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Построение ранжирующей функции для прогнозирования
третичной структуры белка

Карасиков Михаил Евгеньевич

Аннотация

Дизайн белков ставит задачу определения первичной структуры белка с заданными
свойствами и является одной из труднейших задач вычислительной биологии. В фор-
мальной постановке данная задача упрощается до задачи обратного фолдинга, которая
ставится следующим образом. Найти первичную структуру белка, соответствующую
третичной структуре с заданным скелетом. В данной работе проводится комплексное
исследование задачи обратного фолдинга и других задач вычислительной биологии.
Придерживаясь гипотезы о том, что белок сворачивается в состояние минимальной
энергии, задача обратного фолдинга формулируется как задача комбинаторной опти-
мизации. В работе предлагается метод оценки качества белковых структур, позволя-
ющий свести задачу в начальной постановке к задаче булевого квадратичного про-
граммирования с ограничениями. Проводится анализ методов выпуклой релаксации
возникающей NP-трудной задачи и сравнение их с другими методами дискретной оп-
тимизации. Особое внимание уделяется задаче построения скоринговых потенциалов,
аппроксимирующих свободную энергию белковых структур, для прогнозирования бли-
зости их к целевым структурам. В работе исследуются методы машинного обучения
для построения скоринговых потенциалов, и предлагается новый метод оценки каче-
ства модельных структур белков по конформациям их скелетов без боковых цепей. Для
обучения используются модельные данные. Полученные скоринговые потенциалы явля-
ются эффективно вычислимыми парно-сепарабельными по аминокислотам функциями.
Проведенный вычислительный эксперимент и сравнение предложенного потенциала с
другими потенциалами на реальных и модельных данных показал, что предложенный
скоринговый потенциал достигает качества и производительности лучших существую-
щих методов. Разработанный скоринговый потенциал предлагается использовать для
отбора наилучших моделей из множества моделей, полученного при решении задачи
обратного фолдинга.
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Chapter 1

Introduction

1.1 Motivation

Proteins play an important role in fundamental biological processes as formation of new mo-
lecules, transport functions, control of chemical reactions, and protecting through binding
to specific foreign particles such as viruses and bacteria. This importance has caused a lot of
research on their functions and understanding the mechanisms involved in those processes.
The function of a protein is defined by its corresponding gene. A particular function of a
protein essentially depends on its shape or structure. Hence protein folding plays an essential
functional role in living cells and takes an important part in the problem of protein design
(Huang et al., 2016). However, its biological investigation requires conducting expensive che-
mical experiments, which could be replaced with relatively inexpensive and fast methods of
computational biology and molecular modeling techniques for prediction of unknown protein
structures (Kmiecik et al., 2016).

1.2 Problems of structural biology

Protein is a polypeptide macromolecule that consists of a sequence of amino acids covalently
linked by peptide bonds. Each amino acid is an organic compound that contains amine−NH2

and carboxylic acid −COOH functional groups, common to all amino acids, and side chain
group specific to each amino acid. An amino acid consists of carbon, hydrogen, oxygen, and
nitrogen atoms as well as other elements in the side chain. For example, Cysteine consists
of:

[N,C𝛼,C,H,O⏟  ⏞  
backbone part

,H𝛼,C𝛽,H𝛽1 ,H𝛽2 , S𝛾,H𝛾⏟  ⏞  
side chain

].

According to Wagner and Musso (1983), more than 500 different amino acids have been
already discovered. However, only 20 of them are generally represented in the human genome.
These are

{Ala,Arg,Asn,Asp,Cys,Glu,Gln,Gly,His, Ile,
Leu,Lys,Met,Phe,Pro, Ser,Thr,Trp,Tyr,Val} =: 𝒜.

8



Sometimes we will include into the set 𝒜 two other amino acids of rather frequent occurrence
{Sec,Mse} and say that 𝒜 is of cardinality |𝒜| = 22.

Each protein is defined by its primary structure — a sequence of amino acids 𝑎 ∈ 𝒜𝑚,
where 𝑚 is a length of the protein. Under certain environmental conditions, a protein can fold
into a certain shape, which is called a tertiary structure — a three-dimensional arrangement
of atoms in the protein. While this folded structure strictly depends on the environmental
conditions (solvent, concentration, temperature, etc.) we will disregard this dependency in
our study for simplicity because of its negligible significance in experiments carried out under
the same protocol conditions. When a protein consists of two or more protein chains, its
folded atomic arrangement in R3 is called a quaternary structure. In this paper, we will not
distinguish tertiary and quaternary structure. We will often call them structure. Also, we
will often call the primary structure just the sequence.

1.2.1 Protein folding

A lot of progress has been recently made in protein structure prediction, a computational
problem also known as the protein folding problem, which consists in determining the protein
structure given a protein sequence. Most of the proposed methods for protein structure
prediction first generate a set of proposed protein models and then rank them by a certain
quality assessment (QA) method to select the best protein model (see figure -1). In such a
problem setting, these QA methods deal only with static structures at the atomic level, that
is, the step of sampling the protein structure conformations is fully omitted.

It is generally assumed that the best protein model must satisfy the Gibbs free energy
minimization principle. Hence the Gibbs free energy serves as a scoring potential or measure
of the closeness of a protein model to the actual (native) protein conformation. However,
rigorous estimation of the Gibbs free energy requires exhaustive sampling of a huge number
of conformational states (Cecchini et al., 2009; Tyka et al., 2006), and in most of the practical
cases is computationally intractable.

If the native protein conformation is known, one can measure the quality of a protein
model using other straightforward and more similarity measures (RMSD, GDT-TS, TM-
score, etc.) (Zemla, 2003) that, in contrast to the Gibbs free energy, can be efficiently
computed to score protein models when comparing them to the native structure.

Protein quality assessment is aimed at devising scoring potentials that predict the close-
ness of a protein model to the native protein conformation. Usually, QA methods are trained
to predict the quality of protein models in line with some similarity measures, which often
involves machine learning. Therefore, being aimed at scoring the protein models according
to their closeness to the native structure, protein quality assessment is a crucial problem for
tertiary structure prediction methods.

1.2.2 Rotamer prediction

The problem of side chain (or rotamer) prediction is to predict the folding of side chains given
a protein backbone with the known sequence. Apparently, this problem can be reduced to
the problem of protein folding. Hence it is simpler than the latter. However, usually, the

9



problem of protein folding requires solving the side chain prediction problem at the last stage
(see figure -1). Hence general strategy for protein folding is as follows.

1. Predict a coarse-grained protein model — backbone without side chains.

2. Refine the predicted on the first stage coarse-grained model (i.e. predict the folding of
the side chains).

As for the protein folding problem, side chains are modeled to minimize the total energy of
the molecule. Although an optimization problem can be already formally stated, we have to
discuss the search space first.

For simplification, the continual conformational space of the side chain of each amino
acid 𝑎𝑖 ∈ 𝒜 is restricted to the finite set ℛ𝑖, |ℛ𝑖| < ∞, of possible conformations 𝑟𝑖 ∈ ℛ𝑖,
which are called rotamers. Then, the whole search space is the Cartesian product of sets of
rotamers

ℛ𝑚 := ℛ1 × · · · × ℛ𝑚, |ℛ𝑖| <∞, 𝑖 = 1, . . . ,𝑚, (1.1)

for each side chain. Possible rotamersℛ𝑖 themselves depend on the type of the corresponding
amino acid 𝑎𝑖 ∈ 𝒜:

ℛ𝑖 = ℛ(𝑎𝑖). (1.2)

This helps to restrict the conformational search space and to reduce the initial problem to
the problem of choosing the best in the energy sense rotamers (possible conformations).
The rotamer sets are usually constructed according to rotamer libraries (Shapovalov and
Dunbrack, 2011) that can be either backbone-independent or backbone-dependent. In (1.2)
a rotamer space depends on the type of amino acid but not on the positions of other amino
acids. Backbone-dependent rotamer libraries are built with respect to backbone dihedral
angles of adjacent amino acids driven by the conformation of a given backbone:

