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Annorarus

B mamrOM Tesmnce pazpabaThIBaeTCs TOIXO0 K ITOCTPOSHUO HOBBIX PAHXKUPYOITHIX
dyukinit as 3agaun Uadopmanmonnoro Ioncka. Pamkupyromas (byHKmus 3aBn-
CHT OT NPEACTABICHNA TOKYMEHTA, KOTOPOE BKJIIOUAET B Ce0sT IACTOTHI CJIOB U IACTO-
Thl JIOKYMECHTOB. MO,Z[Q.H]) PaHXKUPpyeT JOKYMEHTBI COIVIACHO IIOJIb30BATE/JIbCKUM 3a-
npocaMm. KadecTBo MOJiesn ompeieideTcsd ¢ TOMOIIBIO mean average precision. Yro-
OBl TTPEJTOKUTH HOBBIE PAHXKUPYIOIINE MOIEJIN, TTPETAaraeTcst MOIu(UITNPOBAHHbBIN
renernydeckuii aaropurM. OH MOPOKIAET MOJIETN KaK CYIEPIO3UIUU TPUMUTHBHBIX
byHKIMIT 1 BRIOMpAET JYUIIYO COIIACHO KPUTEPHUIO KadecTBa. LJIaBHBIN BKJIAJ UC-
CJIEIOBAHUsI COCTOUT B PEIIeHWH MPOOJIEMBbI CTATHAIWE W KOHTPOJIsT CTPYKTYPHOM
CJIOZKHOCTH 110CJIEJI0BATEILHO OPOXKIaeMbIX Mojieseil. s pertenus srux npobiem
[peJIJIaraeTcsi HOBBIM Kpurepnit orbopa mogesneit. OH UCIOIb3yeT PeryJisipu3aTophl,
mrrpadyIoIme CA0KHOCTE (DYHKIUIN, U CPYKTYPHBIE METPUKH, TTO3BOJIIIONINE OIIPe-
ACJIAdTh MOMEHT Ha4daJld CTaIlHalluu. T‘ITO6bI ITOKa3aTh IMIPEBOCXOACTBO HOBBIX ITOPOXK-
JIEHHBIX MOJiejiell HaJ| COBPEMEHHBIMU PAHKUPYIOMUMEI DYHKIIUSAME, MBI TPOBOINUM
srcrepuMenT Ha kKosutekimax TREC. DkcmepmmenTt mokaseiBaer, 4To 1) mpesyio-
JKEHHBIH AJITOPUTM 3HAYUTEIHHO ObICTPee mepebopHoro, 2) oH oTbupaer (GyHKIMH,
KOTOpPBIE JIydIlle 3TAJOHHBIX HA BCEX paccMaTpUBaeMbix KoJuteknusax. [lomydenubie
MOJIeJI 3HAYUTEJBHO TMPOIe, YeM OTOMpaeMble CTAHJIAPTHBIM I'€HETUIECKUM aJiro-
putmowm. [Tpesioxenras mporeaypa BaxKHa JJIs Pa3paboTKu crucTeM WHQOOPMAITHOH-
HOTO TTOUCKA, OCHOBAHHBIX HA SKCIIEPTHBIX ONEHUBAHUSIX PEJIEBAHTHOCTH JOKYMEHTOB
3aIpPOCaM.

Karuesne caosa: wadopmanmonnsit movck, TREC, pamxwupytomas QyHKIms,

TeHeTUYeCKN aJTOPUTM, CUMBOJIbHAS PETPECCUs.
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Abstract

This paper investigates an approach to construct new ranking models for Information Retrieval.
The IR ranking model depends on the document description. It includes the term frequency and
document frequency. The model ranks documents upon a user request. The quality of the model
is defined by the difference between the documents, which experts assess as relative to the request,
and the ranked ones. To boost the model quality a modified genetic algorithm was developed.
It generates models as superpositions of primitive functions and selects the best according to the
quality criterion. The main impact of the research if the new technique to avoid stagnation and to
control structural complexity of the consequently generated models. To solve problems of stagnation
and complexity, a new criterion of model selection was introduced. It uses structural metric and
penalty functions, which are defined in space of generated superpositions. To show that the newly
discovered models outperform the other state-of-the-art IR scoring models the authors perform a
computational experiment on TREC datasets. It shows that the resulted algorithm is significantly
faster than the exhaustive one. It constructs better ranking models according to the MAP criterion.
The obtained models are much simpler than the models, which were constructed with alternative
approaches. The proposed technique is significant for developing the information retrieval systems
based on expert assessments of the query-document relevance.
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stagnation, overfitting
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1. Introduction

In (Manning et al., 2008]) Information retrieval is defined as finding documents of an unstructured
nature, usually text that satisfies an information need from within large collections. An IR system
stores text archives as a collection. To retrieve documents relevant to a query, one needs a rank
estimation procedure called ranking model. It is defined on pairs document-query. For each pair it
returns relevance of the document to the query. (Goswami et al.| 2014)) defines IR ranking models
as functions of two basic features of these pairs: term frequency (¢f) and document frequency (idf).
In this paper ranking models are constructed as mathematical functions defined on tf-idf features.
Instead of enlarging the set of features to provide better performance (Yea et al., 2011]), current
paper use the same tf-idf features to make further comparison consistent.

