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Àííîòàöèÿ

Â äàííîì òåçèñå ðàçðàáàòûâàåòñÿ ïîäõîä ê ïîñòðîåíèþ íîâûõ ðàíæèðóþùèõ

ôóíêöèé äëÿ çàäà÷è Èíôîðìàöèîííîãî Ïîèñêà. Ðàíæèðóþùàÿ ôóíêöèÿ çàâè-

ñèò îò ïðåäñòàâëåíèÿ äîêóìåíòà, êîòîðîå âêëþ÷àåò â ñåáÿ ÷àñòîòû ñëîâ è ÷àñòî-

òû äîêóìåíòîâ. Ìîäåëü ðàíæèðóåò äîêóìåíòû ñîãëàñíî ïîëüçîâàòåëüñêèì çà-

ïðîñàì. Êà÷åñòâî ìîäåëè îïðåäåëÿåòñÿ ñ ïîìîùüþ mean average precision. ×òî-

áû ïðåäëîæèòü íîâûå ðàíæèðóþùèå ìîäåëè, ïðåäëàãàåòñÿ ìîäèôèöèðîâàííûé

ãåíåòè÷åñêèé àëãîðèòì. Îí ïîðîæäàåò ìîäåëè êàê ñóïåðïîçèöèè ïðèìèòèâíûõ

ôóíêöèé è âûáèðàåò ëó÷øóþ ñîãëàñíî êðèòåðèþ êà÷åñòâà. Ãëàâíûé âêëàä èñ-

ñëåäîâàíèÿ ñîñòîèò â ðåøåíèè ïðîáëåìû ñòàãíàöèè è êîíòðîëÿ ñòðóêòóðíîé

ñëîæíîñòè ïîñëåäîâàòåëüíî ïîðîæäàåìûõ ìîäåëåé. Äëÿ ðåøåíèÿ ýòèõ ïðîáëåì

ïðåäëàãàåòñÿ íîâûé êðèòåðèé îòáîðà ìîäåëåé. Îí èñïîëüçóåò ðåãóëÿðèçàòîðû,

øòðàôóþùèå ñëîæíîñòü ôóíêöèé, è ñðóêòóðíûå ìåòðèêè, ïîçâîëÿþùèå îïðå-

äåëÿòü ìîìåíò íà÷àëà ñòàãíàöèè. ×òîáû ïîêàçàòü ïðåâîñõîäñòâî íîâûõ ïîðîæ-

äåííûõ ìîäåëåé íàä ñîâðåìåííûìè ðàíæèðóþùèìè ôóíêöèÿìè, ìû ïðîâîäèì

ýêñïåðèìåíò íà êîëëåêöèÿõ TREC. Ýêñïåðèìåíò ïîêàçûâàåò, ÷òî 1) ïðåäëî-

æåííûé àëãîðèòì çíà÷èòåëüíî áûñòðåå ïåðåáîðíîãî, 2) îí îòáèðàåò ôóíêöèè,

êîòîðûå ëó÷øå ýòàëîííûõ íà âñåõ ðàññìàòðèâàåìûõ êîëëåêöèÿõ. Ïîëó÷åííûå

ìîäåëè çíà÷èòåëüíî ïðîùå, ÷åì îòáèðàåìûå ñòàíäàðòíûì ãåíåòè÷åñêèì àëãî-

ðèòìîì. Ïðåäëîæåííàÿ ïðîöåäóðà âàæíà äëÿ ðàçðàáîòêè ñèñòåì èíôîðìàöèîí-

íîãî ïîèñêà, îñíîâàííûõ íà ýêñïåðòíûõ îöåíèâàíèÿõ ðåëåâàíòíîñòè äîêóìåíòîâ

çàïðîñàì.

Êëþ÷åâûå ñëîâà: èíôîðìàöèîííûé ïîèñê, TREC, ðàíæèðóþùàÿ ôóíêöèÿ,

ãåíåòè÷åñêèé àëãîðèòì, ñèìâîëüíàÿ ðåãðåññèÿ.
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Abstract

This paper investigates an approach to construct new ranking models for Information Retrieval.

The IR ranking model depends on the document description. It includes the term frequency and

document frequency. The model ranks documents upon a user request. The quality of the model

is defined by the difference between the documents, which experts assess as relative to the request,

and the ranked ones. To boost the model quality a modified genetic algorithm was developed.

It generates models as superpositions of primitive functions and selects the best according to the

quality criterion. The main impact of the research if the new technique to avoid stagnation and to

control structural complexity of the consequently generated models. To solve problems of stagnation

and complexity, a new criterion of model selection was introduced. It uses structural metric and

penalty functions, which are defined in space of generated superpositions. To show that the newly

discovered models outperform the other state-of-the-art IR scoring models the authors perform a

computational experiment on TREC datasets. It shows that the resulted algorithm is significantly

faster than the exhaustive one. It constructs better ranking models according to the MAP criterion.

