problem may not exist (in contrast to the Kantorovich’s problem). However, for µ ∈ P2,ac(RD),
there exists a µ-unique map∇ψ∗ : RD → RD that is the gradient of a convex function ψ∗ : RD →
R ⊔ {∞} satisfying ∇ψ∗♯µ = ν [54]. Moreover, from the Brenier’s theorem [16], [24, Theorem
2.12] it follows, that the ∇ψ∗ forms the µ-unique optimal map T ∗ of the Monge problem (2) and
π∗ = [idRD ,∇ψ∗]♯µ is the unique minimizer of (1), i.e.,

W2
2 (µ, ν) =

∫
RD

∥x−∇ψ∗(x)∥22 dµ(x). (3)

The equation (3) and Brenier’s theorem play crucial role in our research, as they allow to recast the
search forW2 distance as minimization with respect to the set of convex functions.

1.2 Wasserstein Gradient Flows

The idea of gradient flow in Wasserstein space (P2(RD),W2) is similar to Euclidean case: the
flow {ρt}t∈[0,T ] should be good enough from geometrical and analytical perspectives and follows
the ”steepest descent” direction of a functional F : P2(R2) → R, but this time the notion of
gradient is more complex.

In what follows L1[a, b] (L2[a, b]) denotes functions RD → R whose modulus (square) is
Lebesgue integrable on the segment [a, b]. L2(ρ) denotes functions RD → R which are square
integrable with respect to measure ρ on RD. ⟨f, g⟩L2(ρ) =

∫
⟨f, g⟩dρ is the scalar product in the

space L2(ρ); ∥ · ∥L2(ρ) is the corresponding norm. C1
0(RD) designates the set of continuously

differentiable functions supported on a compact. ”A.e.” stands for ”almost everywhere”.
Absolutely continuous flows and their geometry.

Definition 4. A curve γ : [0, T ] → P2(RD) is called absolutely continuous if ∃g ∈ L1[0, T ],
g ≥ 0:

W2(γ(t), γ(s)) ≤
t∫

s

g(τ)dτ , ∀s ≤ t; s, t ∈ [0, T ].

The absolute continuity guarantees the ∀t ∈ [0, T ]−a.e. existence of the metric derivative |γ′|(t) def
=

lim
s→t

W2(γ(t),γ(s))
|t−s| which is the basic property of a curve because it enables such notions as ”length”,
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”speed” and so on.
It turns out, that the absolutely continuous flows permit a remarkable analytical characteri-

zation known as Ambrosio theorem [4, Theorem 2.29].

Theorem (Ambrosio) Let ρt, t ∈ [0, T ] be an absolutely continuous flow and |ρ′|(t) ∈ L2[0, T ].
Then there exists a Borel vector field b : [0, T ]× RD → RD such, that:

|ρ′|(t) = ∥b( · , t)∥L2(ρt)

∂tρt + div(bρt) = 0 (4)

The (4) is known as continuity equation. For general ρt in can be understood in an integral sense:

∀ϕ ∈ C1
0(RD) :

d

dt

(∫
ϕdρt

)
=

∫
⟨b(·, t),∇xϕ(·)⟩dρt.

If ρt is absolutely continuous the (4) could be understood straightforwardly by substituting ρt with
the corresponding probability density function pρt(x, t) =

dρt
dx
(x). In this case the div operator has

conventional meaning from vector calculus: div(f(x, t)) =
∑D

i=1
∂f
∂xi

.
To clarify readers with the role of vector field b in the equation (4) we give the following

example:

Example 1. Let b : [0, T ]× RD → RD - is a smooth, bounded, with bounded gradient. Let Xt(y)

be the solution of the Cauchy problem:dx/dt = b(x, t)

x(t = 0) = y

Let ρ ∈ P2(RD). Define the flow ρt = Xt♯ρ. Then the ρt, t ∈ [0, T ] is absolutely continuous and
satisfy the continuity equation (4) for the vector field b.

From the example one can see, that the measures ρt are transferred along the vector field b. This
intuition could be rigorously generalized. Let (ρt, b) satisfy the Ambrosio theorem. Then the suc-
ceeding ”displacement tangency” property [4, Proposition 2.33] holds true:

lim
h→0

W2 (ρt+h, [x+ hb(x, t)] ♯ρt))

h
= 0

Following the equation above b is called tangent vector field for the curve ρt, t ∈ [0, T ].
Flat derivative in P2(R2) and it’s gradient

Definition 5. Let U : P2(RD)→ R. We say, that U is of class C1, if: ∃ δU
δm

: P2(RD)× RD → R -
bounded and continuous such, that:

U(ν)− U(µ) =
1∫

0

∫
δU

δm
(µ+ t(ν − µ), x) · [ν − µ](dx)dt
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The δU
δm

if called flat derivative [21, Chapter 1.4.2] or first variation [70, Chapter 8] of the
functional U . The flat derivative shows the behavior of the functional U under small perturbations
of measure. In particular, if U is of class C1 and satisfies some additional assumptions,

U(ν)− U(µ) =
∫

δU

δm
(x)[ν − µ](dx) + O (W2(ν, µ))

See [22, Proposition 5.44] for rigorous formulation.
Consider the x - gradient of the flat derivative. It turns out, that ∇x

δU
δm

(µ, x) could be
understood as the gradient of the functional U in (P2,W2). Let U is of class C1 and∇x

δU
δm

(µ, x) is
bounded and continuous. Let ρt, t ∈ [0, T ] is an absolutely continuous curve with a tangent vector
field b. Then, ∀t ∈ [0, T ] - a.e. [5, Equation 10.1.16]:

d

dt
U(ρt) =

〈
∇x

δU

δm
(ρt, · ), b( · , t)

〉
L2(ρt)

(5)

The equation (5) resembles the standard gradient definition of a functional defined on a Riemann
manifold (note, that b( · , t) is the tangent vector of the flow ρt at time point t).

By now we have given a brief and intuitive introduction to the absolutely continuous flows
in the (P2,W2) and derivatives in probability measure space. More rigorous style of presentation
could be found in [4, 5, 24, 70, 71] (a.c. flows) and [22, 21, 70] (gradients). Now we are ready to
define the Wasserstein gradient flows.

Wasserstein gradient flows and Fokker-Planck equation. A natural idea inspired by (5)
is to consider a curve in probability measures space which follows the ”gradient” of a functional
F similar to gradient flows in Euclidean case M1.
Definition 6. An absolutely continuous curve {ρt}t∈[0,T ] follows the Wasserstein gradient flow of
a functional F if it solves the continuity equation:

∂tρt = div(ρt∇x
δF
δm

(ρt, x)), s.t. ρ0 = ρ0, (6)

Wasserstein gradient flows are used in various applied tasks. For example, gradient flows
are applied in training [9, 51, 32] or refinement [8] of implicit generative models. In reinforcement
learning, gradient flows facilitate policy optimization [66, 83]. Other tasks include crowd motion
modelling [53, 69, 61], dataset optimization [2], and in-between animation [33].