ℛ𝑖 = ℛbd(𝑎𝑖, 𝑏𝑖−1, 𝑏𝑖, 𝑏𝑖+1), (1.3)

where 𝑏𝑖, 𝑏𝑖−1, 𝑏𝑖+1 ∈ R3×3 define backbone parts (positions of heavy backbone atoms N,C𝛼,C)
of amino acids 𝑎𝑖, 𝑎𝑖−1, and 𝑎𝑖+1 respectively:

𝑏𝑖 = [𝑏N
𝑖 , 𝑏

C𝛼
𝑖 , 𝑏C

𝑖 ] ∈ R3×3, 𝑖 = 1, . . . ,𝑚. (1.4)

Since an objective (energy potential) and the search space are defined, a certain optimi-
zation problem is to be solved. This problem can be formulated as follows:

𝐸(𝑎0, 𝑏0, 𝑟)→ min
𝑟∈ℛ𝑚

, (1.5)

where 𝑎0 ∈ 𝒜𝑚 defines the given protein sequence, 𝑏0 ∈ R𝑚×3×3 — given protein backbone
conformation (backbone parts for all amino acids in the protein — spatial arrangement of 3𝑚
heavy backbone atoms), and 𝑟 ∈ ℛ𝑚 = ℛ1×· · ·×ℛ𝑚 is the vector of rotamers (conformations
of the side chains). For rotamers, the energy potential 𝐸(𝑎0, 𝑏0, 𝑟) is calculated according to
a given force field model after the reconstruction of the whole protein structure using certain
rotamers 𝑟 ∈ ℛ𝑚.
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Finally, all the missed side chains are reconstructed in accordance to the found optimal
rotamers. According to Miao et al. (2011), to measure the quality of side chain folding, the
reconstructed structure is compared to the native one and the four following criteria are
estimated:

∙ root mean square deviation (RMSD) between corresponding atoms in aligned recon-
structed and native structures,

∙ number of atomic pairs in contact, with the distance between them of less than 60%
of the sum of van der Waals radii of atoms in the pair,

∙ the ratio of amino acids with side chain torsion angles 𝜒1, predicted with 40-degree
accuracy compared to the native structure (Shapovalov and Dunbrack, 2011),

∙ the ratio of amino acids with side chain torsion angles 𝜒1 и 𝜒2, predicted with 40-degree
accuracy each (Shapovalov and Dunbrack, 2011).

1.2.3 Protein design

Protein design is one of the most important tools in protein engineering, and at the same
time, it is one of the most complicated problems of computational biology. It is aimed
at determining a protein sequence that possesses given chemical properties and biological
function. There are two approaches to design new protein molecules: from scratch (de
novo protein design) or composing a new structure from already known templates (protein
redesign) (Khoury et al., 2014). In this thesis, we will consider approaches for de novo protein
design because they are more general, and they do not suffer from the limits imposed by the
obtained database of protein structures. Since no restrictions are imposed on the primary
structure, there is a high probability that the solution will be a new, previously unknown
molecule. Methods for de novo protein design are based on the search through all possible
primary structures and on the selection of the best possible sequences according to certain
heuristic criteria.

Figure 1-1: Inverse folding illustration

Since the initial formulation of the pro-
tein design problem is vague and neither for-
mal nor strict, this problem is often sim-
plified to the so-called problem of inverse
folding (see figure 1-1), which is to find
a protein sequence that folds into the tar-
get protein structure. This simplification
is admissible because the protein structure
and functions of this protein are often in
a strong relationship. According to Huang
et al. (2016), this formulation is also called
as fixed-backbone protein design problem.
Assuming the hypothesis that proteins fold
into the lowest energy states, the protein de-
sign is performed in two main stages (Huang
et al., 2016).
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∙ First, the most probable sequences are to be sampled.

∙ Second, they must be verified for folding into the target shape. This makes the problem
of tertiary structure prediction essentially important here, since these sampled at the
first stage sequences are almost always new, and their actual tertiary structure is not
yet discovered.

Despite the advances in protein design methods, their current state is far from being used
in biomedicine and bioengineering. It is always required to perform laborious experiments
and manually contribute to the produced results. Another bottleneck here is a procedure of
assessment since the results always require performing expensive experimental validation.

The setting of the protein design problem naturally states an optimization problem.
Indeed, the aim is to find a primary structure that would be likely to fold into the target
tertiary structure. Hence, if we could know folds of all the stable protein structures, the
answer would be a sequence (or sequences) whose folded tertiary structure is the closest to
the target one. However, since the sequence space grows exponentially when increasing the
length of the structure, and the number of possible sequences is 20𝑚, where 𝑚 is a sequence
length (roughly, 𝑚 ∼ 100), it is impossible to predict or compute folds for each possible
sequence. Even though not all the possible sequences have a stable native state to fold into,
we will leave this aspect out of the scope of the current thesis.

Another approach is to consider this problem as a problem of searching for a protein
sequence whose native state would be the closest to the target protein structure in the
energy sense. In other words, a protein sequence that would be likely to fold into the target
tertiary structure. Hence the optimization problem can be stated as follows:

𝐸(𝑎, 𝑏0, 𝑟)−min
𝑏, 𝑟

𝐸(𝑎, 𝑏, 𝑟)→ min
𝑎, 𝑟

, (1.6)

where

∙ 𝑎 ∈ 𝒜𝑚 — protein sequence,

∙ 𝑟 ∈ ℛ𝑚 = ℛ1 × · · · × ℛ𝑚 — vector of rotamers (ℛ𝑖, 𝑖 = 1, . . . ,𝑚 — rotamer sets),

∙ 𝑏 ∈ R𝑚×3×3 — protein backbone conformation (positions of backbone parts (1.4)),

∙ 𝑏0 ∈ R𝑚×3×3 — conformation of the target backbone structure.

Note that problem (1.6) can be reformulated in the following manner:

min
𝑎, 𝑟

[︂
𝐸(𝑎, 𝑏0, 𝑟)−min

𝑏, 𝑟
𝐸(𝑎, 𝑏, 𝑟)

]︂
= min

𝑎

[︂
min
𝑟

𝐸(𝑎, 𝑏0, 𝑟)−min
𝑏, 𝑟

𝐸(𝑎, 𝑏, 𝑟)

]︂
,

(1.7)

and hence distinctly estimating the minimum over rotamers 𝑟 for energy function 𝐸 as a
function of 𝑟:

𝐸(𝑎, 𝑏) := min
𝑟∈ℛ𝑚

𝐸(𝑎, 𝑏, 𝑟), (1.8)
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problem (1.6) can be simplified as follows:

𝐸(𝑎, 𝑏0)− min
𝑏∈R𝑚×3×3

𝐸(𝑎, 𝑏)→ min
𝑎∈𝒜𝑚

. (1.9)

We should mention that the energy function (1.8) does not depend on the conformation of
its protein side chains. Protein models in such a reduced representation without defined side
chains are called coarse-grained protein models. Hence we will call functions of form (1.8)
coarse-grained energy functions. It is seen from definition (1.8) that the coarse-grained energy
function is supposed to score protein backbones as they would belong to proteins with side
chains folded into the energetically optimal conformation.

Usage of an accurate energy function is crucial for solving the protein design problem
because this function should rank protein sequences according to the closeness of their native
tertiary structures to the target one. Energy functions are usually composed of physics-
based and statistical potentials. While physics-based energy functions are derived from the
physical knowledge and quantum mechanical simulations, which are very hard to compute,
statistical potentials are based on conformations of known structures in the database. There
are also so-called knowledge-based potentials that are built from the observed structures,
with a difference that in contrast to the statistical potentials, which are constructed only
from known native conformations, for building knowledge-based potentials, often additional
simulated non-native (decoy) structures are used.

Usually, energy potentials are devised to be pairwise decomposable. That is, the total
energy is calculated as a sum of pairwise terms for each atom or residue pair. Neverthe-
less, this does not make problem (1.6) simpler in the general case unless the second term
min
𝑏, 𝑟

𝐸(𝑎, 𝑏, 𝑟) is still present in the objective (1.6). Note that classical energy potentials

were initially devised to score different conformations of proteins with identical sequences
for performing simulations. However, protein design deals with a vast amount of different
protein sequences simultaneously. That is why the second term in problem (1.6) can not be
omitted when using classical energy potentials (Cecchini et al., 2009; Tyka et al., 2006).