The obtained models are much simpler than the models, which were constructed with alternative

approaches. The proposed technique is significant for developing the information retrieval systems

based on expert assessments of the query-document relevance.
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1. Introduction1

In (Manning et al., 2008) Information retrieval is defined as finding documents of an unstructured2

nature, usually text that satisfies an information need from within large collections. An IR system3

stores text archives as a collection. To retrieve documents relevant to a query, one needs a rank4

estimation procedure called ranking model. It is defined on pairs document-query . For each pair it5

returns relevance of the document to the query. (Goswami et al., 2014) defines IR ranking models6

as functions of two basic features of these pairs: term frequency (tf ) and document frequency (idf ).7

In this paper ranking models are constructed as mathematical functions defined on tf-idf features.8

Instead of enlarging the set of features to provide better performance (Yea et al., 2011), current9

paper use the same tf-idf features to make further comparison consistent.10

An information to retrieve is specified by a query, which is first preprocessed with same prepro-11

cessing steps as documents. The query terms are searched within the collection terms. Relative12

documents retrieved from the collection. These documents are ranked according to the ranking13

function and returned to the user. To evaluate the performance of an IR system a group of ex-14

perts assess the ranked documents. The experts make a set of queries. For each query an expert15

makes an assessment of relevance of ranked documents. It gives relevance of a document to a query16

for query-document pairs. The main problem of the IR system constructing is how to discover a17

ranking function, which returns the most related documents to each query from a large and diverse18

test set queries. Developing new term-document scoring functions that outperform already existing19

traditional scoring schemes is one of the most acute and demanded research area in the theoreti-20

cal information retrieval(Datta et al., 2017; Vanopstal et al., 2013) with many applications in the21

expert systems(Kauer and Moreira, 2016; Tu and Seng, 2009).22

The Text REtrieval Conference (TREC), co-sponsored by the National Institute of Standards23

and Technology (NIST) and U.S. Department of Defense, was started in 1992 as part of the TIP-24

STER Text program. For each TREC, National Institute of Standards and Technology (NIST)25

provides a test set of documents and questions. Participants run their own retrieval systems on the26

data, and return to NIST a list of the retrieved top-ranked documents. NIST pools the individual27

results, judges the retrieved documents for correctness, and evaluates the results. Thus each TREC28

consists of a collection of documents, user queries and judgments for a subset of a collection Each29

TREC is associated with this triplet. Each triplet has a collection of nearly 500 000 documents. 5030

queries to the collection and 2000 judgments for each query in average. The number specified after31
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the name “Trec” denotes the year of the creation of the TREC.32

The ranking models in (Porter, 1997; Metzler and Croft, 2005; Amati and Van Rijsbergen, 2002;33

Clinchant and Gaussier, 2010; Ponte and Croft, 1998) are derived on theoretical assumptions. These34

assumptions allow to build ranking models without an IR collection, but these assumptions are not35

often met. For example, the derived ranking models are not optimal according to mean average36

precision (Manning et al., 2008) on TREC collections (Goswami et al., 2014). Moreover, the quality37

of these models significantly differs on various the collections (Goswami et al., 2014).38

High-performing ranking models are also discovered by automatic procedures. The paper (Goswami39

et al., 2014) exhaustively explores a set of IR ranking models represented as superpositions of expert-40

given grammar elements. The grammar is an expert-given set of primitive mathematical functions,41

where variables are tf-idf features (Salton and McGill, 1986). The exhaustive algorithm explores42

the set of superpositions, which consists of at most 8 grammar elements. The best explored ranking43

functions in (Goswami et al., 2014) are better in average on TREC collections than ones in (Porter,44

1997; Metzler and Croft, 2005; Amati and Van Rijsbergen, 2002; Clinchant and Gaussier, 2010;45

Ponte and Croft, 1998). Moreover, these functions are guaranteed to have simple structure. How-46

ever, this algorithm has high computational complexity (Goswami et al., 2014). Therefore, an47

exploration of more complex superpositions is an intractable problem.48

Another approaches to improve IR expert systems include various genetic algorithms: search49

for an optimal document indexing (Gordon, 1988; Valizadegan et al., 2009), clustering documents50

according to their relevance to queries (Gordon, 1991; Raghavan and Agarwal, 1987), tuning pa-51

rameters of queries (Yang et al., 1992; Petry et al., 1994), facilitate automatic topic selections (Chiu52

et al., 2009), search for key words in documents (Chen, 1995) and optimal coefficients of a linear53

superposition of ranking models (Billhardt et al., 2002; Pathak et al., 2000). Genetic algorithms54

are applied to select features in image retrieval and classification (Lina et al., 2014). Genetic55

algorithms are used to generate ranking functions represented as superpositions of grammar ele-56

ments (Fan et al., 2004, 2000; Koza, 1992). These procedures significantly extend the set of ranking57

superpositions considered in (Goswami et al., 2014). However, the basic algorithms in (Fan et al.,58

2004, 2000) produce superpositions with significant structural complexity after 30-40 iterations of59

mutations and crossovers (Koza, 1992). The basic algorithms do not control the structural com-60

plexity of generated superpositions and do not solve a problem of evolutionary stagnation, when a61

population stops to change.62
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Strengths Weaknesses

(Fan et al., 2000, 2004)