Many applications come from the connection betweenWasserstein gradient flows and Stochas-
tic differential equations (SDEs). Consider an RD-valued stochastic process {Xt}t∈R+ governed
by the following Itô SDE:

dXt = −∇Φ(Xt)dt+
√
2β−1dWt, s.t. X0 ∼ ρ0 (7)

where Φ : RD → R is the potential function, Wt is the standard Wiener process, and β > 0 is
the magnitude. The solution of (7) is called an advection-diffusion process. It arises in various
applications including physics [73], finance [28, 63], population dynamics [42, 17] and molecular
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discovery [3]. In machine learning the SDE in the form (7) appears in applications filtering [41, 27]
and unnormalized posterior sampling via a discretization of the Langevin diffusion [80].

The marginal measure ρt of Xt which follows (7) at each time satisfies the Fokker-Planck
equation with fixed diffusion coefficient:

∂ρt
∂t

= div(∇Φ(x)ρt) + β−1∆ρt, s.t. ρ0 = ρ0. (8)

Equation (8) turns out to be the Wasserstein gradient flow (6) for F given by the Fokker-Planck
free energy functional [39]

FFP(ρ) = U(ρ)− β−1E(ρ), (9)

where U(ρ) =
∫
RD Φ(x)dρ(x) is the potential energy and E(ρ) = −

∫
RD log dρ

dx
(x)dρ(x) is the

entropy. As the result, to solve the SDE (7), one may compute the Wasserstein gradient flow of the
Fokker-Planck equation with the free-energy functional FFP given by (9).

1.3 JKO Scheme

Modelling of the processes which satisfy (8) (and correspondingly (7) ) is the primal goal of our
work. However, the closed-form solutions are generally intractable, necessitating numerical ap-
proximation techniques. Jordan, Kinderlehrer, and Otto proposed a method — later abbreviated as
JKO integration—to approximate the dynamics of ρt in (8) [39]. It consists of a time-discretization
update of the continuous flow given by:

ρ(k) ← argmin
ρ∈P2(RD)

[
F(ρ) + 1

2h
W2

2 (ρ
(k−1), ρ)

]
(10)

where ρ(0) = ρ0 is the initial condition and h > 0 is the time-discretization step size. The discrete
time gradient flow converges to the continuous one as h → 0, i.e., ρ(k) ≈ ρkh. The method
was further developed in [5, 71], but performing JKO iterations in practice remains challenging
thanks to the minimization with respect to probability measures and presence of the termW2 in the
optimization objective.

1.4 Input Convex Neural Networks

Figure 1: Dense Input Convex Neural Network struc-
ture. Credits: [44]

The basic ingredient which helps us to mit-
igate problems with the JKO scheme is
Input Convex Neural Networks (ICNNs).
ICNNs are parametric models based on
deep neural networks which approximates
the set of convex functions and could be
optimized via standard deep learning opti-
mization techniques [7].

Our implementation of ICNNs
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based on Dense ICNN architecture depicted on Figure 1, proposed by [44]. It consists of two
types of blocks:

• ConvQuad blocks, which represent convex quadratic function of the input, i.e. ConvQuad(x) =
⟨Ax, x⟩ + ⟨b, x⟩ + c, where A is a dim(x) × dim(x) PSD matrix of rank r (this parameter
regulate the complexity of the model).

• PosDense blocks are linear layers with non-negative weights.

The convexity of the proposed architecture follows from convex function arithmetic [15]. Note,
that one can substitute the SoftPlus activations in the Figure 1 with arbitrary convex monotone
functions. Actually, in our work we use SoftPlus activations as it shows better experimental results
compared to alternatives.

ICNNs are known to represent rather rich family of convex functions [26, Theorem 1].
Embedding them into the JKO objective (10) with help of Brenier’s theorem gives us a way to
approximate the Fokker-Planck gradient flow (8). The details are given in further sections. Our
main contributions are summarized as follows.

Contributions. We propose a scalable parametric method to approximate Wasserstein gra-
dient flows with Fokker-Planck functional FFP (9) via JKO stepping using input-convex neural
networks (ICNNs) [7]. Specifically, we leverage Brenier’s theorem to bypass the costly computa-
tion of the Wasserstein distance, and parametrize the optimal transport map as the gradient of an
ICNN. Given sample access to the initial measure ρ0, we use stochastic gradient descent (SGD)
to sequentially learn time-discretized JKO dynamics of ρt. The trained model can sample from a
continuous approximation of ρt and compute its density dρt

dx
(x). We demonstrate performance by

computing diffusion following the Fokker-Planck equation and applying it to unnormalized density
sampling as well as nonlinear filtering.

2 Literature Review

One way to compute the diffusion which satisfies (8) is to use a fixed discretization of the domain
and apply standard numerical integration methods [25, 60, 19, 23, 48] to get ρt. For example, [61]
proposes a method to approximate the diffusion based on JKO stepping and entropy-regularized
optimal transport. However, these methods are limited to small dimensions since the discretization
of space grows exponentially.

An alternative to domain discretization is stochastic particle simulation which exploits the
SDE form (7). It involves drawing random samples (particles) from the initial distribution and
simulating their evolution via standard methods such as Euler-Maruyama scheme [43, M9.2]. After
convergence, the particles are approximately distributed according to the stationary distribution,
but no density estimate is readily available.

Another way to avoid discretization is to parameterize the density of ρt. Most methods
approximate only the first and second moments ρt, e.g., via Gaussian approximation. Kalman
filtering approaches can then compute the dynamics [41, 47, 40, 72]. More advanced Gaussian
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mixture approximations [75, 1] or more general parametric families have also been studied [74, 79].
In [59], variational methods are used to minimize the divergence between the predictive and the
true density.

The closest to our approach is a line of works related to JKO scheme. A common method
to perform JKO steps is to discretize the spatial domain. For support size / 106, (10) can be
solved by standard optimal transport algorithms [62]. Another original idea combining spatial
discretization with set of convex functions discretization proposed in [11]. However, in dimensions
D ≥ 3, discrete supports can hardly approximate continuous distributions and hence the dynamics
of gradient flows. To tackle this issue, [31] propose a stochastic parametric method to approximate
the density of ρt. The authors regularize the Wasserstein distance in the JKO step to ensure strict
convexity and solve the unconstrained dual problem via stochastic program on a finite linear subset
of basis functions. The method is biased and yields unnormalized probability density without direct
sample access.

Recently, several competitive works [3, 17, 30, 14] have appeared which utilize ideas sim-
ilar to ours. While [3] (independently) come up with the optimization procedure analogous to
Algorithm 1, [17] consider an alternative task but also used ICNN powered JKO. Actually, the
authors of [17] try to recover the function Φ from the equation (7) given experimental dynamics.
[30] is somewhat generalizes our approach by inserting variational formulation of f-divergence
into the JKO objective which allows them to reduce time consumption and consider broader class
of Wasserstein gradient flow functionals. [14] substitute Wassetstein distance in the equation (10)
with sliced Wassetstein distance and try to utilize the obtained surrogate in practice.