An information to retrieve is specified by a query, which is first preprocessed with same prepro-
cessing steps as documents. The query terms are searched within the collection terms. Relative
documents retrieved from the collection. These documents are ranked according to the ranking
function and returned to the user. To evaluate the performance of an IR system a group of ex-
perts assess the ranked documents. The experts make a set of queries. For each query an expert
makes an assessment of relevance of ranked documents. It gives relevance of a document to a query
for query-document pairs. The main problem of the IR system constructing is how to discover a
ranking function, which returns the most related documents to each query from a large and diverse
test set queries. Developing new term-document scoring functions that outperform already existing
traditional scoring schemes is one of the most acute and demanded research area in the theoreti-
cal information retrieval(Datta et al., [2017; [Vanopstal et al., 2013|) with many applications in the
expert systems(Kauer and Moreira, 2016} Tu and Seng, [2009).

The Text REtrieval Conference (TREC), co-sponsored by the National Institute of Standards
and Technology (NIST) and U.S. Department of Defense, was started in 1992 as part of the TIP-
STER Text program. For each TREC, National Institute of Standards and Technology (NIST)
provides a test set of documents and questions. Participants run their own retrieval systems on the
data, and return to NIST a list of the retrieved top-ranked documents. NIST pools the individual
results, judges the retrieved documents for correctness, and evaluates the results. Thus each TREC
consists of a collection of documents, user queries and judgments for a subset of a collection Each
TREC is associated with this triplet. Each triplet has a collection of nearly 500 000 documents. 50

queries to the collection and 2000 judgments for each query in average. The number specified after
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the name “Trec” denotes the year of the creation of the TREC.
The ranking models in (Porter] [1997; Metzler and Croft|, 2005; |Amati and Van Rijsbergenl, 2002}
|Clinchant and Gaussier}, 2010; Ponte and Croft} [1998)) are derived on theoretical assumptions. These

assumptions allow to build ranking models without an IR collection, but these assumptions are not

often met. For example, the derived ranking models are not optimal according to mean average

precision (Manning et al. 2008) on TREC collections (Goswami et al.,2014). Moreover, the quality

of these models significantly differs on various the collections (Goswami et al., 2014).

,  High-performing ranking models are also discovered by automatic procedures. The paper i

2014)) exhaustively explores a set of IR ranking models represented as superpositions of expert-

given grammar elements. The grammar is an expert-given set of primitive mathematical functions,

where variables are tf-idf features (Salton and McGill, |1986)). The exhaustive algorithm explores

the set of superpositions, which consists of at most 8 grammar elements. The best explored ranking
functions in (Goswami et al.,[2014)) are better in average on TREC collections than ones in
1997; [Metzler and Croft], 2005; [Amati and Van Rijsbergen, 2002} [Clinchant and Gaussier} 2010}

Ponte and Croft} |1998]). Moreover, these functions are guaranteed to have simple structure. How-

ever, this algorithm has high computational complexity (Goswami et al., 2014)). Therefore, an

exploration of more complex superpositions is an intractable problem.

Another approaches to improve IR expert systems include various genetic algorithms: search

for an optimal document indexing (Gordon, 1988} |Valizadegan et al., [2009), clustering documents

according to their relevance to queries (Gordon| [1991} [Raghavan and Agarwal, [1987), tuning pa-

rameters of queries (Yang et al.l [1992; Petry et al.,[1994), facilitate automatic topic selections (Chiul

2009)), search for key words in documents (Chen| 1995 and optimal coefficients of a linear

superposition of ranking models (Billhardt et al., 2002} Pathak et al., |2000)). Genetic algorithms

are applied to select features in image retrieval and classification (Lina et all 2014). Genetic

algorithms are used to generate ranking functions represented as superpositions of grammar ele-

ments (Fan et al.| 2004} 2000; Koza) [1992). These procedures significantly extend the set of ranking

superpositions considered in (Goswami et al., 2014). However, the basic algorithms in (Fan et al.|
2004, |2000)) produce superpositions with significant structural complexity after 30-40 iterations of
mutations and crossovers 1992). The basic algorithms do not control the structural com-

plexity of generated superpositions and do not solve a problem of evolutionary stagnation, when a

population stops to change.