Large feasible set of ranking functions

Fast convergence to a local optimum

Complicated final superpositions

Does not provide global optimum in the feasi-

ble set of functions

Have not been tested on different datasets to

show uniform improvement on them

(Goswami et al., 2014)

Provides global optimum with respect to the

feasible set

Compact final ranking functions

Have been tested on different datasets

and uniform improvement over existing ap-

proaches was shown

Small feasible set of ranking functions

(Robertson and Zaragoza, 2009)

Theoretically justified

Simple and compact explicit expression

Is not uniformly good over different datasets

The proposed model generation algorithm

Large feasible set of ranking functions

Fast convergence to a local optimum

Compact final ranking functions

Have been tested on different datasets to show

uniform improvement on them

Does not provide global optimum in the feasi-

ble set of functions

Table 1: Strengths and weaknesses comparison of the algorithms for IR ranking
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The problem of evolutionary stagnation appears when a majority of stored superpositions have63

similar structure and high quality. Next crossover operations constructs superpositions, which are64

similar to the stored ones. The mutation operation constructs a superposition, which is unlikely65

to have as high quality as the stored superpositions. This superposition highly probably will be66

eliminated. Therefore the population will pass to the next iteration without changes. The genetic67

algorithm stops actual generation.68

To outperform the ranking functions found in (Goswami et al., 2014), one needs to extend the69

set of superpositions considered there. To perform it, a modified genetic algorithm is proposed.70

It detects evolutionary stagnation and replaces the worst stored superpositions with random ones.71

This detection is implemented with a structural metric on superpositions. Regularizers solve the72

problem of overfitting. They penalize the excessive structural complexity of superpositions. The73

paper analyzes various pairs regularizer-metric and chooses the pair providing a selection of better74

ranking superpositions. All strengths and weakness of compared approaches are summarized in75

Table 1. The novelty of the proposed algorithms is the solution of the problem of stagnation in the76

consequent model generation procedure. It brings variety in the generated models and makes the77

search procedure faster. The significance of the proposed approach is the next level of quality in78

the ranking functions, which outperforms the exhaustive search.79

The paper (Goswami et al., 2014) uses TREC collections to test ranking functions. To make the80

comparison of approaches consistent, the present paper also use these collections. The collection81

TREC-7 (trec.nist.gov) is used as the train dataset to evaluate quality of generated superpositions.82

The collections TREC-5, TREC-6, TREC-8 are used as test datasets to test selected superpositions.83

2. Problem statement84

There given a collection C consisting of documents {di}|C|i=1 and queries Q = {qj}|Q|j=1. For each

query q ∈ Q some documents Cq from C are ranked by experts. These ranks g are binary

g : Q× Cq → Y = {0, 1},

where 1 corresponds to relevant documents and 0 to irrelevant.85

To approximate g, superpositions of grammar elements are generated. The grammar G is a

set {g1, . . . , gm, xdw, yw}, where each gi stands for an mathematical function and xdw, yw stand for

5



variables. These variables are tf-idf features of document-query pair (d, q). Feature xdw is a frequency

of the word w ∈ q in d, feature yw is a frequency of w in C:

xdw = twd log

(
1 +

la
ld

)
, yw =

Nw

|C|
, (1)

where Nw is the number of documents from C containing w, twd is the frequency of w in d, ld is the86

number of words in d (the size of a document d), la is an average size of documents in C. Each87

superposition f of grammar elements is stored as a directed labeled tree Tf with vertices labeled88

by elements from G. The set of these superpositions is defined as F.89

The value of f on a pair (d, q) is defined as a sum of its values on (d,w), where w is a word

from q:

f(d, q) =
∑
w∈q

f(xdw, yw).

The superposition f ranks the documents for each q. The quality of f is the mean average preci-

sion (Manning et al., 2008)

MAP(f, C,Q) =
1

|Q|

Q∑
q=1

AveP(f, q),

where

AveP(f, q) =

∑|Cq|
k=1

(
Prec(k)× g(k)

)∑|Cq|
k=1 Rel(k)

, Prec(k) =

∑k
s=1 g(s)

k
,

where g(k) ∈ {0, 1} is a relevance of the k-th document from C.90

This paper aims at finding the superposition f , which maximizes the following quality function91

f∗ = argmax
f∈F

S(f, C,Q), S(f, C,Q) = MAP(f, C,Q)− R(f), (2)

where R is a regularizer controlling the structural complexity of f .92

The exhaustive algorithm in (Goswami et al., 2014) generates random ranking superpositions93

consisting at most of 8 elements of the grammar G. Let F0 be the set of the best superpositions94

selected in (Goswami et al., 2014). The solution f∗ is compared with the superpositions from F095

with respect to to MAP.96

3. Generation of superpositions97

IR ranking functions are superpositions of expert-given primitive functions. These superposi-

tions are generated by the genetic algorithm. It uses an expertly given grammar G and constructs
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superpositions of its elements. On each iteration it keeps a population of the best selected super-

positions. To update them and pass to the next iteration, it generates new superpositions with

use of the stored ones. Since the superpositions are represented as trees, the algorithm applies

crossover c(f, h) and mutation m(f) operations to the stored trees

c(f, h) : F× F→ F, m(f) : F→ F,

Definition 1. Crossover operation c(f, h) : F×F→ F produces a new superpositions from given f98

and h. This operation represents f and h as trees, uniformly selected a subtree for each of them99

and swaps these subtrees.100

Here is an example of crossover on two superpositions, where randomly selected subtrees are in

bold.