1.3 Formal definitions

For the sake of simplicity, here and further it is assumed without loss of generality that all
the protein structures under consideration are of identical fixed length 𝑚. To sum up the
problem statements above and to simplify further narration, let us put them in a category
theoretic (or set-theoretic) language. First, let us introduce the following notation:

∙ 𝒜𝑚 — the set of all protein sequences,

∙ S𝑚
b = R𝑚×3×3 — protein backbone conformation space,

∙ ℛ𝑚, |ℛ𝑚| <∞ — the set of all rotamers (1.1),

∙ 𝑆𝑚
t ⊂ 𝒜𝑚 × S𝑚

b ×ℛ𝑚 — the set of all tertiary structures,

∙ 𝑆𝑚
r ⊂ 𝒜𝑚 × S𝑚

b — the set of all coarse-grained protein structures,
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∙ 𝑎 ∈ 𝒜𝑚 — a primary structure,

∙ 𝑟 ∈ ℛ𝑚 — a vector of rotamers,

∙ 𝑏 ∈ S𝑚
b — a protein backbone — positions of backbone parts (1.4),

∙ (𝑎, 𝑏, 𝑟) — a tertiary structure,

∙ (𝑎, 𝑏) — a coarse-grained structure,

∙ 𝜋tr — the coarse-graining projection mapping:

𝜋tr(𝑎, 𝑏, 𝑟) = (𝑎, 𝑏) ∈ 𝑆𝑚
r ∀(𝑎, 𝑏, 𝑟) ∈ 𝑆𝑚

t , (1.10)

∙ 𝜋tb, 𝜋rb — the backbone projection mappings:

𝜋tb(𝑎, 𝑏, 𝑟) = 𝜋rb(𝑎, 𝑏) = 𝑏 ∈ S𝑚
b ∀(𝑎, 𝑏, 𝑟) ∈ 𝑆𝑚

t , (1.11)

∙ 𝜋ta, 𝜋ra — the sequence projection mappings:

𝜋ta(𝑎, 𝑏, 𝑟) = 𝜋ra(𝑎, 𝑏) = 𝑎 ∈ 𝒜𝑚 ∀(𝑎, 𝑏, 𝑟) ∈ 𝑆𝑚
t , (1.12)

∙ 𝜙r = 𝜋−1
tr — the rotamer reconstruction (predict rotamers given coarse-grained struc-

ture),

∙ 𝜙f = 𝜋−1
ta — the protein folding (predict protein structure given protein sequence),

∙ 𝜙cg = 𝜋−1
ra — the coarse-grained protein folding (predict coarse-grained protein struc-

ture given protein sequence),

∙ 𝜙d — protein design (predict protein sequence given backbone structure),

Now, let us consider commutative diagram (1.13).

𝑆𝑚
t

𝑆𝑚
r

S𝑚
b 2𝒜𝑚 𝒜𝑚

𝜋tr 𝜙r

𝜋tb

𝜋ta

𝜙f

𝜋rb 𝜋ra

𝜙cg

𝜙d 𝑎↦→{𝑎}

(1.13)

Existence of the inverses of the projection mappings 𝜋tr, 𝜋ra, 𝜋ta follows from the physical
interpretation of their definitions (protein folding defines isomorphism between the sets 𝒜𝑚,
𝑆𝑚

r , and 𝑆𝑚
t ). For other protein lengths the mappings are from this section can be reciprocally

generalized.
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1.4 Project aims and contribution

The goal of this thesis project is to conduct a comprehensive study of the protein design
problem and other related problems of computational biology: protein folding, protein qua-
lity assessment, protein side chain prediction when considering rather mathematical and
computational component than biological aspects.

We put the emphasis on the training the protein scoring potentials that similarly to the
Gibbs free energy predict the closeness of a protein model structure to a native structure
(correctly folded primary structure of the protein sequence). We investigate the machine
learning methods for the training the scoring potentials and propose a novel method that
requires only backbone conformation of proteins without their side chain atom positions.
The proposed method can be used to assess the quality of coarse-grained protein models,
what makes it generally particularly efficient for applying to the protein design problem with
a coarse-grained energy function (see problem (1.9)), since the reduced optimization problem
is vastly smaller than the initial one (see problem (1.6)). The proposed energy function is a
single-model QA method, which uses only structural features along with the explicit repre-
sentation of solvent on a grid preserving the smoothness of the scoring potential that makes
it also applicable to molecular mechanics or dynamics, for example. The learning procedure
requires artificially generated non-native (decoy) structures for the training and provides
high-quality residue-pairwise scoring potentials. This makes the total scoring potential effi-
cient to compute and also pairwise decomposable what is so important for applying it to the
protein design problem. It can also be easily extended for taking into account conformations
of protein side chains, which would make it applicable to rotamer prediction problem as well.

We provide two modifications of the proposed scoring potential. One is designed for the
protein design problem, another one — for protein folding. A computational experiment on
the data from real experiments and competitions for the protein structure prediction proved
that the modification of the scoring function for protein folding achieves the state-of-the-art
quality and surpasses state-of-the-art methods on some datasets. We propose to use the
modification of the scoring function for protein folding problem to validate the solution of
the protein design problem and to select those models from the generated set when solving
the protein design problem that are most probable to fold into the target shape.

The modification of the scoring function for protein design is designed in such a way to
enable the reduction of protein design optimization problem (1.9) to the problem of quadratic
boolean programming (BQP). We analyze the techniques for relaxing the arising NP-hard
BQP problem (linear relaxation, semi-definite programming relaxation, Lagrange relaxation)
into the problems of convex optimization and compare them to general methods for discrete
optimization: greedy optimization algorithm and simulated annealing.

Although a lot of algorithms have been proposed to solve the rotamer prediction problem,
they are either computationally inefficient or do not have any proved deterministic theoretical
guarantees for the quality of the solution. Usage of pairwise decomposable energy function
enables the reduction of the arising optimization problem (1.5) for rotamer prediction to a
BQP problem as in the case of protein design.

15



1.5 Structure of the thesis
The thesis is organized as follows: in chapter 2, we give a comprehensive review of related
studies and literature. Then, in chapter 3, we study the methods that are involved in our
study. In sections 3.2 and 3.5, we propose the methods and other involved instruments
and put the considered problems of structural biology in a formal way giving mathematical
problem statements as optimization problems in sections 3.4 and 3.3. In chapter 4, we show
the results from the performed computational experiments and discuss the results of the
thesis project. Finally, in chapter 5, we emphasize the achievements, findings, and observed
limitations.
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Chapter 2

Related work

2.1 Protein quality assessment

There are two types of QA methods. Single-model QA methods consider atoms only in the
assessed model without any additional information about other models in the sampled set.
On the contrary, consensus-model QA methods decide on the quality of individual models
based on their statistics in the set. This makes their range of applicability somewhat narro-
wer. For example, single-model QA methods can be also used for conformational sampling
and structure refinement. They are also proved to achieve a better performance compared
to consensus-model QA methods on unbalanced protein model sets and in cases where the
protein models within the assessed set are very similar (Ray et al., 2012).

Some protein structure prediction methods use an additional level of simplification (Kmie-
cik et al., 2016). More precisely, they work with a reduced (coarse-grained) representation of
amino acids instead of the fully atomic representation. This allows to significantly enhance
their performance at the first stage of protein structure prediction workflow. However, this
representation also requires a corresponding scoring function for the coarse-grained quality
assessment.

Among recently proposed single-model QA methods there are, generally, two main ap-
proaches to design a scoring potential: physics-based and knowledge-based (data-driven)
approaches (Faraggi and Kloczkowski, 2014; Liu et al., 2014). Physics-based potentials are
constructed according to some physical knowledge of the configuration and interactions in the
system. Usually, these potentials (often called force fields) decompose the total energy into
a sum of additive contributions that can represent stretching of bonds and angles, dihedral
potentials, electrostatic and van der Waals forces, etc.