Strengths

Weaknesses

(Fan et al.,

Large feasible set of ranking functions

Fast convergence to a local optimum

Provides global optimum with respect to the
feasible set

Compact final ranking functions

Have been tested on different datasets
and uniform improvement over existing ap-

proaches was shown

(Goswami et al., [2014)

2000}, |2004)

Complicated final superpositions

Does not provide global optimum in the feasi-
ble set of functions

Have not been tested on different datasets to

show uniform improvement on them

Small feasible set of ranking functions

(Robertson and

Theoretically justified

Simple and compact explicit expression

Zaragozay, [2009)

Is not uniformly good over different datasets

The proposed model

generation algorithm

Large feasible set of ranking functions

Fast convergence to a local optimum
Compact final ranking functions

Have been tested on different datasets to show

uniform improvement on them

Does not provide global optimum in the feasi-

ble set of functions

Table 1: Strengths and weaknesses comparison of the algorithms for IR ranking
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The problem of evolutionary stagnation appears when a majority of stored superpositions have
similar structure and high quality. Next crossover operations constructs superpositions, which are
similar to the stored ones. The mutation operation constructs a superposition, which is unlikely
to have as high quality as the stored superpositions. This superposition highly probably will be
eliminated. Therefore the population will pass to the next iteration without changes. The genetic
algorithm stops actual generation.

To outperform the ranking functions found in (Goswami et al., [2014)), one needs to extend the
set of superpositions considered there. To perform it, a modified genetic algorithm is proposed.
It detects evolutionary stagnation and replaces the worst stored superpositions with random ones.
This detection is implemented with a structural metric on superpositions. Regularizers solve the
problem of overfitting. They penalize the excessive structural complexity of superpositions. The
paper analyzes various pairs regularizer-metric and chooses the pair providing a selection of better
ranking superpositions. All strengths and weakness of compared approaches are summarized in
Table |1l The novelty of the proposed algorithms is the solution of the problem of stagnation in the
consequent model generation procedure. It brings variety in the generated models and makes the
search procedure faster. The significance of the proposed approach is the next level of quality in
the ranking functions, which outperforms the exhaustive search.

The paper (Goswami et al.,|2014) uses TREC collections to test ranking functions. To make the
comparison of approaches consistent, the present paper also use these collections. The collection
TREC-7 (trec.nist.gov) is used as the train dataset to evaluate quality of generated superpositions.

The collections TREC-5, TREC-6, TREC-8 are used as test datasets to test selected superpositions.

2. Problem statement

. For each

There given a collection C' consisting of documents {dl}li‘l and queries @ = {g; }‘j@l

query g € @ some documents C, from C' are ranked by experts. These ranks g are binary
g:QxCy—=Y=/{0,1},

where 1 corresponds to relevant documents and 0 to irrelevant.
To approximate g, superpositions of grammar elements are generated. The grammar & is a

set {g1,---,9m,7%, Y}, where each g; stands for an mathematical function and z,v,, stand for
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variables. These variables are tf-idf features of document-query pair (d, ¢). Feature z¢,

is a frequency
of the word w € ¢ in d, feature y,, is a frequency of w in C"

w la Nw
z'ilu:td log <1+ld>7 ywzmy (1)

where N, is the number of documents from C containing w, ¢ is the frequency of w in d, l4 is the
number of words in d (the size of a document d), [, is an average size of documents in C. Each
superposition f of grammar elements is stored as a directed labeled tree T with vertices labeled
by elements from &. The set of these superpositions is defined as §.

The value of f on a pair (d,q) is defined as a sum of its values on (d,w), where w is a word
from gq:

Fdg) =D @, yu).

weq
The superposition f ranks the documents for each ¢. The quality of f is the mean average preci-

sion (Manning et al., [2008)

Q
MAP(f,C,Q) = 1‘ > AveP(f,q),
q=1

QI =

where o
1%l (Prec(k) x g(k))

Cq
S Rel(h)
where g(k) € {0,1} is a relevance of the k-th document from C'.

Prec(k) = 721::1 9(s)

AveP(f,q) = PR

This paper aims at finding the superposition f, which maximizes the following quality function

f* = arJ%gl&aXS(f, 07 Q); 8(f7 07 Q) = MAP(f7 C?Q) - R(f)’ (2)

where R is a regularizer controlling the structural complexity of f.

The exhaustive algorithm in (Goswami et al.l |2014) generates random ranking superpositions
consisting at most of 8 elements of the grammar &. Let §o be the set of the best superpositions
selected in (Goswami et al} |2014). The solution f* is compared with the superpositions from Fo

with respect to to MAP.