f(x, y) = exp(x) + ln(xy), h(x, y) =
√
x+ (x+y)

↓101

f ′(x, y) = exp(x) + (x+y), h′(x, y) =
√
x+ ln(x · y),

The new superpositions are formed by swapping of these subtrees.102

Algorithm 1 Basic genetic algorithm

Require: grammar G, required value α of MAP

Ensure: superposition f of elements from G with MAP ≤ α;

create a set of initial, random superpositions M0,

repeat

crossover random pairs of stored superpositions M,

mutate random superpositions from the population M,

consider these generated superpositions and the ones stored in M. Select the best of them

according to MAP,

store the best generated superpositions in the population M and pass it to the next iteration,

until the required value of MAP is reached;

Definition 2. Mutation m(f) uniformly selects a subtree from f and replace it with another random103

superposition. Mutation produces one new superposition.104
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Here is an example of mutation on a superposition105

f(x, y) =
√
x+ ln(x · y)→ f ′(x, y) =

√
x+ exp(y).

Definition 3. Size |T | of a tree T is the number of its vertices.106

Restrict the size of substituting tree. If mutation replaces a subtree T with a tree T ′, then bound107

the size of T ′ by c|T |, where c is a constant. This restriction allows us to explore the set F more108

gradually. The reason is to prevent the algorithm from instantaneous moving toward complicated109

superpositions if the stored population consists mainly of simple structured superpositions. Now110

the genetic algorithm is described in Algorithm 1. It will be referred as basic genetic algorithm.111

4. Metric properties of basic genetic algorithm112

To analyze the genetic algorithm, introduce a structural metric µ(T, T ′). It is defined on pairs

of directed labeled trees. Therefore, it is defined on pairs of elements from F as well.

µ(f, f ′) = µ(Tf , T
′
f ).

This structural metric satisfies the following conditions113

1) µ(f, f) = 0, µ(f, f ′) > 0 if f 6= f ′ (non-negativity),114

2) µ(f, f ′) = µ(f ′, f) (symmetry),115

3) µ(f, f ′) ≤ µ(f, f ′′) + µ(f ′′, f ′) (triangle inequality).116

For r > 0 define the r-neighborhood Ur(f) of superposition f as a set of superpositions in F

that are at distance less than r from f

Ur(f) = {f ′ ∈ F : µ
(
f, f ′

)
< r}.

To associate the structural distance between superpositions with a distance on their values,

introduce an extra condition. Claim that the functions, lying in one structural neighborhood,

should rank the documents mainly similarly. Define a distance function η on the ranks of IR

ranking functions:

η(f, f ′) =
1

|C|
(
|C| − 1

) ∑
dj ,dk∈C

[f(dj) < f(dk)][f ′(dj) > f ′(dk)],
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Ur(f)
Vr(f)

α(M)
r

Figure 1: Illustration of supposed relation between Ur(f) and Vr(f).

where [A] is the indicator of event A. It is related with Kendall rank correlation coefficient by the

equation:

τ(f, f ′) = 1− 2η(f, f ′).

The function η is the normalized number of inversions necessary to transform one list with ranks117

to the other. Therefore η(f, f ′) is a distance on the values of the superpositions. Call the neigh-118

borhood Vr(f) = {f ′ : η(f, f ′) < r} the value-neighborhood.119

Introduce a condition for µ to detect evolutionary stagnation of the genetic algorithm

α(M) = ν

(
[µ(f, f ′) ≤ α1]⇒ [η(f, f ′) ≤ α2]

∣∣f, f ′ ∈M

)
≥ 1− ε, (3)

where α1, α2, ε are some constants and ν
(
A
)

is the frequency of event A. It claims that structurally120

similar functions rank documents mainly similarly. Figure 1 shows supposed relation between121

structural neighborhood Ur(f) and value-neighborhood Vr(f). Condition (3) states that the area122

of the black region on Figure 1 should be relatively small.123

Let fopt be a superposition of high quality according to S. If µ satisfies condition (3), then the124

superpositions in the neighborhood Ur (fopt) will also have high quality. Suppose that fopt 6= f∗ (2).125

It means that the optimal ranking superposition f∗ is not found yet. If all superpositions of a stored126

population Mi lye in Ur (fopt), then they will rarely leave Ur (fopt) on the next iterations, since127

crossovers produce superpositions mainly from Ur (fopt) and mutations produce superpositions128

mainly of lower quality. Therefore, the optimal function f∗ will frequently become unreachable for129

the genetic algorithm, as consequence of this evolutionary stagnation.130

Definition 4. Evolutionary stagnation is a situation in a genetic algorithm, when stored superpo-131

sitions are pairwise similar. The generated algorithm stops generation of principally new superpo-132

sitions and the population mainly does not change from iteration to iteration.133
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Definition 5. Radius r(M) of a population M is the minimum size of r-neighborhood with center

in f ∈ M, which accommodates M. It shows how are the functions from M scattered across the

set F.