Alongside with physics-based methods, there are so-called knowledge-based ones that
deduce the essential energies of molecular interactions from biological structural and evoluti-
onary data. The corresponding scoring potentials are typically derived using the information
from known tertiary structures found in structural databases either training the scoring po-
tential using phenomenological machine learning or estimating probabilities of the certain
conformations (statistical methods).

There have been many proposed QA methods using either physics-based or knowledge-
based approaches. However, QA methods that combine these two recently appeared to be
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the most promising. Here we observe protein QA methods that use the most common and
representative techniques. The SELECTpro method (Randall and Baldi, 2008) is derived
from an energy function comprised by physical, statistical, and predicted structural terms.
The total energy is a weighted sum of introduced energy terms with weights maximizing the
sum of the GDT-TS (Zhang and Skolnick, 2007) of the lowest models on the training set built
from CASP6 (Moult et al., 2016) protein domains. Along with the conventional potentials
(van der Waals forces and electrostatic interactions, etc.) and side chain hydrogen bonding
potential, the authors of SELECTpro also propose to use 𝛽-strand pairing derived from a
reduced representation and introduce penalties for the mismatch of the observed structural
features to the predicted ones (secondary structure, solvent accessibility, contact map). In
the reduced representation, only N, C𝛼, C, O, H, C𝛽 atoms are represented, which requires
positions of only heavy backbone N, C𝛼, C atoms as input, because positions of all the rest
atoms can be derived from the given ones. For glycines, a pseudo C𝛽 is calculated reciprocally.
Finally, SELECTpro (Randall and Baldi, 2008) computes the all-atom representation from
the reduced one using energy terms for the reduced representation and then it performs the
quality assessment for all-atom representation using all the proposed energy terms.

Statistical potentials are derived according to the Boltzmann assumption, which says
that the energy of a protein structure is proportional to the negative logarithm of the proba-
bility of its conformational state (Liu et al., 2014). For example, the popular RWplus (Zhang
and Zhang, 2010) scoring function combines pairwise distance-dependent and orientation-
dependent contributions. For each pair of atom types (𝛼, 𝛽), it computes the number of
atom pairs 𝑁obs(𝛼, 𝛽, 𝑟) within a distance in the 𝑟 to 𝑟 + ∆𝑟 interval for a given model and
the number of expected pairs 𝑁exp(𝛼, 𝛽, 𝑟) to estimate the likelihood of the protein model.
Orientation-dependent statistical potentials consider the many-body interactions by descri-
bing both distance and relative orientation of interacting atom groups. Consequently, they
typically outperform traditional only distance-dependent methods. To assign the orientation-
dependent potential, the authors of RWplus (Zhang and Zhang, 2010) for each residue type
except glycine and alanine, define a local frame based on three side chain atoms being cen-
tered in the position corresponding to one of them. The relative orientation of two local
frames is then represented by five parameters, two pairs of spherical angles and a torsion
angle. Finally, the total orientation-dependent packing energy is calculated using the same
statistics technique as when calculating the distance-dependent potential.

ORDER_AVE is another orientation-dependent statistical potential, which assesses the
quality of protein models purely at the reduced representation (Liu et al., 2014). It uses joint
probability distribution of four parameters to describe the geometric relationship between
pairs of heavy atoms (representatives) and their corresponding bonded neighbors. These
parameters are three angles that describe the relative orientation of four atoms, and an
atomic distance between the pair of the representatives. ORDER_AVE treats local, i.e.
when two corresponding residues have a small sequence separation, and nonlocal interactions
separately with the overall energy given as a weighted sum of these two.

Nowadays more and more research is devoted to methods for training of scoring po-
tentials using machine learning techniques. For example, the ProQ2 (Ray et al., 2012)
scoring function, which is one of the best protein QA methods according to experiments on
CASP11 (Moult et al., 2016) tests sets, is trained using support vector machine (SVM) in the
space of structural and sequence-based features calculated from the model. As structural fe-
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atures, this potential uses contacts between 13 different atom types, residue-residue contacts,
and surface accessibility by grouping amino acids into six different groups. The sequence-
based features (secondary structure, surface accessibility, and sequence profiles) are derived
using information predicted from sequence. ProQ2 proved to achieve a considerable perfor-
mance of the protein quality assessment but it requires usage of many external programs
that make it difficult to distribute (Uziela and Wallner, 2016). Another scoring method by
Faraggi and Kloczkowski (Faraggi and Kloczkowski, 2014) uses physics-based electrostatic
potentials and other knowledge-based potentials as features and trains a neural network to
predict the TM-score (Zhang and Skolnick, 2007) similarity measure between protein models
and native structures. The Wang_SVM (Liu et al., 2016) scoring function was trained with
support vector machine (SVM) using as features the protein’s sequence and also several pro-
tein descriptors predicted by external utilities. These are secondary structure and solvent
accessibility predicted with SSPRO, residue-residue contact probabilities predicted with NN-
con, and evolutionary information predicted with PSI-BLAST. The Qprob (Cao and Cheng,
2016) scoring function was trained by estimating the distribution of features provided by
other QA methods (RWplus (Zhang and Zhang, 2010), ModelEvaluator (Wang et al., 2009),
DOPE (Shen and Sali, 2006), RF_CB_SRS_OD (Rykunov and Fiser, 2010)), structural
features (compact score, surface score, the exposed mass, the exposed surface), and features
predicted from the protein’s sequence (secondary structure, solvent accessibility). Following
the similar strategy, in (Jing et al., 2016) a learning-to-rank technique (ranking SVM (Joa-
chims, 2002)) was applied to train a scoring function using predictions of other QA methods
(DFIRE (Zhou and Zhou, 2002), DOPE (Webb and Sali, 2014), GOAP (Zhou and Skolnick,
2011), RWplus (Zhang and Zhang, 2010), etc.) as features. Thus, machine learning techni-
ques have been widely applied to train scoring potentials for QA methods (Ray et al., 2012;
Faraggi and Kloczkowski, 2014; Liu et al., 2016; Cao and Cheng, 2016; Jing et al., 2016)
and currently knowledge-based methods appear to demonstrate a better performance than
statistical and physics-based techniques.

Although plenty of QA methods have been proposed (Randall and Baldi, 2008; Zhang
and Zhang, 2010; Liu et al., 2014; Ray et al., 2012; Faraggi and Kloczkowski, 2014; Liu
et al., 2016; Cao and Cheng, 2016; Jing et al., 2016), often these either miss components
related to meaningful energy terms, which must be taken into account when computing
the total Gibbs free energy (solvation-related terms (Zhang and Zhang, 2010; Liu et al.,
2014; Jing et al., 2016), hydrogen bond energy (Zhang and Zhang, 2010; Liu et al., 2014;
Ray et al., 2012; Faraggi and Kloczkowski, 2014; Liu et al., 2016; Cao and Cheng, 2016;
Jing et al., 2016)), or they require features predicted from the sequence, which breaks the
continuity and smoothness of the scoring potential (Randall and Baldi, 2008; Ray et al., 2012;
Faraggi and Kloczkowski, 2014; Liu et al., 2016; Cao and Cheng, 2016; Jing et al., 2016).
For example, hydrogen bonds (Hubbard and Kamran Haider, 2001) confer directionality
and specificity to the intra-molecular interactions in structures. They provide structural
organization of distinct protein folds because suitable interactions in the folded structure
are typically achieved by the maximal number of hydrogen-bonding groups. This makes
hydrogen bond terms important to include in scoring potentials when ranking the protein
models. Also, most of QA methods require all-atom protein models as input, and thus their
performance critically depends on the accuracy of side chain packing, i.e., positions of the
side chain atoms, which can be modeled using SCWRL4 (Krivov et al., 2009) as in (Cao and

19



Cheng, 2016). Another problem of many QA methods is that sequence-dependent features
often introduce non-smooth terms that violate the smoothness of total scoring potential.

2.2 Protein folding

Khoury et al. (2014) reviewed methods for protein structure prediction and refinement (side
chain prediction). They have also noted that methods for protein structure refinement
appeared to degrade models predicted by methods of protein structure prediction. Therefore,
the rotamer prediction problem remains an important unsolved problem of computational
biology.