3. Generation of superpositions

IR ranking functions are superpositions of expert-given primitive functions. These superposi-

tions are generated by the genetic algorithm. It uses an expertly given grammar & and constructs
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superpositions of its elements. On each iteration it keeps a population of the best selected super-
positions. To update them and pass to the next iteration, it generates new superpositions with
use of the stored ones. Since the superpositions are represented as trees, the algorithm applies

crossover ¢(f, h) and mutation m(f) operations to the stored trees
o(f,h) :FxF—=F m(f):F-F,

Definition 1. Crossover operation c(f,h) : § X § — § produces a new superpositions from given f
and h. This operation represents f and h as trees, uniformly selected a subtree for each of them

and swaps these subtrees.

Here is an example of crossover on two superpositions, where randomly selected subtrees are in

bold.
f(z,y) = exp(z) + In(xy), h(z,y) = V& + (x+y)

1

f'(z,y) = exp(x) + (x+y), h'(z,y) = Vo +1In(x-y),

The new superpositions are formed by swapping of these subtrees.

Algorithm 1 Basic genetic algorithm

Require: grammar &, required value o of MAP
Ensure: superposition f of elements from G with MAP < «;
create a set of initial, random superpositions 9y,
repeat
crossover random pairs of stored superpositions 91,
mutate random superpositions from the population 91,
consider these generated superpositions and the ones stored in 9. Select the best of them
according to MAP,
store the best generated superpositions in the population 991 and pass it to the next iteration,

until the required value of MAP is reached;

Definition 2. Mutation m(f) uniformly selects a subtree from f and replace it with another random

superposition. Mutation produces one new superposition.
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Here is an example of mutation on a superposition

f,y) = Vo +In(x-y) = f'(x,y) = vz +exp(y).
Definition 3. Size |T| of a tree T is the number of its vertices.

Restrict the size of substituting tree. If mutation replaces a subtree T with a tree 7", then bound
the size of T” by ¢|T'|, where ¢ is a constant. This restriction allows us to explore the set § more
gradually. The reason is to prevent the algorithm from instantaneous moving toward complicated
superpositions if the stored population consists mainly of simple structured superpositions. Now

the genetic algorithm is described in Algorithm [} It will be referred as basic genetic algorithm.

4. Metric properties of basic genetic algorithm

To analyze the genetic algorithm, introduce a structural metric p(7T,7T"). It is defined on pairs

of directed labeled trees. Therefore, it is defined on pairs of elements from § as well.

p(f, f') = w(Ty, Ty).
This structural metric satisfies the following conditions

1) w(f, f)=0, p(f,f)>0if f # f' (non-negativity),
2) p(f, f) = p(f', f) (symmetry),
3) w(f, f) <ulf, ")+ u(f”, f) (triangle inequality).

For r > 0 define the r-neighborhood U,.(f) of superposition f as a set of superpositions in §

that are at distance less than r from f

Ur(f)={f€F: n(f.f) < rh

To associate the structural distance between superpositions with a distance on their values,
introduce an extra condition. Claim that the functions, lying in one structural neighborhood,
should rank the documents mainly similarly. Define a distance function n on the ranks of IR

ranking functions:

1y — 1 . 107, /
1T = ferier=) djﬂ%(j[f(d» < SIS (dy) > ()],
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Figure 1: Illustration of supposed relation between U, (f) and V,.(f).

where [A] is the indicator of event A. It is related with Kendall rank correlation coefficient by the
equation:

T(f, f) =1=2n(f.f).
The function 7 is the normalized number of inversions necessary to transform one list with ranks
to the other. Therefore n(f, f') is a distance on the values of the superpositions. Call the neigh-
borhood V,.(f) = {f’ : n(f, f') < r} the value-neighborhood.

Introduce a condition for p to detect evolutionary stagnation of the genetic algorithm
a(M) = v([u(f, ) <] = In(f. f) S aal|f. [ € mt) >1-¢, (3)

where a1, ag, € are some constants and V(A) is the frequency of event A. It claims that structurally
similar functions rank documents mainly similarly. Figure [I] shows supposed relation between
structural neighborhood U, (f) and value-neighborhood V,.(f). Condition states that the area
of the black region on Figure [I| should be relatively small.

Let fopt be a superposition of high quality according to S. If u satisfies condition (3)), then the
superpositions in the neighborhood U, ( fopt) will also have high quality. Suppose that fopy # f* .
It means that the optimal ranking superposition f* is not found yet. If all superpositions of a stored
population 9; lye in Uy (fopt), then they will rarely leave U, (fops) on the next iterations, since
crossovers produce superpositions mainly from U, (fopt) and mutations produce superpositions
mainly of lower quality. Therefore, the optimal function f* will frequently become unreachable for

the genetic algorithm, as consequence of this evolutionary stagnation.