The rise of ICNNs. Since its origin at [7] , Input Convex Neural Networks have been gath-
ering close attention in machine learning community especially in the spheres related to Optimal
Transport. [37] use ICNNs to build flow-basedmodels resembling normalizing flows, [44, 52] build
generative models based on optimal transport map via ICNNs, [29, 46] solve high-dimensional
Wasserstein barycenter problem, [18, 81] utilize ICNNs in context of Model Predictive Control
(MPC) problem. Despite of apparent success some researches [45] report several performance is-
sues with Input Convex Neural Networks. That’s why the problem of convex functions modeling
still is of independent interest.

3 Computational Methodology

We now describe our approach to compute Wasserstein gradient flows via JKO stepping with IC-
NNs.

3.1 JKO Reformulation via Optimal Push-forwards Maps

Our key idea is to replace the optimization (10) over probability measures by an optimization over
convex functions, an idea inspired by [11]. Thanks to Brenier’s theorem, for any ρ ∈ P2,ac there
exists a unique ρ(k−1)-measurable gradient ∇ψ : RD → RD of a convex function ψ satisfying
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ρ = ∇ψ♯ρ(k−1). We set ρ = ∇ψ♯ρ(k−1) and rewrite (10) as an optimization over convex ψ:

ψ(k) ← argmin
Convex ψ

[
F(∇ψ♯ρ(k−1)) +

1

2h
W2

2 (ρ
(k−1),∇ψ♯ρ(k−1))

]
. (11)

To proceed to the next step of JKO scheme, we define ρ(k) def
= ∇ψ(k)♯ρ(k−1).

Since ρ is the pushforward of ρ(k−1) by the gradient of a convex function∇ψ, theW2
2 term

in (11) can be evaluated explicitly, simplifying the Wasserstein-2 distance term in (11):

ψ(k) ← argmin
Convex ψ

[
F(∇ψ♯ρ(k−1)) +

1

2h

∫
RD

∥x−∇ψ(x)∥22dρ(k−1)(x)

]
. (12)

This formulation avoids the difficulty of computing Wasserstein-2 distances. An additional ad-
vantage is that we can sample from ρ(k). Since ρ(k) = [∇ψ(k) ◦ · · · ◦ ∇ψ(1)]♯ρ0, one may sam-
ple x0 ∼ ρ(0), and then ∇ψ(k) ◦ · · · ◦ ∇ψ(1)(x0) gives a sample from ρ(k). Moreover, if func-
tions ψ(·) are strictly convex, then gradients ∇ψ(·) are invertible. In this case, the density dρ(k)

dx
of

ρ(k) = ∇ψ(k) ◦ · · · ◦∇ψ(1)♯ρ0 is computable by the change of variables formula (assuming ψ(·) are
twice differentiable)

dρ(k)

dx
(xk) = [det∇2ψ(k)(xk−1)]

−1 · · · [det∇2ψ(1)(x0)]
−1 · dρ

(0)

dx
(x0), (13)

where xi = ∇ψ(i)(xi−1) for i = 1, . . . , k and dρ(0)

dx
is the density of ρ(0).

3.2 Stochastic Optimization for JKO via ICNNs

In general, the solution ψ(k) of (12) is intractable since it requires optimization over all convex
functions. To tackle this issue, [11] discretizes the space of convex function. The approach also
requires discretization of measures ρ(k) limiting this method to small dimensions.

We propose to parametrize the search space using input convex neural networks (ICNNs) [7]
satisfying a universal approximation property among convex functions [26]. ICNNs are parametric
models of the form ψθ : RD → R with ψθ convex w.r.t. the input. ICNNs are constructed from
neural network layers, with restrictions on theweights and activation functions to preserve the input-
convexity, see [7, M3.1] or [44, MB.2]. The parameters are optimized via deep learning optimization
techniques such as SGD.

The JKO step then becomes finding the optimal parameters θ∗ for ψθ:

θ∗ ← argmin
θ

[
F(∇ψθ♯ρ(k−1)) +

1

2h

∫
RD

∥x−∇ψθ(x)∥22dρ(k−1)(x)

]
. (14)

If the functional F can be estimated stochastically using random batches from ρ(k−1), then SGD
can be used to optimize θ. FFP given by (9) is an example of such a functional:

Theorem 1 (Estimator of FFP). Let ρ ∈ P2,ac(RD) and T : RD → RD be a diffeomorphism. For
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a random batch x1, . . . , xN ∼ ρ, the expression [ÛT (x1, . . . , xN)− β−1∆̂ET (x1, . . . , xN)], where

ÛT (x1, . . . , xN)
def
=

1

N

N∑
n=1

Φ
(
T (xn)

)
and

∆̂ET (x1, . . . , xN)
def
=

1

N

N∑
n=1

log | det∇T (xn)|,

is an estimator of FFP(T♯ρ) up to constant (w.r.t. T ) shift given by β−1E(ρ).

Proof. ÛT is a straightforward unbiased estimator for U(T♯ρ). Let p and pT be the densities of ρ
and T♯ρ. Since T is a diffeomorphism, we have pT (y) = p(x) · | det∇T (x)|−1 where x = T−1(y).
Using the change of variables formula, we write

E(T♯ρ) = −
∫
RD

pT (y) log pT (y)dy

= −
∫
RD

p(x) · | det∇T (x)|−1 log
[
p(x) · | det∇T (x)|−1

]
· | det∇T (x)|dx

= −
∫
RD

p(x) log p(x)dx+
∫
RD

p(x) log | det∇T (x)|dx

= E(ρ) +
∫
RD

p(x) log | det∇T (x)|dx,

=⇒ ∆ET (ρ)
def
= E(T♯ρ)− E(ρ) =

∫
RD

log | det∇T (x)|dρ(x)

which explains that ∆̂ET is an unbiased estimator of ∆ET (ρ). As the result, ÛT − β−1∆̂ET is an
estimator for FFP(T♯ρ) = U(T♯ρ)− β−1E(T♯ρ) up to a shift of β−1E(ρ).

To apply Theorem 1 to our case, we take T ← ∇ψθ and ρ ← ρ(k−1) to obtain a stochastic
estimator for FFP(∇ψθ♯ρ(k−1)) in (14). Here, β−1E(ρ(k−1)) is θ-independent and constant since
ρ(k−1) is fixed, so the offset of the estimator plays no role in the optimization w.r.t. θ.

Algorithm 1 details our stochastic JKO method for FFP. The training is done solely based
on random samples from the initial measure ρ0: its density is not needed.

This algorithm assumes F is the Fokker-Planck diffusion energy functional. However, our
method admits straightforward generalization to any F that can be stochastically estimated; study-
ing such functionals is a promising avenue for future work.

3.3 Computing the Density of the Diffusion Process

Our algorithm provides a computable density for ρ(k). As discussed in M3.1, it is possible to sample
from ρ(k) while simultaneously computing the density of the samples. However, this approach does
not provide a direct way to evaluate dρ(k)

dx
(xk) for arbitrary xk ∈ RD. We resolve this issue below.