r(M) = argmin
r>0

{∃f ∈ F ∀f ′ ∈M : f ′ ∈ Ur(f)} = min
f∈M

max
f ′∈M

{µ (f ′, f)}. (4)

Detect evolutionary stagnation with structural metric µ. Lets consider a population M stored by134

the genetic algorithm. If the genetic algorithm stagnates, then r(M) is relatively small. Oppositely,135

if the population is diverse, then the r(M) is big. Therefore evolutionary stagnation could be136

detected with the radius r(M). However, it is an intractable problem to find the exact value137

of r(M). Therefore, propose an empirical estimation of this radius.138

Definition 6. Structural complexity |f | of superposition f is the number of grammar elements,139

which f consists of.140

Definition 7. Empirical radius re(M) of is a normalized average distance between superpositions

in M.

re(M) =

∑
f,f ′∈M

µi(f, f
′)

|M|
∑

f∈M
|fj |

. (5)

This estimation is used to detect evolutionary stagnation of the genetic algorithm. If re(M) is141

less than a threshhold r(M) < Thresh, eliminate the worst superpositions from M and replace them142

with random superpositions of the same structural complexity. This procedure increases the radius143

of M and diversifies it. Therefore, the present aim of this paper is to select a proper structural144

metric µ, which satisfies all mentioned conditions.145

5. Structural metrics146

Each ranking superposition f ∈ F is represented as directed tree Tf , which vertices are labeled147

by elements from grammar G. Structural metrics are defined on pairs of such trees. It automatically148

defines them on pairs of superpositions. This paper analyzes three metrics.149
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5.1. Similarity according to an isomorphism150

The first structural metric µ1 uses a definition of common subgraph of two graphs (Makarov,151

2007).152

Definition 8. Two graphs G1 and G2 are called isomorphic if there is an edge-preserving bijection153

between their vertex sets. The edge-preserving property states that two vertices are adjacent iff their154

images are adjacent.155

Definition 9. Two trees Ti, Tj have a common subtree T if each of them has a subtree isomorphic156

to T .157

Definition 10. A size |T | of a tree T is the number of its vertices.158

Definition 11. The largest common subtree Tij of two directed labeled trees Ti and Tj is the tree159

of the largest size among all common subtrees of Ti and Tj.160

The distance between Ti and Tj is calculated by the following formula

µ1(Ti, Tj) = |Ti|+ |Tj | − 2|Tij |.

The paper (Makarov, 2007) defines µ1 likewise on pairs of graphs and proves that µ1 satisfies 1-3161

conditions if the graph size is defined as the number of its edges. For a tree the number of its162

vertices is equal to the number of its edges plus 1. Therefore, the results mentioned in (Makarov,163

2007) are applicable for our case and µ1 satisfies 1-3 conditions. The last 4th condition is checked164

empirically.165

5.2. Similarity according to edit distance166

As before, a superposition is represented by a directed labeled tree. Represent a tree as a string of167

characters. This string is constructed as a sequence of labels of vertices written in pre-order (Morris,168

1979).169

Now define a structural metric µ2 on pairs of character strings. It automatically defines the170

structural metric on pairs of superpositions. As the arities of functions from G are known, each171
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superposition could be reconstructed from its string representation. Therefore, there is no two172

character strings corresponding to one superposition of primitive functions. The structural metric µ2173

is called a Levenshtein distance.174

Definition 12. The Levenshtein distance between two character strings is the minimum number of175

single-character edits (insertions, deletions and rewritings) required to change one string into the176

other.177

Each edit distance satisfies the conditions 1-3. The metric µ2 also satisfies them in the case178

when it is defined on pairs of superpositions, because the string representation is bijective. The last179

4th condition is checked empirically.180

The third structural metric µ3 is a Levenshtein distance defined on pairs of directed labeled181

trees.182

Definition 13. The Levenshtein distance between two trees is the minimum number of edits (edge183

insertions, edge deletions and vertex relabeling) required to change one tree into the other.184

The structural metric µ3 satisfies the metric axioms (Zhang and Shasha, 1989). The last 4th185

condition is checked empirically.186

6. Regularizers187

To approximate noisy data accurately, the genetic algorithm generate complex superpositions188

after some iterations. To prevent this overfitting, it should control the structural complexity of189

superpositions by a regularizer. The regularizer restricts a set F′ ⊂ F of superpositions reachable190

by the genetic algorithm. Search for a regularizer, which makes the set F′ sufficiently rich to191

find there a proper approximating superposition and sufficiently small to avoid overfitting of the192

algorithm. Lets consider the structural parameters of directed labeled trees193

1) The size of a tree, see Definition 3.194

2) The number of leaves in a tree.195
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3) The height of a tree.196

A restriction of these parameters makes complex superpositions unreachable for the genetic algo-197

rithm. This paper analyzes three regularizers built on these structural parameters. To penalize198

accurate superpositions less, all of these regularizers are proportional to MAP.