Definition 4. Fvolutionary stagnation is a situation in a genetic algorithm, when stored superpo-
sitions are pairwise similar. The generated algorithm stops generation of principally new superpo-

sitions and the population mainly does not change from iteration to iteration.
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Definition 5. Radius r(9M) of a population M is the minimum size of r-neighborhood with center
in f € M, which accommodates M. It shows how are the functions from M scattered across the
set §.

(M) = arTgféin{ﬂf egvfem: fleU(f)} = J{rég% ;pggt{u (f', )} (4)

Detect evolutionary stagnation with structural metric u. Lets consider a population 9t stored by
the genetic algorithm. If the genetic algorithm stagnates, then r(91) is relatively small. Oppositely,
if the population is diverse, then the r(91) is big. Therefore evolutionary stagnation could be
detected with the radius r(90t). However, it is an intractable problem to find the exact value

of r(9). Therefore, propose an empirical estimation of this radius.

Definition 6. Structural complexity |f| of superposition f is the number of grammar elements,

which f consists of.

Definition 7. Empirical radius r(9MN) of is a normalized average distance between superpositions
in M. ,
Z Mi(fa f )

_ ffem

= T = TR °
fem

This estimation is used to detect evolutionary stagnation of the genetic algorithm. If r.(90) is
less than a threshhold r(9t) < Thresh, eliminate the worst superpositions from 9% and replace them
with random superpositions of the same structural complexity. This procedure increases the radius
of 9 and diversifies it. Therefore, the present aim of this paper is to select a proper structural

metric pu, which satisfies all mentioned conditions.

5. Structural metrics

Each ranking superposition f € § is represented as directed tree Ty, which vertices are labeled
by elements from grammar &. Structural metrics are defined on pairs of such trees. It automatically

defines them on pairs of superpositions. This paper analyzes three metrics.

10
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5.1. Similarity according to an isomorphism

The first structural metric p; uses a definition of common subgraph of two graphs (Makarov,

2007).

Definition 8. Two graphs G1 and G2 are called isomorphic if there is an edge-preserving bijection
between their vertex sets. The edge-preserving property states that two vertices are adjacent iff their

1mages are adjacent.

Definition 9. Two trees T;, T; have a common subtree T' if each of them has a subtree isomorphic

toT.
Definition 10. A size |T| of a tree T is the number of its vertices.

Definition 11. The largest common subtree T;; of two directed labeled trees T; and T; is the tree

of the largest size among all common subtrees of T; and T}.

The distance between T; and T} is calculated by the following formula
(T, T;) = |Ti| + |15 — 2|T351-

The paper (Makarov, 2007) defines u; likewise on pairs of graphs and proves that p; satisfies 1-3
conditions if the graph size is defined as the number of its edges. For a tree the number of its
vertices is equal to the number of its edges plus 1. Therefore, the results mentioned in (Makarov,
2007)) are applicable for our case and p; satisfies 1-3 conditions. The last 4th condition is checked

empirically.

5.2. Similarity according to edit distance

As before, a superposition is represented by a directed labeled tree. Represent a tree as a string of
characters. This string is constructed as a sequence of labels of vertices written in pre-order (Morris|

1979).

Now define a structural metric pe on pairs of character strings. It automatically defines the

structural metric on pairs of superpositions. As the arities of functions from & are known, each

11
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superposition could be reconstructed from its string representation. Therefore, there is no two
character strings corresponding to one superposition of primitive functions. The structural metric pz

is called a Levenshtein distance.

Definition 12. The Levenshtein distance between two character strings is the minimum number of
single-character edits (insertions, deletions and rewritings) required to change one string into the

other.

Each edit distance satisfies the conditions 1-3. The metric po also satisfies them in the case
when it is defined on pairs of superpositions, because the string representation is bijective. The last

4th condition is checked empirically.

The third structural metric ps is a Levenshtein distance defined on pairs of directed labeled

trees.

Definition 13. The Levenshtein distance between two trees is the minimum number of edits (edge

insertions, edge deletions and vertex relabeling) required to change one tree into the other.

The structural metric ps satisfies the metric axioms (Zhang and Shashaj, [1989)). The last 4th

condition is checked empirically.

6. Regularizers

To approximate noisy data accurately, the genetic algorithm generate complex superpositions
after some iterations. To prevent this overfitting, it should control the structural complexity of
superpositions by a regularizer. The regularizer restricts a set §' C § of superpositions reachable
by the genetic algorithm. Search for a regularizer, which makes the set § sufficiently rich to
find there a proper approximating superposition and sufficiently small to avoid overfitting of the

algorithm. Lets consider the structural parameters of directed labeled trees

1) The size of a tree, see Definition

2) The number of leaves in a tree.

12
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3) The height of a tree.