If a convex function is strongly convex, then its gradient is bijective on RD. By the change
of variables formula for xk ∈ RD, it holds dρ(k)

dx
(xk) =

dρ(k−1)

dx
(xk−1) · [det∇2ψ(k)(xk−1)]

−1 where
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Algorithm 1: Fokker-Planck JKO via ICNNs
Input :Initial measure ρ0 accessible by samples;

JKO discretization step h > 0, number of JKO steps K > 0;
target potential Φ(x), diffusion process temperature β−1;
batch size N ;

Output :trained ICNN models {ψ(k)}Kk=1 representing JKO steps
for k = 1, 2, . . . , K do

ψθ ← basic ICNN model;
for i = 1, 2, . . . do

Sample batch Z ∼ ρ0 of size N ; /* WGF sampling procedure */
X ←∇ψ(k−1) ◦ · · · ◦∇ψ(1)(Z);
Ŵ2

2 ← 1
N

∑
x∈X
∥∇ψθ(x)− x∥22;

Û ← 1
N

∑
x∈X

Φ
(
∇ψθ(x)

)
;

∆̂E ← 1
N

∑
x∈X

log det∇2ψθ(x);

L̂ ← 1
2h
Ŵ2

2 + Û − β−1∆̂E ;
Perform a gradient step over θ by using ∂L̂

∂θ
;

ψ(k) ← ψθ

xk = ∇ψ(k)(xk−1). To compute xk−1, one needs to solve the convex optimization problem:

xk = ∇ψ(k)(xk−1) ⇐⇒ xk−1 = argmax
x∈RD

[
⟨x, xk⟩ − ψ(k)(x)

]
. (15)

If we know the density of ρ0, to compute the density of ρ(k) at xk we solve k convex problems

xk−1 = argmax
x∈RD

[
⟨x, xk⟩ − ψ(k)(x)

]
. . . x0 = argmax

x∈RD

[
⟨x, x1⟩ − ψ(1)(x)

]
to obtain xk−1, . . . , x0 and then evaluate the density as

dρk
dx

(xk) =
dρ0

dx
(x0) ·

[ k∏
i=1

det∇2ψ(i)(xi−1)
]−1

.

Note the steps above provide a general method for tracing back the position of a particle along the
flow, and density computation is simply a byproduct.

3.4 Nonlinear Filtering Theory

In this subsection we give a theoretical introduction to the Nonlinear Filtering as well as describe
our practical implementation details.

Consider a diffusion process Xt governed by the Fokker-Planck equation (8). At times
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t1 < t2 < · · · < tK we obtain noisy observations from the process Xt:

Yk = Xtk + vk,

with vk ∼ N (0, σ2).The goal is to compute the predictive distribution of the processXt at time t ≥
tK given observations Y1:K . We denote the associated probability density function as pt,X(x|Y1:K)
and use the notation µpt,X( · |Y1:K) for the predictive distribution (probability measure) itself.

The dynamics of pt,X(x|Y1:K) is described by two alternating patterns. For each k ∈
{0, 1, . . . , K} and t > tk the predictive distributionµpt,X( · |Y1:k) is calledmarginal prior and follows
the equations (8) which govern the process Xt on the time segment [tk, t) with initial distribution
ptk,X(x|Y1:k).

If tk = t then the µpt,X( · |Y1:k) is called marginal posterior and it’s probability density func-
tion follows the equation (in the below pt,Y (y) is the density of the process Y (X with noise) at
time moment t):

ptk,X(x|Y1:k) =
ptk,X(x|Y1:k−1, Yk)ptk,Y (Yk|Y1:k−1)

ptk,Y (Yk|Y1:k−1)
=
ptk,X,Y (x, Yk|Y1:k−1)

ptk,Y (Yk|Y1:k−1)

=
ptk,Y (Yk|Xtk = x, Y1:k−1)ptk,X(x|Y1:k−1)

ptk,Y (Yk|Y1:k−1)

=
ptk,Y (Yk|Xtk = x)ptk,X(x|Y1:k−1)

ptk,Y (Yk|Y1:k−1)

∝ p(Yk|Xtk = x) · ptk,X(x|Y1:k−1). (16)

Predictive distribution update. For k = 1, . . . , K , we sequentially obtain the predictive
distributionµptk,X( · |Y1:k) at timemoment tk using the previous predictive distributionµptk−1,X

( · |Y1:k−1)

at time moment tk−1. First, given sample access to ptk−1,X(x|Y1:k−1), we approximate the diffusion
on the segment [tk−1, tk) with initial distribution µptk−1,X

( · |Y1:k−1) by our Algorithm 1 to get access
to marginal prior µptk,X( · |Y1:k−1). In particular, we perform nk JKO steps of size hk = tk−tk−1

nk
and

obtain ICNNs ψ(k)
1 , . . . , ψ

(k)
nk (approximately) satisfying

µptk,X( · |Y1:k−1) = [∇ψ(k)
nk
◦ · · · ◦ ∇ψ(k)

1 ]♯µptk−1,X
( · |Y1:k−1) (17)

In what follows we define Bk
def
= ∇ψ(k)

nk ◦ · · · ◦ ∇ψ
(k)
1 .

Let xk ∈ RD and sequentially define xi−1 = B−1
i (xi) for i = k, . . . , 1. We derive:

ptk,X(xk|Y1:k)
(16)
∝

p(Yk|Xtk = xk) · ptk,X(xk|Y1:k−1)
(17)
=

p(Yk|Xtk = xk) · [det∇Bk(xk−1)]
−1 · ptk−1,X(xk−1|Y1:k−1)

(16)
∝

. . .
k∏
i=1

p(Yi|Xti = xi) · [
k∏
i=1

det∇Bi(xi−1)]
−1 · pt0,X(x0) (18)
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where we substitute (16) sequentially for k, k− 1, . . . , 1. As the result, from (18) we obtain the un-
normalized density of marginal posterior predictive distribution µptk,X( · |Y1:k) at point xk. In order
to sample from this predictive distribution (to train the diffusion on the next segment [tk, tk+1)) we
use Metropolis-Hastings algorithm. For completeness, we recall this prominent result and general
theory behind it.

Metropolis-Hastings Algorithm. Let π : RD → R+ be a probability density function
computable up to a multiplying constant π(x) ∝ π(x). The Metropolis-Hastings algorithm [68]
proposes a generic way to create irreducible and aperiodic Markov chain which converges to π.
Let us briefly describe the main concepts which constitute the algorithm. At first, we introduce a
family of proposal distributions {qx(·), x ∈ RD}, i.e

∫
RD

qx(y)dy = 1 for any x ∈ RD. Then we

construct a chain x(1), x(2), . . . using the following procedure 2:

Algorithm 2:Metropolis-Hastings algorithm
Input :Unnormalized density π(·); family of proposal distributions qx(·) (x ∈ RD

Output :Sequence x(1), x(2), x(3), . . . of samples from π

Select x(0) ∈ RD

for i = 1, 2, . . . do
Sample y ∼ qx(i−1) ;

Compute α(x(i−1), y) = min
(
1, π(y)qy(x(i−1))

π(x(i−1))q
x(i−1) (y)

)
With probability α(x(i−1), y) set x(i) ← y; otherwise set x(i) ← x(i−1)

It wasMetropolis et.al. [55] who showed that under some mild assumptions on the proposal
distributions family the transitions in the Algorithm 2 preserve the stationary density π. Overall, it
is sufficient for the distributions qx(·) to be supported everywhere on RD.