Algorithm 2 Modified genetic algorithm

Require: grammar G, required value α of MAP

Ensure: superposition f of elements from G with MAP ≤ α;

create a set of initial, random superpositions M0,

repeat

crossover random pairs of stored superpositions M,

mutate random superpositions from the population M,

consider these generated superpositions and the ones stored in M. Select the best of them

according to the quality function S (2),

store the best superpositions in a population M′ and pass it to the next iteration,

if de(M
′) < Thresh then

evolutionary stagnation is detected and we replace the worst superpositions from the popu-

lation M′ by random superpositions,

end if

M = M′.

until the required value of MAP is reached;

199

1) R1(f) = p ·MAP(f) · I(|f | < CT),200

where CT is a threshhold for the structural complexity, p is a penalty parameter. The reg-201

ularizer R1 penalizes those superpositions, which have structural complexity larger than the202

threshhold CT.203

2) R2(f) = p ·MAP(f) · I(|f | ≥ CT) · (|f | − CT),204

where C is a positive parameter. The regularizer R2 penalizes the superpositions having struc-205

tural complexity larger than the threshhold CT. And the more complex a superposition, the206

higher the penalty.207

3) R3(f) = p ·MAP(f) · |f |∗ · log(|f |+ 1),208
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The regularizer R3 treats a structural complexity of a superposition as the number of leaves |f |∗209

of its tree multiplied by the estimation log(|f |+ 1) of its height.210

All parameters from the definitions should be set empirically. To set them one needs to follow the211

principle mentioned above: the set F′ should be sufficiently rich to find there a proper approximating212

superposition and sufficiently small to avoid overfitting of the genetic algorithm.213

Select proper structural metric and regularizer to modify the basic genetic algorithm. The214

modified version solves the problems of overfitting and evolutionary stagnation. This version is215

described in Algorithm 2.216

7. Computational experiment217

The main goal of this paper is to generate superpositions outperforming the ones from F0 selected218

in (Goswami et al., 2014). These functions, in turn, outperform known ranking models BM25, LGD,219

LMDIR. Therefore, if the modified genetic algorithm succeeds in outperforming functions from F0,220

it will also outperform BM25, LGD, LMDIR as well. Now describe the data used to estimate the221

quality of the generated superpositions.222

Data. Authors in (Goswami et al., 2014) estimate the quality ranking functions on TRECs. To make223

the comparison with F0 consistent, use TRECS as well. Perform the computational experiment on224

Trec-5, Trec-6, Trec-7, Trec-8 from (trec.nist.gov).225

7.1. Data processing226

As TREC collections are large, calculations of the variables xdw and yw (1) are computationally227

expensive. To speed up the calculations, one should perform data preprocessing. Terrier IR Plat-228

form v3.6 (terrier.org) perform necessary steps for this preprocessing. It provides flexible processing229

of terms through a pipeline of components (stopwords removing, stemmers, etc.). The platform230
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Figure 2: Scheme of data preprocessing steps.

indexes a collection of documents. The preprocessing steps include stemming using Porter stem-231

mer and removing stop-words using the stopword list. Second, Terrier performs a query expansion232

techniques and retrieves required documents efficiently. It processes the data stored in Trec5-8233

and returns the matrices of features xdw and yw for each word w ∈ q and each document from the234

collection having this word.235

The algorithm of primary data preprocessing makes the following steps, see Figure 2.236

1. Split documents on tokens. Reduce each token to its stem form by Porter stemmer (Porter,237

1997).238

2. Filter the set of stemmed tokens is according to the stopwords list.239

3. The collection is represented as an index document-token.240

4. Create a lexicon-class, which represents the list of terms (dictionary) in the index.241

After the preliminary steps are performed, one can calculate the variables xdw and yw for each242

query q, see Figure 3.243

1. Split q on tokens. Process each token by the stemmer and filter the resulted set by the244

stopword list.245

2. Lexicon-class collects statistics about the tokens. It calculates the feature yw.246

3. Eliminate tokens with high value of yw as uninformative.247

4. For each token the platform retrieves the information about its second feature xdw from the248

index.249
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Figure 3: Scheme of query processing steps.

The described scheme is used by the modified genetic algorithm to estimate the quality of a250

superposition. Now describe the system performing this modified genetic algorithm. This system251

generates superpositions of primitive functions.252

7.2. Generation system253

Algorithm 2 gives the description of the modified genetic algorithm used for generation of ranking

superpositions. These superpositions are constructed from the elements of

G = {xdw, yw,+,−,×,
·
·
, log, exp,

√
·}.