A restriction of these parameters makes complex superpositions unreachable for the genetic algo-
rithm. This paper analyzes three regularizers built on these structural parameters. To penalize

accurate superpositions less, all of these regularizers are proportional to MAP.

Algorithm 2 Modified genetic algorithm
Require: grammar &, required value o of MAP

Ensure: superposition f of elements from G with MAP < «;
create a set of initial, random superpositions My,
repeat
crossover random pairs of stored superpositions 9,
mutate random superpositions from the population 9,
consider these generated superpositions and the ones stored in 9. Select the best of them
according to the quality function & ,
store the best superpositions in a population 9" and pass it to the next iteration,
if d.(9") < Thresh then
evolutionary stagnation is detected and we replace the worst superpositions from the popu-
lation 9V by random superpositions,
end if
m =9
until the required value of MAP is reached;

1) Ri(f) = p- MAP(f) - 1(|f| < CT),
where CT is a threshhold for the structural complexity, p is a penalty parameter. The reg-
ularizer R; penalizes those superpositions, which have structural complexity larger than the
threshhold CT.

2) Ro(f) =p-MAP(f) - I(|f[ = CT) - (|f] = CT),
where C' is a positive parameter. The regularizer R, penalizes the superpositions having struc-
tural complexity larger than the threshhold CT. And the more complex a superposition, the
higher the penalty.

3) Rs(f) =p-MAP(f) - [f]" -log(|f] + 1),

13
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The regularizer R3 treats a structural complexity of a superposition as the number of leaves | f|*

of its tree multiplied by the estimation log(|f| + 1) of its height.

All parameters from the definitions should be set empirically. To set them one needs to follow the
principle mentioned above: the set § should be sufficiently rich to find there a proper approximating

superposition and sufficiently small to avoid overfitting of the genetic algorithm.

Select proper structural metric and regularizer to modify the basic genetic algorithm. The
modified version solves the problems of overfitting and evolutionary stagnation. This version is

described in Algorithm

7. Computational experiment

The main goal of this paper is to generate superpositions outperforming the ones from §y selected
in (Goswami et al.|2014). These functions, in turn, outperform known ranking models BM25, LGD,
LMpir. Therefore, if the modified genetic algorithm succeeds in outperforming functions from §o,
it will also outperform BM25, LGD, LMpir as well. Now describe the data used to estimate the

quality of the generated superpositions.

Data. Authors in (Goswami et al.,|2014) estimate the quality ranking functions on TRECs. To make
the comparison with Fy consistent, use TRECS as well. Perform the computational experiment on

Trec-5, Trec-6, Trec-7, Trec-8 from (trec.nist.gov).

7.1. Data processing

As TREC collections are large, calculations of the variables x4 and y,, are computationally
expensive. To speed up the calculations, one should perform data preprocessing. Terrier IR Plat-
form v3.6 (terrier.org) perform necessary steps for this preprocessing. It provides flexible processing

of terms through a pipeline of components (stopwords removing, stemmers, etc.). The platform
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Figure 2: Scheme of data preprocessing steps.

indexes a collection of documents. The preprocessing steps include stemming using Porter stem-
mer and removing stop-words using the stopword list. Second, Terrier performs a query expansion
techniques and retrieves required documents efficiently. It processes the data stored in Trec5-8
and returns the matrices of features ¢ and y,, for each word w € ¢ and each document from the

collection having this word.

The algorithm of primary data preprocessing makes the following steps, see Figure [2|

1. Split documents on tokens. Reduce each token to its stem form by Porter stemmer
1997).

2. Filter the set of stemmed tokens is according to the stopwords list.

3. The collection is represented as an index document-token.

4. Create a lexicon-class, which represents the list of terms (dictionary) in the index.

After the preliminary steps are performed, one can calculate the variables ¢ and y,, for each

query g, see Figure [3

1. Split ¢ on tokens. Process each token by the stemmer and filter the resulted set by the
stopword list.

2. Lexicon-class collects statistics about the tokens. It calculates the feature y,,.

3. Eliminate tokens with high value of y,, as uninformative.

4. For each token the platform retrieves the information about its second feature z¢ from the

index.
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Figure 3: Scheme of query processing steps.

The described scheme is used by the modified genetic algorithm to estimate the quality of a
superposition. Now describe the system performing this modified genetic algorithm. This system

generates superpositions of primitive functions.