To sample from ptk,X(xk|Y1:k) we use Algorithm 2 with π equal to unnormalized density
(18). We note that computing π(xk) for xk ∈ RD is not easy since it requires computing pre-
images xk−1, . . . , x0 by inverting Bk, Bk−1, . . . , B1. As the consequence, this makes computation
of acceptance probability α(·, ·) hard. To resolve this issue let’s consider an arbitrary family of dis-
tributions {ξx(·), x ∈ RD} supported everywhere on RD. Define a family of proposal distributions
{qx(·), x ∈ RD} in a following way:

qx
def
= (Bk ◦Bk−1 ◦ · · · ◦ B1)♯µp0,X . (19)

In other words, the proposal distribution qx is given by the gradient flow on time interval [0, tk)with
initial distribution ξx instead of p0,X . Therefore, the sampling from qx is equivalent to sampling
from gradient flow, described in the Algorithm 1. Moreover, as a byproduct of sampling procedure
we automatically obtain the intermediate flow preimages (y0, y1, . . . , yk−1) of the point y under gra-
dient flow transformations, i.e. yk−1 = (Bk)

−1(y), yk−2 = (Bk−1)
−1(yk−1), . . . , y0 = (B1)

−1(y1).
We are left to compute acceptance probability α(x(i−1), y) in the equations below. In what follows
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we write y = yk and x(i−1) = x
(i−1)
k .

π(y)qy(x
(i−1))

π(x(i−1))qx(i−1)(y)

∣∣∣∣
π(·)∝ ptk,X(x|Y1:k)

18, 19
=

p0,X(y0)
k∏
τ=1

ptτ ,Y (Yτ |Xtτ=yτ )

ptτ ,Y (Yτ |Y1:τ−1)

K∏
j=1

det
[
∇Bj(x

(i−1)
j−1 )

]
p0,X(x

(i−1)
0 )

k∏
τ=1

ptτ ,Y (Yτ |Xtτ=x
(i−1)
τ )

ptτ ,Y (Yτ |Y1:τ−1)

K∏
j=1

det [∇Bj(yj−1)]

·
ξy(x

(i−1)
0 )

K∏
j=1

det [∇Bj(yj−1)]

ξx(i−1)(y0)
K∏
j=1

det
[
∇Bj(x

(i−1)
j−1 )

] =

ξy(x
(i−1)
0 )p0,X(y0)

ξx(i−1)(y0)p0,X(x
(i−1)
0 )

·

k∏
τ=1

ptτ ,Y (Yτ |Xtτ = yτ )

k∏
τ=1

ptτ ,Y (Yτ |Xtτ = x
(i−1)
τ )

(20)

As we can see, all det terms in α(x, y) vanish and the formula 20 contains only known
intermediate flow preimages of the points y and x(i−1) and can be straightforwardly computed given
initial distributions and conditional noise distributions pt,Y (Y |X) in appropriate observation time
moments t1, . . . , tk. In our particular case under consideration pti,Y (Yi|Xti = x), i ∈ {1, 2, . . . k}
are probability density functions of normal distributions pN (Yi,σ2)(x) (recall that Yi ∼ N (Xtk , σ

2)).
As the class of ”hidden” proposal distributions ξx in our experiments we use the initial x-

independent gradient flow distribution, i.e ξx( · ) = p0,X( · ). This choice further simplifies the
acceptance probability:

π(y)qy(x
(i−1))

π(x(i−1))qx(i−1)(y)
=

k∏
i=1

pti,Y (Yi|Xti = yi)

k∏
i=1

pti,Y (Yi|Xti = xi)

(21)

We summarize all our findings in the Algorithm 3 in the Appendix I. It represents a modified
version of Algorithm 1 with embedded MCMC sampling technique based on Metropolis-Hastings
algorithm. Note, that in order to decorrelate theMCMC chain we introduce decorrelation parameter
Kd and take each Kd-th sample. Also we warm-up the chain omitting the first Nw samples.

We leave the section with a note, that the formula 20 permits an alternative choice for ”hid-
den” proposal distribution ξx which potentially could improve the stability and quality of MCMC.
This opens a direction for future research.

4 Experiments and Results

In this section, we evaluate our method on toy and real-world applications. Our code is written in
PyTorch and is publicly available at

https://github.com/PetrMokrov/Large-Scale-Wasserstein-Gradient-Flows

The experiments are conducted on a GTX 1080Ti. In most cases, we performed several random
restarts to obtain mean and variation of the considered metric. As the result, experiments require
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about 100-150 hours of computation.

4.1 General Experimental Details

Neural network architectures. In all experiments, we use the DenseICNN [44, Appendix B.2]
architecture for ψθ in Algorithm 1 with SoftPlus activations. The network ψθ is twice differentiable
w.r.t. the input x and has bijective gradient ∇ψθ : RD → RD with positive semi-definite Hessian
∇2ψθ(x) ≽ 0 at each x. We use automatic differentiation to compute∇ψθ and∇2ψθ. Throughout
our experiments we set the number of hidden layers to be equal 2 and vary the width of the model
depending on the task. We use Adam optimizer with learning rate decreasing with the number of
JKO steps. We initialize the ICNNmodels either via pretraining to satisfy∇ψθ(x) ≈ x or by using
parameters θ obtained from the previous JKO step.

Metric. To qualitatively compare measures, we use the symmetric Kullback-Leibler diver-
gence

SymKL(ρ1, ρ2)
def
= KL(ρ1∥ρ2) + KL(ρ2∥ρ1), (22)

where KL(ρ1∥ρ2)
def
=

∫
RD log dρ1

dρ2
(x)dρ1(x) is the Kullback-Leibler divergence. For particle-based

methods, we obtain an approximation of the distribution by kernel density estimation.
Competitive methods details. For ⌊Dual JKO⌉, we used the implementation provided by

the authors with default hyper-parameters. For ⌊EM PR⌉ we implemented the Proximal Recursion
operator following the pseudocode of [20] and used the default hyper-parameters but we increased
the number of particles for fair comparison with the vanilla ⌊EM⌉ algorithm. Note we limited the
number of particles to N = 104 because of the high computational complexity of the method. For
⌊SVGD⌉, we used the official implementation available at

https://github.com/dilinwang820/Stein-Variational-Gradient-Descent

In particle-based simulations ⌊EM⌉, ⌊BBF⌉ and ⌊EMPR⌉we used the particle propagation timestep
dt = 10−3.

We estimate the SymKL (22) using Monte Carlo (MC) on 104 samples. In our method,
MC estimate is straightforward since the method permits both sampling and computing the density.
In particle-based methods, we use kernel density estimator to approximate the density utilizing
scipy implementation of gaussian_kde with bandwidth chosen by Scott’s rule. In ⌊Dual JKO⌉,
we employ importance sampling procedure and normalization constant estimation as detailed in
[31].