On each iteration the algorithm stores 20 best generated superpositions. To create new super-254

positions, it performs 10 crossovers and 10 mutations on the stored ones. Then it selects 20255

best according to (2) and pass to the next iteration. This paper terminates the generation af-256

ter 300 iterations. The selected superpositions are compared with the ones from F0 To use257

this algorithm, one must select proper regularizer and structural metric. The code for this sys-258

tem is found in https://github.com/KuluAndrej/Generation-of-simple-structured-IR-functions-by-259

genetic-algorithm-without-stagnation.260

7.3. Selection of regularizer and structural metric261

This paper analyzes three metrics and three regularizers defined above with respect to the genetic262

algorithm. There are 9 combinations of these metrics and regularizers. Selects the pair, which263
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provides better generation of superpositions both in terms of structural diversity and prediction264

accuracy. The selected pair is used by the modified genetic algorithm to generate an optimal ranking265

superposition.266

Table 2 shows a computational efficiency of calculation of different metrics with respect to267

different regularizers. There are 9 possible pairs metric-regularizer. The modified genetic algorithm268

is launched 100 times for each pair. The CPU time required to calculate all values of a metric269

is averaged over these 100 launches and 300 iterations for each launch. Table 2 shows that µ2270

is uniformly easiest to calculate. At the same time, µ1 is uniformly hardest to calculate. This271

efficiency is considered in the selection. Now analyze the pairs with respect to the generation of272

superpositions.273

First, analyze the modified genetic algorithm without regularizers. All measured values are aver-274

aged over 100 launches, see Figure 4. On the last 300-th iteration the average structural complexity275

of superpositions in the population is more than 40. Figure 4 shows slow trend to evolutionary stag-276

nation. The reason is that structural complexity of the generated superpositions grows dramatically277

with the iteration number. It makes the stored superpositions sufficiently diverse. Therefore during278

the whole evolution the empirical diameter de of the stored population is large. However, the gener-279

ated superpositions are significantly overfitted and should be penalized for the excessive structural280

complexity.281

Regularizer µ1 µ2 µ3

R1 11.52 1.84 4.54

R2 6.7876 0.9347 1.5666

R3 7.63 1.05 1.87

Table 2: Comparison of CPU time required by structural metrics

Now let us analyze 3 metrics with presence of a regularizer. For each pair metric-regularizer282

plot the empirical diameter de depending on the number of iteration. Figures 5, 6, 7 also shows the283

average structural complexity la of stored superpositions. It allows to make inferences about the284

presence of overfitting.285
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Figure 4: Dynamics of d(M) and la when no regularizer is used.
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Figure 5: Dynamics of d(M) and la when the regularizer R1 is used.
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Figure 6: Dynamics of d(M) and la when the regularizer R2 is used.
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Figure 7: Dynamics of d(M) and la when the regularizer R3 is used.
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Note that the empirical diameter d(M) calculated with µ1 remains approximately unchanged286

during the whole evolution, see Figures 5, 6, 7. This particular feature does not allow to detect287

evolutionary stagnation in proper time. The actual start of evolutionary stagnation can not be288

denoted with µ1. Moreover, calculation of µ1 is computationally inefficient comparing with µ2289

and µ3, see Table 2. These reasons lead to elimination of µ1 from the further analysis.290

Two other metrics µ2 and µ3 provide almost equal values of d(M), see Figures 5, 6, 7. The291

relative difference in these values is under 5% for all variants of used regularizer. Therefore, without292

loss of generality, select the structural metric µ2 as more efficiently calculated, see Table 2.293

The first regularizer R1 is too strict, see Figure 5. The algorithm falls into evolutionary stag-294

nation on the first iterations, because the set of reachable superpositions F′ is small. The similar295

situation is observed for the second regularizerR2, see Figure 6. The algorithm does not immediately296

fall into evolutionary stagnation. The stored superpositions are updated up to the 300-th iteration.297

However, the empirical diameter d(M) significantly decreases after 30-40 iterations, see Figure 6.298

It means that although the stored superpositions are being updated throughout the evolution, they299

have mainly similar structures. These reasons lead us to the use of the third regularizer R3. The300

value of the empirical diameter d(M) decreases smoothly with R3, see Figure 7. It allows to have301

enough iterations to learn the structure of optimal superposition and detect evolutionary stagna-302

tion. Since the structural metric µ2 and the regularizer R3 are selected, the modification of the303

genetic algorithm is ready to generate ranking superpositions. s304

Generation of ranking superpositions. Modified genetic algorithm is launched on TREC-7. The best305

selected superpositions are compared with ones from F0. The superpositions in F0 are of simple306

structure and have a high quality in average on analyzed collections. Besides, these superpositions307

are better in average than the traditionally used ranking models BM25, LGD, LMDIR. Here is the308

list of the best superpositions from F0309

1. f1 = e

√√√√ln

(
x

y

)
,310

2. f2 =

√
ln(x)
√
y
,311

3. f3 = 4

√
x

y
,312

4. f4 =

√
y +

√
x

y
,313
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5. f5 = 4

√
x

y
· e−y/2,314 6. f6 =

√
√
x+

√
x

y
.315

The selection of the best superpositions is performed by the modified genetic algorithm on316

TREC-7. The other datasets TREC-5, TREC-6, TREC-8 serve as test datasets. After 1000317

iterations the modified genetic algorithm selects the following family of superpositions (for the318

convenience denote ln(x+ 1) as ln(x) and g(x) = ln ln(x)):319

1. h1 = g

(
g(x)√

ln(x) + x

)
− ln(y),320

2. h2 = g

 g(x)√
1
2 ln(x) + x

− ln(y),321

3. h3 = g

ln

 g(x)√
1
2 ln(x) + x

− ln(y)