7.2. Generation system

Algorithm 2] gives the description of the modified genetic algorithm used for generation of ranking

superpositions. These superpositions are constructed from the elements of
6 = {l’ﬁ” Yuw, +a ) ><7 %7 10g7 exp, \/}

On each iteration the algorithm stores 20 best generated superpositions. To create new super-
positions, it performs 10 crossovers and 10 mutations on the stored ones. Then it selects 20
best according to and pass to the next iteration. This paper terminates the generation af-
ter 300 iterations. The selected superpositions are compared with the ones from §Fy To use
this algorithm, one must select proper regularizer and structural metric. The code for this sys-
tem is found in https://github.com/KuluAndrej/Generation-of-simple-structured-IR-functions-by-

genetic-algorithm-without-stagnation.

7.8. Selection of reqularizer and structural metric

This paper analyzes three metrics and three regularizers defined above with respect to the genetic

algorithm. There are 9 combinations of these metrics and regularizers. Selects the pair, which
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provides better generation of superpositions both in terms of structural diversity and prediction
accuracy. The selected pair is used by the modified genetic algorithm to generate an optimal ranking

superposition.

Table [2| shows a computational efficiency of calculation of different metrics with respect to
different regularizers. There are 9 possible pairs metric-regularizer. The modified genetic algorithm
is launched 100 times for each pair. The CPU time required to calculate all values of a metric
is averaged over these 100 launches and 300 iterations for each launch. Table |2 shows that puo
is uniformly easiest to calculate. At the same time, p; is uniformly hardest to calculate. This
efficiency is considered in the selection. Now analyze the pairs with respect to the generation of

superpositions.

First, analyze the modified genetic algorithm without regularizers. All measured values are aver-
aged over 100 launches, see Figure[d On the last 300-th iteration the average structural complexity
of superpositions in the population is more than 40. Figure[d]shows slow trend to evolutionary stag-
nation. The reason is that structural complexity of the generated superpositions grows dramatically
with the iteration number. It makes the stored superpositions sufficiently diverse. Therefore during
the whole evolution the empirical diameter d. of the stored population is large. However, the gener-

ated superpositions are significantly overfitted and should be penalized for the excessive structural

complexity.
Regularizer | 23 143
R 11.52 | 1.84 4.54
Ro 6.7876 | 0.9347 | 1.5666
Ra 7.63 1.05 1.87

Table 2: Comparison of CPU time required by structural metrics

Now let us analyze 3 metrics with presence of a regularizer. For each pair metric-regularizer
plot the empirical diameter d. depending on the number of iteration. Figures ] [6] [7] also shows the
average structural complexity [, of stored superpositions. It allows to make inferences about the

presence of overfitting.
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Note that the empirical diameter d(91) calculated with pq remains approximately unchanged
during the whole evolution, see Figures [ [0} [/} This particular feature does not allow to detect
evolutionary stagnation in proper time. The actual start of evolutionary stagnation can not be
denoted with pu;. Moreover, calculation of p; is computationally inefficient comparing with o

and ps, see Table[2] These reasons lead to elimination of p; from the further analysis.

Two other metrics ps and pg provide almost equal values of d(91), see Figures @ The
relative difference in these values is under 5% for all variants of used regularizer. Therefore, without

loss of generality, select the structural metric py as more efficiently calculated, see Table

The first regularizer R; is too strict, see Figure [o| The algorithm falls into evolutionary stag-
nation on the first iterations, because the set of reachable superpositions § is small. The similar
situation is observed for the second regularizer Rs, see Figure[6] The algorithm does not immediately
fall into evolutionary stagnation. The stored superpositions are updated up to the 300-th iteration.
However, the empirical diameter d(90) significantly decreases after 30-40 iterations, see Figure @
It means that although the stored superpositions are being updated throughout the evolution, they
have mainly similar structures. These reasons lead us to the use of the third regularizer Rs. The
value of the empirical diameter d(91) decreases smoothly with R3, see Figure [7} It allows to have
enough iterations to learn the structure of optimal superposition and detect evolutionary stagna-
tion. Since the structural metric ps and the regularizer R3 are selected, the modification of the

genetic algorithm is ready to generate ranking superpositions. s

Generation of ranking superpositions. Modified genetic algorithm is launched on TREC-7. The best
selected superpositions are compared with ones from Fy. The superpositions in §y are of simple
structure and have a high quality in average on analyzed collections. Besides, these superpositions
are better in average than the traditionally used ranking models BM25, LGD, LMpir. Here is the

list of the best superpositions from g

m(z) N . [
1. fl = e y y
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The selection of the best superpositions is performed by the modified genetic algorithm on
TREC-7. The other datasets TREC-5, TREC-6, TREC-8 serve as test datasets. After 1000
iterations the modified genetic algorithm selects the following family of superpositions (for the

convenience denote In(z + 1) as In(z) and g(z) = Inln(z)):

= 7g(m) —In 323 = 49(17) —n
L h1—9< ln(a:)—i—x) In(y), 4. h4—g< g(ﬁ)+x> In(y),

()
2. hg=g 9y —In(y), - _ g(z) In
3In(z) + 2 ot g( 1n(x)+ln(y)> In(y),
5 hs—g|m|{—2 ) . ~( g(n@)
3 g 1 ln(x) + N Y 325 6 h6 =g 1n(x) ps - ln(y)

MAP of the superpositions {h;} and {f;} is presented in Table |3l The superpositions from §o
are in the upper half of the table. The superpositions {h;} are presented in the lower half. The
qualities of the best functions {f;} are bold in each column in the upper half. In the lower half we

bold those values, which are higher than the bold values in the corresponding column in the upper

half.