The Critical Assessment of Techniques for Protein Structure Prediction (CASP) (Moult
et al., 2005, 2009, 2011, 2014, 2007, 2016, 2003) started in 1994 and since then it aims to
assess the quality of a number of competing methods for protein structure prediction. The
assessment can be split into two parts. For template-based modeling, the tertiary structure
is being predicted given a template structure. This structure is used to infer information
about topology and secondary structure of the target protein. Methods for template-based
modeling are aimed at identifying structures from the protein data bank (PDB) that can
be aligned with the given sequence (sequence alignment). In the case of free modeling, the
tertiary structure is predicted for proteins that do not have distinguishable templates in the
PDB. This case appears to be very hard and thus most of the methods perform poorly (Moult
et al., 2014). The majority of methods for free modeling work by selecting at first a proper
template from structures of the PDB. Duan and Kollman (1998) proposed using methods of
molecular dynamics to predict the protein structures. Since then a number of methods were
developed but all of them can be applied to simulate only small molecules Khoury et al.
(2014).

To assess the methods for protein structure prediction, their predictions are compared
to native structures. There have been lots of different metrics proposed. However, the
most robust and efficient are GDT-TS and TM-score metrics. GDT-TS and TM-score were
designed to assess the quality of protein structure templates and predicted full-length models
being size-independent and robust to local prediction structural errors (Zemla, 2003).

2.3 Protein design

Saven (2013); Khoury et al. (2014); Huang et al. (2016) review advances and challenges
in protein structure prediction and de novo protein design. Huang et al. (2016) discuss
the current challenges of computational biology. They also note that up to now almost all
de novo designed protein structures are very stable in contrast to native proteins that are
unstable to few changes in sequences. Hence, it is supposed that de novo protein design
helps to design more robust proteins (Huang et al., 2016).

Samish et al. (2011); Khoury et al. (2014) reviewed modern techniques for protein re-
design and de novo design in the assumption that structure energy function is pairwise
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decomposable, i.e. the total energy is calculated as a sum of one-body and two-body terms:

𝐸(𝑎, 𝑟) =
𝑚∑︁
𝑖=1

𝜀𝑖(𝑎𝑖, 𝑟𝑖) +
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛾𝑖𝑗(𝑎𝑖, 𝑟𝑖, 𝑎𝑗, 𝑟𝑗). (2.1)

One-body term 𝜀𝑖(𝑎𝑖, 𝑟𝑖) represents the energy of interaction of side chain atoms in rotamer 𝑟𝑖
of amino acid 𝑎𝑖 with fixed backbone atoms of the protein. Two-body term 𝛾𝑖𝑗(𝑎𝑖, 𝑟𝑖, 𝑎𝑗, 𝑟𝑗)
is calculated as the sum of all interactions between pairs of side chain atoms of amino
acids 𝑎𝑖 and 𝑎𝑗 in rotamers 𝑟𝑖 and 𝑟𝑗, respectively. They also discussed the foldability
criteria mentioning that decreasing the energy of the target structure by varying the primary
structure is not always correlated with the improved foldability since proteins with different
sequences can have native states of different energies Samish et al. (2011).

Fung et al. (2008); Samish et al. (2011) discussed methods for solving arising combinato-
rial optimization problems. A number of techniques for solving these optimization problems
were proposed. Generally, they can be divided into two groups: stochastic (Monte Carlo, si-
mulated annealing, graph search algorithm 𝐴*, etc.) and deterministic (dead-end elimination
(DEE), mean field algorithm, graph decomposition, linear programming, etc.) approaches.
While stochastic techniques work fast but without any theoretical guarantees, deterministic
algorithms often provide the exact solution (e.g. DEE) but they might be computationally
inefficient when the length of the protein is large since the optimization problem they deal
with is NP-hard in the general case.

Research conducted by Riazanov et al. (2016) showed that usage of conventional protein
energy function in protein design results in predicting sequences that consist entirely of the
same amino acids Cys. This result seems to be expected as the optimal solution corresponds
to sequences that aim to maximize the number of disulfide bridges, which are very energeti-
cally favorable. However, conventional potentials do not validate the proposed sequences to
fold into the target structure. Hence, the question of constraining the proposed sequences
to make conventional energy more relevant in protein design remains open. In this paper,
we propose to introduce an energy correction terms that make amino acids of different types
more evenly distributed along the proposed sequences.
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Chapter 3

Methods

In this chapter, we will use the notation introduced in section 1.3.
First, in section 3.1 we will consider measures for estimating the similarity between pairs

of protein structures with identical amino acid sequences.
Then, in section 3.2 we construct the SBROD (Smooth Backbone-Reliant Orientation-

Dependent) scoring potential assessing the quality of coarse-grained protein models. This
method comes in two modifications. The first one is used for protein quality assessment when
solving the protein folding problem (ranking protein models with identical sequences). The
second one is applied to the protein design problem (assessing protein models with different
sequences).

In sections 3.3 and 3.4 we formally set the protein design and rotamer prediction problems.
Then, in section 3.5 we consider basic general methods for solving arising problems of discrete
optimization. Furthermore, assuming that the energy potential is pairwise decomposable (the
SBROD scoring function for the protein design problem and any other pairwise decomposable
energy potential for the rotamer prediction problem), we reduce the arising optimization
problems to the boolean quadratic programming problems.

Finally, we study convex relaxation techniques for approximate solving the boolean qua-
dratic programming problem in section 3.6.

3.1 Protein similarity measures

In this section, we will consider measures for estimating the similarity between protein ter-
tiary structures with identical amino acid sequences. When calculating for a protein model
against the native structure, these measures provide estimation on the quality of considered
protein model, but in contrast to the Gibbs free energy, they can be efficiently computed.

Let
𝑃 = (𝑎, 𝑏, 𝑟) ∈ 𝑆𝑚

t ⊂ 𝒜𝑚 × S𝑚
b ×ℛ𝑚 (3.1)

be the tertiary structure of a native protein, and let

𝑃 ′ = (𝑎, 𝑏′, 𝑟′) ∈ 𝒜𝑚 × S𝑚
b ×ℛ𝑚 (3.2)

be an arbitrary tertiary structure (model structure) with the same sequence as native struc-
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ture 𝑃 :
𝜋ta(𝑃

′) = 𝜋ta(𝑃 ) = 𝑎. (3.3)

First, let us consider several metrics for estimating the similarity between coarse-grained
model structure 𝑃 ′ and native structure 𝑃 .

1. RMSD (root-mean-square deviation) of atomic positions

𝑆*
RMSD(𝑃 ′, 𝑃 ) = min

𝑡∈R3,S∈SO(3)

⎛⎝ 1

3𝑚

𝑚∑︁
𝑖=1

∑︁
𝜃∈{N,C𝛼,C}

‖𝑏𝜃𝑖 − S𝑏′
𝜃
𝑖 + 𝑡‖2

⎞⎠ 1
2

∈ [0,∞) (3.4)

— square root of the sum of squared distances between corresponding heavy backbone
atoms (1.4) in superimposed pair of structures.

2. TM-score (template modeling score) (Zemla, 2003)

𝑆*
TM(𝑃 ′, 𝑃 ) = max

𝑡∈R3,S∈SO(3)

1

𝑚

𝑚∑︁
𝑖=1

(︃
1 +
‖𝑏C𝛼

𝑖 − S𝑏′
C𝛼

𝑖 + 𝑡‖2
𝑑20

)︃−1

∈ (0, 1], (3.5)

where 𝑑0 is scale factor (typically, 𝑑0 = 5Å).

3. GDT-TS (global distance test: total score) (Zemla, 2003)

𝑆*
GDT-TS(𝑃 ′, 𝑃 ) = max

𝑡∈R3,S∈SO(3)

1

4𝑚

𝑚∑︁
𝑖=1

4∑︁
𝑗=1

1
[︁
‖𝑏C𝛼

𝑖 − S𝑏′
C𝛼

𝑖 + 𝑡‖ < 𝑐𝑗

]︁
∈ [0, 1], (3.6)

where 𝑐1,2,3,4 = 1, 2, 4, 8Å — cutoff distances between superimposed residues, and 1[·] —
the truth predicate.