 ,322

4. h4 = g

(
g(x)√

g (
√
x) + x

)
− ln(y),323

5. h5 = g

(
g(x)√

ln(x) + ln(y)

)
− ln(y),324

6. h6 = g

(
g (ln(x))√
ln(x) + x

)
− ln(y).325

MAP of the superpositions {hj} and {fi} is presented in Table 3. The superpositions from F0326

are in the upper half of the table. The superpositions {hj} are presented in the lower half. The327

qualities of the best functions {fi} are bold in each column in the upper half. In the lower half we328

bold those values, which are higher than the bold values in the corresponding column in the upper329

half.330

Note that the superpositions h1, h2, h3, h4 are uniformly better than the functions from (Goswami331

et al., 2014) on all 4 datasets. The other superpositions are better in average. The modified ge-332

netic algorithm is able to build effective yet simple structured superpositions, which outperform333

the known ones.334

The computational experiment has shown that the discovered IR ranking functions outperform335

the recently published ones. To estimate the quality of these ranking functions it used the collections336

TREC 5-8, provided by the National Institute of Standards and Technology. An optimal pair of337

metric and penalty functions was selected from the set of nine admissible pairs. It was used338

to generate competitive ranking functions. The resulted functions have a simple structure. It339
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Superposition TREC-5 TREC-6 TREC-7 TREC-8

Superpositions from F0

f1 8.785 13.715 10.038 13.902

f2 8.518 12.996 9.216 13.074

f3 8.908 13.615 9.905 13.708

f4 8.908 13.615 9.905 13.708

f5 8.908 13.615 9.908 13.709

f6 8.872 13.613 9.890 13.695

Family of selected superpositions

h1 8.965 13.693 10.600 14.403

h2 9.472 13.723 10.650 14.402

h3 9.558 13.786 10.631 14.376

h4 9.226 13.713 10.5 14.374

h5 8.862 13.388 10.439 14.359

h6 8.104 13.483 10.421 14.355

Table 3: Comparison of the superpositions {hj} to {fi} according to the MAP criterion

allows ranking large document collections fast and stable according to a user request. The main340

result of the experiment is the following. Recently in (Goswami et al., 2014) an exhaustive search341

algorithm was used to find models of good quality in the large set of competitive models. Due to342

the high complexity of search space, this algorithm requires significant time to produce resulting343

ranking functions. The present experiment shows that after solving the problem of stagnation,344

one can obtain better models in lesser time. It tells that the further research should be directed345

towards investigations of the optimization criterion properties and the new ways of superposition346

representation.347

8. Conclusion348

This paper investigates a ranking function construction technique for Information Retrieval349

systems. It develops an algorithm, which consequently generates ranking functions. The ranking350
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functions estimate the relevance of documents to queries and rank documents according to each351

query. The quality criterion assumes that the model ranking matches the expert ranking. The352

experts assess whether a document is relative to a query of not. To increase the quality of IR rank-353

ing functions a new modified genetic algorithm was proposed. It consequently generates ranking354

functions as superpositions of expert-given primitive functions. The original version of algorithm355

generates overfitted functions and goes to stagnation, producing similar degenerate functions. This356

paper proposes a new criterion of optimality. To avoid overfitting it controls structural complexity357

and solves the evolutionary stagnation problem. To avoid stagnation this criterion uses regularizers,358

based on new structural metric functions. They estimate the diversity of the generated superposi-359

tions. If the best generated superpositions are similar, the new genetic algorithm produces random360

diverse ones and includes them into the competitive set. Several metric functions were proposed361

and investigated in the computational experiment. To control the structural complexity of the362

superpositions the criterion uses penalty functions. It results in the simpler superposition struc-363

tures. Various regularizers were proposed and analyzed. An optimal pair of metric and regularizer364

functions were selected. This pair was used in the new genetic algorithm to generate quality yet365

simple structured IR ranking functions.366

The computational experiment was performed on the well-known TREC datasets. It shows367

that the newly discovered IR ranking functions outperform the state-of-the-art IR scoring models,368

namely BM25, LGD, LMDIR and the models selected by the exhaustive approach.369

In the further research, we plan the following directions to develop the proposed technique. To370

obtain ranking models with a structure, which is interpretable by experts, structural restrictions371

will be applied during the model generation procedure. We have to solve a problem of directed372

generation of models, which belong to the interpretable class. Also to boost the quality of the373

ranking we plan to introduce parametric primitive functions and expand the search space. Along374

with the discrete part to optimize the superposition structures it will include the continuous part375

to optimize the model parameters. Mixed integer optimization methods will be used to solve the376

search problem. The most complex direction of the future research is how to convert a discrete and377

mixed integer optimization problems into a continuous one to use gradient methods. To solve this378

problem we plan to represent a superposition as a weighted graph and introduce a criterion, which379
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penalizes a superposition for non-admissible structures.380
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