Note that the superpositions hy, ho, h3, hs are uniformly better than the functions from (Goswami
et al., [2014)) on all 4 datasets. The other superpositions are better in average. The modified ge-
netic algorithm is able to build effective yet simple structured superpositions, which outperform

the known ones.

The computational experiment has shown that the discovered IR ranking functions outperform
the recently published ones. To estimate the quality of these ranking functions it used the collections
TREC 5-8, provided by the National Institute of Standards and Technology. An optimal pair of
metric and penalty functions was selected from the set of nine admissible pairs. It was used

to generate competitive ranking functions. The resulted functions have a simple structure. It
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Superposition | TREC-5 | TREC-6 | TREC-7 | TREC-8
Superpositions from §q
fi 8.785 13.715 10.038 | 13.902
fa 8.518 12.996 9.216 13.074
f3 8.908 13.615 | 9.905 13.708
fa 8.908 13.615 9.905 13.708
s 8.908 13.615 | 9.908 13.709
fe 8.872 13.613 9.890 13.695
Family of selected superpositions
hi 8.965 13.693 | 10.600 | 14.403
ho 9.472 13.723 10.650 14.402
hs 9.558 13.786 | 10.631 | 14.376
ha 9.226 13.713 | 10.5 14.374
hs 8.862 13.388 10.439 14.359
hg 8.104 13.483 10.421 14.355

Table 3: Comparison of the superpositions {h;} to {f;} according to the MAP criterion

allows ranking large document collections fast and stable according to a user request. The main
result of the experiment is the following. Recently in (Goswami et all 2014) an exhaustive search
algorithm was used to find models of good quality in the large set of competitive models. Due to
the high complexity of search space, this algorithm requires significant time to produce resulting
ranking functions. The present experiment shows that after solving the problem of stagnation,
one can obtain better models in lesser time. It tells that the further research should be directed

towards investigations of the optimization criterion properties and the new ways of superposition

representation.

8. Conclusion

This paper investigates a ranking function construction technique for Information Retrieval

systems. It develops an algorithm, which consequently generates ranking functions. The ranking
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functions estimate the relevance of documents to queries and rank documents according to each
query. The quality criterion assumes that the model ranking matches the expert ranking. The
experts assess whether a document is relative to a query of not. To increase the quality of IR rank-
ing functions a new modified genetic algorithm was proposed. It consequently generates ranking
functions as superpositions of expert-given primitive functions. The original version of algorithm
generates overfitted functions and goes to stagnation, producing similar degenerate functions. This
paper proposes a new criterion of optimality. To avoid overfitting it controls structural complexity
and solves the evolutionary stagnation problem. To avoid stagnation this criterion uses regularizers,
based on new structural metric functions. They estimate the diversity of the generated superposi-
tions. If the best generated superpositions are similar, the new genetic algorithm produces random
diverse ones and includes them into the competitive set. Several metric functions were proposed
and investigated in the computational experiment. To control the structural complexity of the
superpositions the criterion uses penalty functions. It results in the simpler superposition struc-
tures. Various regularizers were proposed and analyzed. An optimal pair of metric and regularizer
functions were selected. This pair was used in the new genetic algorithm to generate quality yet

simple structured IR ranking functions.

The computational experiment was performed on the well-known TREC datasets. It shows
that the newly discovered IR ranking functions outperform the state-of-the-art IR scoring models,

namely BM25, LGD, LMpr and the models selected by the exhaustive approach.

In the further research, we plan the following directions to develop the proposed technique. To
obtain ranking models with a structure, which is interpretable by experts, structural restrictions
will be applied during the model generation procedure. We have to solve a problem of directed
generation of models, which belong to the interpretable class. Also to boost the quality of the
ranking we plan to introduce parametric primitive functions and expand the search space. Along
with the discrete part to optimize the superposition structures it will include the continuous part
to optimize the model parameters. Mixed integer optimization methods will be used to solve the
search problem. The most complex direction of the future research is how to convert a discrete and
mixed integer optimization problems into a continuous one to use gradient methods. To solve this

problem we plan to represent a superposition as a weighted graph and introduce a criterion, which
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penalizes a superposition for non-admissible structures.
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