4. GDT-HA score (global distance test: high accuracy) (Zhang and Skolnick, 2007) is
calculated as the GDT-TS, where cutoffs are twice discounted:

𝑆*
GDT-HA(𝑃 ′, 𝑃 ) = max

𝑡∈R3,S∈SO(3)

1

4𝑚

𝑚∑︁
𝑖=1

4∑︁
𝑗=1

1
[︁
‖𝑏C𝛼

𝑖 − S𝑏′
C𝛼

𝑖 + 𝑡‖ < 𝑐𝑗
2

]︁
∈ [0, 1]. (3.7)

The histograms for similarity measured on CASP[5-10] datasets (Moult et al., 2003, 2005,
2007, 2009, 2011, 2014) (see data description in section 3.2.2) are depicted in figure -2. One
can see that while the RMSD metric is the most intuitive, it is not robust since there are few
big outliers in the histogram. In contrast to RMSD, histograms for other metrics are more
even, which makes them preferable to RMSD.

To estimate the similarity between full tertiary structures (with defined rotamers), first,
side chain atomic positions are reconstructed from the rotamers. Then, four criteria described
by Miao et al. (2011) can be used:

∙ RMSD for the whole tertiary structures (taking into account all the atoms in full atomic
representation),
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∙ percentage of correct 𝜒1 — the ratio of amino acids with side chain torsion angles 𝜒1,
predicted with 40-degree accuracy compared to the native structure (Shapovalov and
Dunbrack, 2011),

∙ percentage of correct both 𝜒1 and 𝜒2 — the ratio of amino acids with side chain torsion
angles 𝜒1 и 𝜒2, predicted with 40-degree accuracy each (Shapovalov and Dunbrack,
2011).

Description of the geometry of amino acids and definition of dihedral angles 𝜒1 and 𝜒2 can
be found in (Shapovalov and Dunbrack, 2011).

Finally, one can use another external criterion to assess the quality of a protein model:
a number of clashed atom pairs, where an atom pair is called to be in clash if the distance
between these atoms is less than 60% of the sum of their van der Waals radii. This metric
does not require the native structure but indicates how many obvious mistakes are made
when reconstructing a protein model.

3.2 Protein quality assessment

In this section, we construct the SBROD (Smooth Backbone-Reliant Orientation-Dependent)
scoring function to assess the quality of coarse-grained protein models. The workflow of
SBROD consists in two stages. First, features are to be extracted from each protein model
in the dataset. Then, the predicted score of a given protein model is computed as a weighted
sum of features extracted at the first stage. Figure 3-1 schematically shows the training
workflow. Here, four groups of features are extracted, as we describe in more detail below.
These features are then either scaled individually setting the maximal absolute value of each
feature in the training set to be 1.0 (Scaler in figure 3-1) or normalized by setting the ℓ2 norm
of each sample with at least one non-zero component to be 1.0 (Normalizer in figure 3-1).
Finally, the Ridge Regression model is trained on these features. We should also note that
we have tried more sophisticated models at this stage including Lasso (Tibshirani, 1996),
Elastic Net (Zou and Hastie, 2005), Bayesian Regression (Neal, 1996), Ranking SVM (Joa-
chims, 2002) in combination with PCA and Random Projections (Ailon and Chazelle, 2009)
for dimensionality reduction, as well as their different modifications and combination via
stacking (der Laan et al., 2007). However, they did not provide any significant advantages
over Ridge Regression model regarding the quality of the predictions. The input parameters
for the proposed workflow will be discussed further.

3.2.1 Feature extraction

We built the feature space by concatenating four groups of structural features, which have
their physical interpretation and correspond to particular inter-atomic interactions:

∙ residue-residue pairwise interactions,

∙ atom-atom pairwise interactions,

∙ interactions corresponding to hydrogen bonds,
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Figure 3-1: Workflow of the proposed QA method SBROD. The dotted blocks correspond
to structural parameters, which are to be chosen on the stage of training

∙ solvent-solvate interactions from the generated hydration shell.

The procedure of feature extraction is the same for each group of features. We iterate
over specific groups of atoms in the protein and estimate representing them descriptors —
parameters describing the relative configuration of the considered atom group (a pair of
atoms, a pair of residues, etc.), where the number of descriptors depends on the group
of features. Then, we compute number density function of the estimated descriptors. We
also apply smoothing with the truncated Gaussian kernel before computing number density
function at the testing stage. We do not use the smoothing when training due to the huge
dimension of the feature space.

The descriptors we use are shown in figure 3-2. Superscripts 𝑑 correspond to the distances
between pairs of alpha carbon atoms, 𝜃 denotes angle between two vectors, and 𝜙𝑘,𝑙 is the
dihedral angles between two planes composed of atoms C𝑘

𝛼,C
𝑙
𝛼,C

𝑙
𝛽 and C𝑙

𝛼,C
𝑘
𝛼,C

𝑘
𝛽. While

the interval allowed for angles 𝜃 is [0, 𝜋], and for 𝜙 is [0, 2𝜋), the distance 𝑟 can generally
fall into [0,∞). However, we restrict it to the segment [0, 𝑐] introducing a cutoff distance 𝑐.
This simplification significantly increases the performance of the feature extraction proce-
dure and makes generated features less noisy, since the interactions between objects on a
distance larger than the cutoff distance are assumed to be negligible. Finally, to compute the
number density functions (or histograms) we coarse-grain the intervals for each descriptor
into 𝑏 bins of equal width and accumulate the integrals of the smoothing kernel, centered in
estimated descriptors, over these bins. Each procedure for feature extraction takes as input
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Bulk water

Figure 3-2: Geometrical features proposed

its parameters, which are shown in figure 3-1 from the left side for each of four blocks. Below
we describe the four types of structural features with the corresponding parameters.

Residue pairwise features

We start with the description of the reduced representation of amino acids. More precisely,
we assign to each amino acid a rigid frame such that its origin corresponds to the C𝛼 atom,
the 𝑧-axis points towards C𝛽, and the 𝑥-axis point towards nitrogen N. We treat all amino
acids independently and accumulate their number density functions for each pair of amino
acid types

𝐺𝑟 := {Ala,Arg, . . . ,Val, Sec,Mse} = 𝒜. (3.8)

Overall, we use 22 × 22 combinations of residues. We iterate over each pair of amino acids
of the certain types within the cutoff distance 𝑐𝑟 + 𝑅1 + 𝑅2, where 𝑅1 and 𝑅2 — side-chain
radii for the considered amino acid types, and we describe the relative orientation of the
corresponding rigid frames. For the cutoff distance, we use the value of 𝑐𝑟 = 5Å. We use
four descriptors, as it is shown in Figure 3-2. For a pair of amino acids 𝑘 and 𝑙, these are the
distance between the centers of the rigid frames 𝑑𝑘,𝑙, the dihedral angle 𝜙𝑘,𝑙, and two angles
𝜃𝑘,𝑙 = C𝑘

𝛽C
𝑘
𝛼C𝑙

𝛼 and 𝜃𝑙,𝑘 = C𝑙
𝛽C

𝑙
𝛼C𝑘

𝛼. Then, we accumulate the number density functions as
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follows:

𝑑(𝑖1, 𝑖2, 𝑖3, 𝑖4) =
∑︁
(𝑘,𝑙)

1

[︃
𝑐𝑟

𝑏𝑟1
(𝑖1 − 1) 6 𝑑𝑘,𝑙 <

𝑐𝑟

𝑏𝑟1
𝑖1,

2𝜋

𝑏𝑟2
(𝑖2 − 1) 6 𝜙𝑘,𝑙 <

2𝜋

𝑏𝑟2
𝑖2,

𝜋

𝑏𝑟3
(𝑖3 − 1) 6 𝜃𝑘,𝑙 <

𝜋

𝑏𝑟3
𝑖3,

𝜋

𝑏𝑟3
(𝑖4 − 1) 6 𝜃𝑙,𝑘 <

𝜋

𝑏𝑟3
𝑖4

]︃
,

(3.9)

where the sum is taken over all pairs (𝑘, 𝑙) of amino acids of considering types within cutoff
distance specified above, 𝑏𝑟𝑡 — number of bins for the 𝑡-th descriptor, 𝑖𝑡 = 1, . . . , 𝑏𝑟𝑡 — bins
into which the 𝑡-th descriptor’s interval was coarse-grained.