We set β to be equal to 1 throughout our experiments.

4.2 Convergence to Stationary Solution

Starting from an arbitrary initial measure ρ0, an advection-diffusion process (8) converges to the
unique stationary solution ρ∗ [67] with density

dρ∗

dx
(x) = Z−1 exp(−βΦ(x)), (23)
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D M l w

2 5 10 256
4 6 10 384
6 7 10 512
8 8 10 512
10 9 10 512
12 10 10 1024
13 10 10 512
32 10 6 1024

Table 1: Hyper-
parameters in the
convergence exp.

where Z =
∫
RD exp(−βΦ(x))dx is the normalization constant.

This property makes it possible to compute the symmetric KL between
the distribution to which our method converges and the ground truth, pro-
vided Z is known.

We use N (0, 16ID) as the initial measure ρ0 and a ran-
dom Gaussian mixture 1

Np

∑M
m=1N (µm, ID), where µ1, . . . , µM ∼

Uniform
(
[− l

2
, l
2
]D
)
as the stationary measure ρ∗. We set the width w

of used ICNNs ψθ depending on dimension D. The parameters are sum-
marized in Table 1. In our method, we perform K = 40 JKO steps with
step size h = 0.1. We compare with a particle simulation method (with
103, 104, 105 particles) based on the Euler-Maruyama ⌊EM⌉ approxima-
tion [43, M9.2]. We repeat the experiment 5 times and report the averaged
results in Figure 2.

2 4 6 8 10 12
D, dimension

1.5

1.0

0.5

0.0

0.5

1.0

lo
g 1

0S
ym

KL

[EM] 1K
[EM] 10K
[EM] 50K
Ours

Figure 2: SymKL between the com-
puted and the stationary measure in
D = 2, 4, . . . 12

Each JKO step uses 1000 gradient descent
iterations of Algorithm 1. For dimensions D =

2, 4, . . . , 12 the first 20 JKO transitions are opti-
mized with lr = 5 · 10−3 and the remaining steps
use lr = 2 · 10−3. For qualitative experiments in
D = 13, 32 we perform 50 and 70 JKO steps with
step size h = 0.1. The learning rate setup in these
cases is similar to quantitative experiment setting but
has additional stage with lr = 5 · 10−4 on the final
JKO steps. The batch size is N = 512.

In Figure 3, we present qualitative results of
our method converging to the ground truth in D =

13, 32.
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(a) Dimension D = 13
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(b) Dimension D = 32

Figure 3: Projections to 2 first PCA components of the true stationary measure and the measure
approximated by our method in dimensions D = 13 (on the left) and D = 32 (on the right).
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4.3 Modeling Ornstein-Uhlenbeck Processes

Ornstein-Uhlenbeck processes are advection-diffusion processes (8) withΦ(x) = 1
2
(x−b)TA(x−b)

for symmetric positive definite A ∈ RD×D and b ∈ RD. They are among the few examples where
we know ρt for any t ∈ R+ in closed form, when the initial measure ρ0 is Gaussian [77]. This allows
to quantitatively evaluate the computed dynamics of the process, not just the stationary measure.

We choose matrices A ∈ RD×D to be randomly generated using
sklearn.datasets.make_spd_matrix. Vectors b ∈ RD are sampled from standard Gaussian
measure. All ICNNs ψθ have w = 64 and we train each of them for 500 iterations per JKO step
with lr = 5 · 10−3 and batch size N = 1024. For the entropy regularized JKO method we follow
the recommendations by authors of [31]. The only difference is that for each dimension we select
the support of the kernels which results in the best SymKL metric value. The details are given in
our code.

We set ρ0 to be the standard Gaussian measure N (0, ID) and approximate the dynamics
of the process by our method with JKO step h = 0.05 and compute SymKL between the true
ρt and the approximate one at time t = 0.5 and t = 0.9. We repeat the experiment 15 times in
dimensions D = 1, 2 . . . , 12 and report the performance at in Figure 4. The baselines are ⌊EM⌉
with 103, 104, 5 × 104 particles, EM particle simulation endowed with the Proximal Recursion
operator ⌊EM PR⌉ with 104 particles [20], and the parametric dual inference method [31] for JKO
steps ⌊Dual JKO⌉. The detailed comparison for times t = 0.1, 0.2, . . . 1 is given in Appendix II.
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(a) Time t = 0.5
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(b) Time t = 0.9

Figure 4: SymKL values between the computed measure and the true measure ρt at t = 0.5 (on the
left) and t = 0.9 (on the right) in dimensions D = 1, 2, . . . , 12. Best viewed in color.

4.4 Unnormalized Posterior Sampling in Bayesian Logistic Regression

An important task in Bayesian machine learning to which our algorithm can be applied is sampling
from an unnormalized posterior distribution. Given the model parameters x ∈ RD with the prior
distribution p0(x) as well as the conditional density p(S|x) =

∏M
m=1 p(sm|x) of the data S =
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Dataset Accuracy Log-Likelihood
Ours ⌈SVGD⌋ Ours ⌈SVGD⌋

covtype 0.75 0.75 -0.515 -0.515
german 0.67 0.65 -0.6 -0.6
diabetis 0.775 0.78 -0.45 -0.46
twonorm 0.98 0.98 -0.059 -0.062
ringnorm 0.74 0.74 -0.5 -0.5
banana 0.55 0.54 -0.69 -0.69
splice 0.845 0.85 -0.36 -0.355

waveform 0.78 0.765 -0.485 -0.465
image 0.82 0.815 -0.43 -0.44

Table 2: Comparison of our method with
⌈SVGD⌋ [50] for Bayesian log. regression.

Dataset w lr iter batch K

covtype 512 2 · 10−5 104 1024 6
german 512 2 · 10−4 5000 512 5
diabetis 128 5 · 10−5 6000 1024 16
twonorm 512 5 · 10−5 5000 1024 7
ringnorm 512 5 · 10−5 5000 1024 2
banana 128 2 · 10−4 5000 1024 5
splice 512 2 · 10−3 2000 512 5
waveform 512 5 · 10−5 5000 512 2
image 512 5 · 10−5 5000 512 5

Table 3: Hyper-parameters we use in
Bayesian log. regression experiment.

{s1, . . . , sM}, the posterior distribution is given by

p(x|S) = p(S|x)p0(x)
p(S)

∝ p(S|x)p0(x) = p0(x) ·
M∏
m=1

p(sm|x).

Computing the normalization constant p(S) is in general intractable, underscoring the need for
estimation methods that sample from p(S|x) given the density only up to a normalizing constant.