Backbone atomic pairwise features

We use amino acid-specific backbone atom types. More precisely, we define types of heavy
backbone atoms by their elements, which can be C, N, and O, and the corresponding amino
acid types, so that

𝐺𝑎 := {(Ala,C), . . . , (Ala,O), (Arg,C), . . . , (Arg,O), . . . } = 𝒜× {C,N,O}. (3.10)

Overall, we use 22 × 3 backbone atom types. We iterate over each pair of atoms of certain
types within the cutoff distance 𝑐𝑎 and describe their relative position by a distance 𝑑 between
them. We use 𝑐𝑎 = 7Å as the cutoff distance. Then, to accumulate the number density
functions, we use the following equation:

𝑑(𝑖) =
∑︁
(𝑘,𝑙)

1

[︂
𝑐𝑎

𝑏𝑎
(𝑖− 1) 6 𝑑𝑘,𝑙 <

𝑐𝑎

𝑏𝑎
𝑖

]︂
, (3.11)

where the sum is taken over all pairs (𝑘, 𝑙) of atoms of considering types within the cutoff
distance specified above, 𝑏𝑎 — number of bins, 𝑖 = 1, . . . , 𝑏𝑎 — bins into which the distance
interval was coarse-grained.

Hydrogen bonds features

The third type of structural features is hydrogen bonds. For these, we use directional des-
criptors. To accumulate number density function for hydrogen bonds we, iterate over each
pair of a donor atom N and an acceptor atom O within a cutoff distance 𝑐ℎ in the pro-
tein backbone. We use 𝑐ℎ = 6Å as the cutoff distance. To describe the directionality of
this type of interactions, we use three descriptors. These are the distance 𝑑 between the
hydrogen atom H and the oxygen atom O, the donor angle 𝜃H = NHO, and the acceptor
angle 𝜃O = HOC, as it is shown in Figure 3-2. Then, we accumulate the number density
functions 𝑑(𝑖1, 𝑖2, 𝑖3) similarly to the residue-residue features case.
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Solvation features

To explicitly take into account the solvation effect, we construct a regular mesh of water
molecules around the protein at a distance no further than 𝑐𝑠 = 20Å. We describe each water
molecule with the position of its oxygen atom and represent the solvent-solvate interactions
using the reduced representation of amino acids. More precisely, for each pair (residue,
water molecule) within a certain cutoff distance 𝑐𝑠, which is equal to 15Å, we calculate two
descriptors. These are the distance 𝑑 between the C𝛼 atom of the amino acid and the oxygen
O of the water molecule, and the angle 𝜃 between the 𝑧-axis of the residue’s rigid frame and
the vector C𝛼O pointing to the water oxygen. Then, we accumulate the number density
function 𝑑(𝑖1, 𝑖2) similarly to the previous cases.

Smoothed density functions

To make the scoring function smooth, we calculate the number density function for a certain
bin as follows. Instead of accumulating the number of hits of estimated descriptors into this
bin, we accumulate the integrals of the truncated Gaussian kernel, centered in estimated
descriptors, over this bin. The truncated Gaussian kernel with the support width of a
half bin’s width is chosen to preserve sparsity of the features. According to the proposing
technique, the formula for accumulation of number density functions is changing as follows:

𝑑(𝑖) =

∫︁ 𝑐𝑎

𝑏𝑎
𝑖

𝑐𝑎

𝑏𝑎
(𝑖−1)

𝐺

(︂
𝑥− 𝑑𝑘,𝑙; 𝜎

𝑎,
𝑐𝑎

2𝑏𝑎

)︂
𝑑𝑥, (3.12)

where 𝐺𝜎
ℎ is the truncated Gaussian kernel with support width 2ℎ:

𝐺(𝑥; 𝜎, ℎ) =
1[−ℎ 6 𝑥 6 ℎ]𝑓𝜎(𝑥)∫︀ ℎ

−ℎ
𝑓𝜎(𝜉)𝑑𝜉

, 𝑓𝜎(𝑥) =
1√

2𝜋𝜎2
𝑒−

𝑥2

2𝜎2 . (3.13)

Formulas for accumulating the residue pairwise, hydrogen-bonds, and water solvation number
density functions are changing analogously.

There is one additional technique we use when processing hydration shell. By default, it
is constructed by generating a grid of water molecules around the protein and then, removing
those water molecules that are inside the protein (i.e. too close to the protein’s atoms). This
method leads to abrupt appearing and disappearing of water molecules when the protein
structure fluctuates and hence affects the smoothness of the solvation features. We propose
to overcome this issue through introducing smooth weights for the solvent that are close
to the protein model and multiply the calculated integrals of the shifted kernel over the
bins by these introduced weights. As long as both multipliers are continuous in the tertiary
structure, the extracted features appear to be continuous as well. The weight 𝑤 for a pair
solvent-solvate equals to 0 for distances 𝑑 between atoms shorter than minimal threshold 𝑑min
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and rises to 1 when increasing the distance:

𝑤 =

⎧⎪⎨⎪⎩
0, 𝑑 < 𝑑min,
𝑑−𝑑min

Δ
, 𝑑min 6 𝑑 < 𝑑min + ∆,

1, otherwise.
(3.14)

3.2.2 Machine learning

To train a scoring function, we apply classical machine learning technique Ridge Regression
described below. It is used to find the direction in feature space, along which protein quality
assessment is performed the best.

The problem of training a scoring function can be formulated as follows. Let D be a set
of protein domains

D = {𝒟1, . . . ,𝒟𝑛} , (3.15)

where 𝒟𝑖 denotes a set of protein decoy models and their native structure 𝑃
(𝑖)
0 ∈ 𝑆𝑚

t :

𝒟𝑖 = {𝑃 (𝑖)
0 , . . . , 𝑃

(𝑖)
𝑡𝑖 } ⊂ 𝒜𝑚𝑖 × S𝑚𝑖

b ×ℛ𝑚𝑖 . (3.16)

Training set

First, we train the SBROD scoring function on server predictions from the earlier CASP[5-10]
and their corresponding NMA decoy models (Hoffmann and Grudinin, 2017), to avoid over-
fitting and use the remaining CASP11 dataset for comparison the SBROD scoring function
to state-of-the-art scoring functions. Then, the final SBROD scoring function is trained on
the whole CASP[5-11] dataset and its corresponding NMA decoy models.

CASP decoy models. CASP[5-10] datasets (Moult et al., 2003, 2005, 2007, 2009, 2011,
2014) were downloaded from the official CASP website at http://predictioncenter.org/
download_area. These are the structures predicted by different servers participated in the
CASP (Critical Assessment of protein Structure Prediction) experiments.

NMA decoy models. For each target structure in the CASP training set, we applied a
tool for normal mode analysis developed by Hoffmann and Grudinin (2017). We varied 100
first normal modes of NMA model for each native structure in the training set to generate
for each native structure per 300 decoy models within RMSD range [0.5, 6].