In our context, sampling from p(x|S) can be solved similarly to the task in M4.2. From (23),
it follows that the advection-diffusion process with temperature β > 0 and Φ(x) = − 1

β
log

[
p0(x) ·

p(S|x)
]
has dρ∗

dx
(x) = p(x|S) as the stationary distribution. Thus, we can use our method to ap-

proximate the diffusion process and obtain a sampler for p(x|S) as a result.
The potential energy U(ρ) =

∫
RD Φ(x)dρ(x) can be estimated efficiently by using a trick

similar to the ones in stochastic gradient Langevin dynamics [80], which consists in resampling
samples in S uniformly. For evaluation, we consider the Bayesian linear regression setup of [50].
We use the 8 datasets from [56]. The number of features ranges from 2 to 60 and the dataset
size from 700 to 7400 data points. We also use the Covertype dataset1 with 500K data points
and 54 features. The prior on regression weights w is given by p0(w|α) = N (w|0, α−1) with
p0(α) = Gamma(α|1, 0.01), so the prior on parameters x = [w, α] of the model is given by p0(x) =
p0(w, α) = p0(w|α) · p0(α). To remove positiveness constraint on α we consider [w, log(α)] as
the regression model parameters instead of [w, α]. To learn the posterior distribution p(x|Strain) we
use JKO step size h = 0.1. Let iter denote the number of gradient steps over θ per each JKO step
and K denote the overall number of JKO steps. The used hyper-parameters for each dataset are
summarized in Table 3.

To estimate the log-likelihood and accuracy of the predictive distribution on Stest based on
p(x|Strain), we use straightforward MC estimate on 212 random parameter samples. We randomly
split each dataset into train Strain and test Stest ones with ratio 4:1 and apply the inference on the
posterior p(x|Strain). In Table 2, we report accuracy and log-likelihood of the predictive distribution
on Stest. As the baseline, we use particle-based Stein Variational Gradient Descent [50]. We use

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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the author’s implementation with the default hyper-parameters.

4.5 Nonlinear Filtering

We demonstrate the application of our method to filtering a nonlinear diffusion. See M3.4 for the
theoretical introduction and algorithmic details.

For evaluation, we consider the experimental setup of [31, M6.3]. We assume that the 1-
dimensional diffusion process Xt has potential function Φ(x) = 1

π
sin(2πx) + 1

4
x2 which makes

the process highly nonlinear. We simulate nonlinear filtering on the time interval tstart = 0 sec.,
tfin = 5 sec. and take the noise observations each 0.5 sec. The noise variance is σ2 = 1 and the
distribution ofX0 isN (X0|0, 1). Specifically, to obtain the noise observations Yk = Xtk +vk from
the process, we simulate a particleX0 randomly sampled from the initial measureN (0, 1) by using
Euler-Maruyama method to obtain the trajectory Xt. At observation times t1 = 0.5, . . . , t9 = 4.5

we add random noise vk ∼ N (0, 1) to obtain observations Y1, . . . , Y9.
We predict the conditional density ptfinal,X(x|Y1:9) and compare the prediction with ground

truth obtainedwith numerical integrationmethod byChang andCooper [25], who use a fine discrete
grid. When implementing their method, we construct regular fine grid on the segment [−5, 5] with
2000 points and numerically solve the SDE with timestep dt = 10−3. At observation times tk,
k ∈ 1, . . . 9 we multiply the obtained probability density function ptk,X(x|Y1:k−1) by the density
of the normal distribution p(Yk|Xtk = x) estimated at the grid which results in unnormalized
ptk,X(x|Y1:k). After normalization on the grid, ptk,X(x|Y1:k) can be used in the new diffusion round
on time interval [tk, tk+1]. At final time tfin we estimate SymKL between the true distribution and
ones obtained via other competitive methods by numerically integrating (22) on the grid.

As the baselines, we use ⌊Dual JKO⌉ [31] as well as the Bayesian Bootstrap filter ⌊BBF⌉
[34], which combines particle simulation with bootstrap resampling at observation times. We
implement ⌊BBF⌉ following the original article [34]. Particle propagation performed via Euler-
Maruyama method with timestep dt = 10−3. The final distribution p(Xtfin |Y1:9) is estimated using
kernel density estimator. For ⌊Dual JKO⌉ we use the code provided by the authors with the default
hyper-parameters.

In our method, we use JKO step size h = 0.1 and model it by ICNN with width w = 256.
Each JKO step takes 700 optimization iterations with lr = 5 · 10−3 and batch size N = 1024. At
observation times tk, k ∈ 1, 2, . . . 9 we use the Metropolis-Hastings algorithm 2 with acceptance
probability α calculated by (20). Starting from the randomly sampled x(1) we skip the first 1000
values of the Markov Chain generated by the algorithm which allows the series to converge to
the distribution of interest ptk,X(x|Y1:k). We take each second element from the chain in order
to decorrelate the samples. To simultaneously sample the batch of size N , we run N chains in
parallel. To compute SymKL, we normalize the resulting distribution p(Xtfin |Y1:9) on the Chang-
Cooper support grid.

We repeat the experiment 15 times. In Figure 5a, we report the SymKL between predicted
density and true p(Xtfin |Y1:9). We visually compare the fitted and true conditional distributions in
Figure 5b.
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Figure 5: Comparison of the predicted conditional density and true p(Xtfin |Y1:9).

5 Discussion

5.1 Further applications

We apply our method to common Bayesian tasks such as unnormalized posterior sampling (M4.4)
and nonlinear filtering (M4.5). Below we mention several other potential applications:

• Population dynamics. In this task, one needs to recover the potential energy Φ(x) included
in the Fokker-Planck free energy functionalFFP based on samples from the diffusion obtained
at timesteps t1, . . . , tn, see [36]. This setting can be found in computational biology, see M6.3
of [36]. A recent paper [17] utilizes ICNN-powered JKO to model population dynamics and
successfully models single-cell RNA sequencing data.

• Reinforcement learning. Wasserstein gradient flows provide a theoretically-grounded way
to optimize an agent policy in reinforcement learning, see [66, 83]. The idea of the method
is to maximize the expected total reward (see (10) in [83]) using the gradient flow associ-
ated with the Fokker-Planck functional (see (12) in [83]). The authors of the original paper
proposed discrete particle approximation method to solve the underlying JKO scheme. Sub-
stituting their approach with our ICNN-based JKO can potentially improve the results.

• RefiningGenerative Adversarial Networks. In the GAN setting, given trained generatorG
and discriminator D, one can improve the samples from G by D via considering a gradient
flow w.r.t. entropy-regularized f -divergence between real and generated data distribution
(see [8], in particular, formula (4) for reference). Using KL-divergence makes the gradient
flow consistent with our method: the functional F defining the flow has only entropic and
potential energy terms. The usage of our method instead of particle simulation may improve
the generator model.

• MolecularDiscovery. In [3], in parallel to our work the JKO-ICNN scheme is proposed. The
authors consider the molecular discovery as an application. The task is to increase the drug-
likeness of a given distribution ρ of molecules while staying close to the original distribution
ρ0. The task reduces to optimizing the functional F(ρ) = Ex∼ρΦ(x)+D(ρ, ρ0) for a certain
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potential Φ (V - in the notation of [3]) and a discrepancy D. The authors applied the JKO-
ICNN method to minimize F on MOSES [64] molecular dataset and obtained promising
results.

5.2 Complexity of training and sampling.

Let T be the number of operations required to evaluate ICNN ψθ(x), and assume that the evaluation
of Φ(x) in the potential energy U takes O(1) time.

Operation Time Complexity

Eval. ψθ,∇ψθ,∇2ψθ T , O(T ), O(DT )
Eval. log det∇2ψθ O(DT+D3)

Sample x ∼ ρ(k) O
(
(k−1)T

)
Eval. L̂ on x ∼ ρ(k) O(DT +D3)

Eval. ∂L̂
∂θ

on x ∼ ρ(k) O(DT+D3)

Sample x ∼ ρ(k) and
Eval. dρ

(k)

dx
(x)

O
(
(k−1)(TD+D3)

)
Table 4: Complexity of operations in our method for
computing JKO steps via ICNNs.

Recall that computing the gradi-
ent is a small constant factor harder than
computing the function itself [49]. Thus,
evaluation of ∇ψθ(x) : RD → RD

requires O(T ) operations and evaluating
the Hessian∇2ψθ(x) : RD → RD×D takes
O(DT ) time. To compute log det∇2ψθ(x),
we need O(D3) extra operations. Sam-
pling from ρ(k−1) = ∇ψ(k−1) ◦ · · · ◦
∇ψ(1)♯ρ0 involves pushing x0 ∼ ρ0 for-
ward by a sequence of ICNNsψ(·) of length
k − 1, requiring O

(
(k − 1)T

)
operations.

The forward pass to evaluate the JKO step
objective L̂ in Algorithm 1 requiresO(DT+D3) operations, as does the backward pass to compute
the gradient ∂L̂

∂θ
w.r.t. θ.

The memory complexity is more difficult to characterize, since it depends on the autodiff
implementation. It does not exceed the time complexity and is linear in the number of JKO steps
k.

Wall-clock times. All particle-based methods considered in M4 and ⌊Dual JKO⌉ require
from several seconds to several minutes CPU computation time. Our method requires from several
minutes to few hours on GPU, the time is explained by the necessity to train a new network at each
step.

Advantages. Due to using continuous approximation, our method scales well to high di-
mensions, as we show in M4.2 and M4.3. After training, we can produce infinitely many samples
xk ∼ ρ(k), together with their trajectories xk−1, xk−2, . . . , x0 along the gradient flow. Moreover,
the densities of samples in the flow dρ(k)

dx
(xk),

dρ(k−1)

dx
(xk−1), . . . ,

dρ(0)

dx
(x0) can be evaluated imme-

diately.
In contrast, particle-based and domain discretization methods do not scale well with the

dimension (Figure 4) and provide no density. Interestingly, despite its parametric approximation,
⌊Dual JKO⌉ performs comparably to particle simulation and worse than ours (see additionally [31,
Figure 3]).

Limitations. To train k JKO steps, our method requires time proportional to k2 due to
the increased complexity of sampling x ∼ ρ(k). This may be disadvantageous for training long
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diffusions. In addition, for very high dimensions D, exact evaluation of log det∇2ψθ(x) is time-
consuming.

Future work. To reduce the computational complexity of sampling from ρ(k), at step k
one may regress an invertible network H : RD → RD [10, 38] to satisfy H(x0) ≈ ∇ψ(k) ◦ · · · ◦
∇ψ(1)(x0) and useH♯ρ0 → ρ(k) to simplify sampling. An alternative is to use variational inference
[12, 65, 82] to approximate ρ(k). These ideas have already been partially exploited by [30]. To
mitigate the computational complexity of computing log det∇ψθ(x), fast approximation can be
used [76, 35, 3]. More broadly, developing ICNNs with easily-computable exact Hessians is a
critical avenue for further research as ICNNs continue to gain attention in machine learning [52,
44, 46, 37, 29, 6].

6 Conclusions

The novel approach for modelling Fokker-Planck equation is proposed. It is based on JKO scheme
combined with recently developed Input Convex Neural Networks which provide a rich set of
convex functions amenable to optimization procedures. The experiments shows that the methods
works competitively in several model and real-world tasks including Bayesian logistic regression
and nonlinear filtering. The advantages and limitations of the approach are analyzed and possible
future directions are proposed.
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I Nonlinear Filtering Algorithm

The Algorithm 3 represents a modified version of 1 with embedded MCMC sampling technique
based on Metropolis-Hastings algorithm. Note, that in order to decorrelate the MCMC chain we
introduce decorrelation parameter Kd and take each Kd-th sample. Also we warm-up the chain
omitting the first Nw samples. See M3.4 for reference.

Algorithm 3: Nonlinear filtering with ICNN JKO
Input :Initial diffusion distribution p0,X , observations Y1:K , observation times t1:K , diffusion final

time tf , JKO discretization step h, target potential Φ(x), diffusion process temperature β−1,
ICNN model ψθ, batch size N , MCMC decorrelation parameterKd, MCMC warm-up
parameter Nw

Output : [B1, B2, . . . , BK+1] : sequence of ICNN blocks representing gradient flow between
observation time moments [0, t1), [t1, t2), . . . [tK−1, tK) and [tK , tf )

tc ← 0 ; tK+1 ← tf ;
Sample initial batchX ∼ p0,X ;
imodel ← 1 ; k ← 1 ; nomit ← Nw;
while tc < tf do

for i = 1, 2, . . . do
if tc < t1 then

Sample batch X ∼ p0,X
else

for ibatch = 1, 2, . . . , nomit do
for isamp = 1, 2, . . . , N do

xk−1 ← X[isamp];
Sample y0 ∼ ρN (0,1);
yk−1 ← Bk−1 ◦ · · · ◦B1(y0); /* store y1, . . . yk−2 with yk−1 */

α← min
(
1 ,

ρN(0,1)(x0)p0,X(y0)

ρN(0,1)(y0)p0,X(x0)

k−1∏
τ=1

pN(Yτ ,1)(yτ )

pN(Yτ ,1)(xτ )

)
;

With probability α set X[isamp]← yk−1;

nomit ← Kd

Ŵ2
2 ← 1

N

∑
x∈X

∥∇ψθ(x)− x∥22;

Û ← 1
N

∑
x∈X

Φ
(
∇ψθ(x)

)
;

∆̂E ← − 1
N

∑
x∈X

log det∇2ψθ(x);

L ← 1
2hŴ

2
2 + Û + β−1∆̂E ; Perform a gradient step over θ by using ∂L

∂θ ;

ψ
(k)
imodel
← ψϕ;

imodel ← imodel + 1;
tc ← tc + h;
if tc = tk then

Bk ←∇ψ
(k)
imodel
◦ · · · ◦∇ψ

(k)
1 ;

imodel ← 1 ; nomit ← Nw ; k ← k + 1;
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II Additional Experiments

In Figure 6, we compare the true distribution ρt with the predicted distribution via the competitive
methods when modelling Ornstein-Uhlenbeck processes (M4.3). The comparison is given for time
t = 0.1, 0.2, . . . , 1.0.
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(f) Time t = 0.6

2 4 6 8 10 12
D, dimension

4

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours
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(h) Time t = 0.8
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(i) Time t = 0.9
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Figure 6: SymKLvalues between the computedmeasures and the truemeasure at t = 0.1, 0.2, . . . , 1
in dimensions D = 1, 2, . . . 12. Best viewed in color.
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