Actual scores

Although there are multiple ways to measure the similarity between decoy protein models
and native structures, the most accepted one in the protein structure prediction community
is the GDT-TS (see section 3.1). The GDT-TS of a protein model is an average percent of
residues from the scored model that can be superimposed with corresponding residues from
the native structure under selected distance cutoffs 1, 2, 4, 8Å. We use the TM-score utility
developed by Zhang and Skolnick (2007) to compute GDT-TS (global distance test total
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score by Zemla, 2003) of protein models. The computed GDT-TS of a protein model 𝑃 (𝑖)
𝑗

against its corresponding native structure 𝑃
(𝑖)
0 is denoted by

𝑆*
GDT-TS(𝑃

(𝑖)
𝑗 , 𝑃

(𝑖)
0 ) ∈ [0, 1] (3.17)

and treated as the actual score of the protein model 𝑃 (𝑖)
𝑗 . Thus, function

𝑆*
GDT-TS :

∞⋃︁
𝑚=1

𝒜𝑚 × S𝑚
b ×ℛ𝑚 × 𝑆𝑚

t → [0, 1] (3.18)

ranks all the decoy protein models 𝑃
(𝑖)
𝑗 ∈ 𝒟𝑖 for each 𝑖 = 1, . . . , 𝑛, such that

𝑆*
GDT-TS(𝑃

(𝑖)
0 , 𝑃

(𝑖)
0 ) = 1 for all the native structures 𝑃

(𝑖)
0 , 𝑖 = 1, . . . , 𝑛. (3.19)

Ranking model

Let

f :
∞⋃︁

𝑚=1

𝒜𝑚 × S𝑚
b ×ℛ𝑚 → R𝑘 (3.20)

be a feature extractor described in section 3.2.1. We train a model of ranking

𝑆w,f :
∞⋃︁

𝑚=1

𝒜𝑚 × S𝑚
b ×ℛ𝑚 → R (3.21)

minimizing the regularized empirical loss:

𝑅(w,b) +
𝑛∑︁

𝑖=1

𝑡𝑖∑︁
𝑗=0

𝐿
(︁
𝑆w,f (𝑃

(𝑖)
𝑗 ) + 𝑏𝑖, 𝑆*

GDT-TS(𝑃
(𝑖)
𝑗 , 𝑃

(𝑖)
0 )
)︁
→ min

w,b
. (3.22)

We add additional parameters 𝑏𝑖 ∈ R, 𝑖 = 1, . . . , 𝑛, since we are interested in capacity of the
scoring function 𝑆w,f (𝑃 ) to rank the protein models, and hence the loss function should not
depend on the per-domain shifts of the scoring function 𝑆w,f (𝑃 ).

We use a linear model of the ranking function 𝑆w,f :

𝑆w,f (𝑃 ) = ⟨w, f(𝑃 )⟩ , (3.23)

with squared loss function and ridge regularization:

𝐿(𝑥, 𝑦) = (𝑥− 𝑦)2, 𝑅(w,b) = 𝛼

(︂
‖w‖22 +

1

𝛽2
‖b‖22

)︂
. (3.24)
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Therefore, training optimization problem (3.22) can be rewritten as follows:

𝛼

(︂
‖w‖22 +

1

𝛽2
‖b‖22

)︂
+

𝑛∑︁
𝑖=1

𝑡𝑖∑︁
𝑗=0

(︁⟨
w, f(𝑃

(𝑖)
𝑗 )
⟩

+ 𝑏𝑖 − 𝑆*
GDT-TS(𝑃

(𝑖)
𝑗 , 𝑃

(𝑖)
0 )
)︁2
→ min

w,b
, (3.25)

Note, that this can be turned into standard ridge regression form

𝛼‖w̃‖22 +
𝑛∑︁

𝑖=1

𝑡𝑖∑︁
𝑗=0

(︁⟨
w̃, f̃(𝑃

(𝑖)
𝑗 )
⟩
− 𝑆*

GDT-TS(𝑃
(𝑖)
𝑗 , 𝑃

(𝑖)
0 )
)︁2
→ min

w̃
, (3.26)

where

f̃(𝑃
(𝑖)
𝑗 ) =

[︁
f1(𝑃

(𝑖)
𝑗 ), . . . , f𝑘(𝑃

(𝑖)
𝑗 ), 0, . . . , 0, 𝛽⏟  ⏞  

𝑖

, 0, . . . , 0
]︁T

∈ R𝑘+𝑛, (3.27)

w̃ = [𝑤1, . . . , 𝑤𝑘,𝑏1, . . . , 𝑏𝑛]T ∈ R𝑘+𝑛. (3.28)

Regression model

To adapt the proposed ranking model for protein design problem, i.e. to make the trained
scoring function applicable for the protein design problem, it is enough to omit the domains
shifting parameters 𝑏𝑗 in formula (3.22). Without shifting parameters the ranking model
transforms into ordinary ridge regression model that is trained to predict the actual score
𝑆*

GDT-TS (3.18). Therefore, once the actual score of each native structure is the same, the
training is performed to satisfy condition (3.37) as well as to optimize the overall quality of
quality assessment.

Optimization. The optimization problem (3.26) was reduced to a linear equation system,
and it was solved by the Conjugate Gradient iteration implemented in SciPy python li-
brary (Jones et al., 2001), which is adapted to sparse matrices of huge dimension.

Cross-validation. To estimate the best parameters of feature extraction procedure f : 𝑏𝑟𝑖 ,
𝑐𝑟, 𝑏𝑎, 𝑏𝑎, etc. (see figure 3-1), and also the best regularization parameters 𝛼 and 𝛽 (see
equation (3.26)), we used 3-fold cross-validation on the CASP[5-10] datasets. 𝑘-fold cross-
validation is the standard technique to estimate the free parameters of the model as follows.
The original dataset is randomly partitioned into 𝑘 equal sized parts. Of the 𝑘 parts, a single
part is retained as the validation set for testing the model, trained on the remaining 𝑘 − 1
parts. The cross-validation process is then repeated k times with each of the 𝑘 parts used
exactly once as the validation data. The 𝑘 results from the folds are then averaged to produce
a single estimation serving as a criterion of picking the best free parameters of the model.
Thus, all the training data is used for both training and validation, and none of the test data
is used here, which helps to avoid overfitting. As a result, the regularization parameters were
chosen to be 𝛼 = 5, 𝛽 = 50. The optimal parameters of the feature generation procedure
were mentioned above in subsection 3.2.1.
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3.3 Rotamer prediction

In this section, we will formally set the rotamer prediction problem. Let protein backbone
𝑏0 ∈ S𝑚

b and sequence 𝑎0 ∈ 𝒜𝑚 be given, where 𝑚 is the protein length. Let

𝐸 : 𝒜𝑚 × S𝑚
b ×ℛ𝑚 → R (3.29)

denote a protein energy. Let us consider a problem of discrete programming

𝐸(𝑎0, 𝑏0, 𝑟)→ min
𝑟∈ℛ𝑚

, (3.30)

which is called the rotamer prediction problem (predict folding of side-chains given a coarse-
grained protein model). The search space of problem (3.30) is of huge cardinality |ℛ|𝑚,
which is ∼ 10300 for typical protein of length 𝑚 = 300 and number of rotamers per side
chain |ℛ| = 10. Hence exhaustive search cannot be applied to find optimal solution and
solve it. To find approximate solution of this problem, algorithms of discrete optimization
(see sections 3.5.1 and 3.5.2) can be applied.

To assess the quality of a solution of rotamer prediction problem (3.30), the quality crite-
ria described in section 3.1 are used. If energy function 𝐸(𝑎0, 𝑏0, 𝑟) is pairwise decomposable,
that is, equal to the sum of symmetrical pairwise energy potentials of rotamer interactions:

𝐸(𝑎0, 𝑏0, 𝑟) =
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑟𝑘, 𝑟𝑙), (3.31)

where 𝑟𝑘 and 𝑟𝑙 — rotamers of amino acids 𝑎𝑘 and 𝑎𝑙 respectively, then the rotamer prediction
problem (3.30) is equivalent to the following discrete optimization problem:

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑟𝑘, 𝑟𝑙)→ min
(𝑟1,...,𝑟𝑚)

. (3.32)

Problem (3.32) is set as problem (3.54). Therefore, methods described in section 3.5 can be
used to solve it or find an approximate solution.

3.4 Protein design problem

In this section, we will formally set the protein design problem. Let protein backbone 𝑏0 ∈ S𝑚
b

be given, where 𝑚 is the protein length. Let

𝐸 : 𝒜𝑚 × S𝑚
b ×ℛ𝑚 → R (3.33)

denote a protein energy. Let us consider a problem of discrete programming

𝐸(𝑎, 𝑏0, 𝑟)− min
𝑏∈S𝑚𝑏 , 𝑟∈ℛ𝑚

𝐸(𝑎, 𝑏, 𝑟)→ min
𝑎∈𝒜𝑚, 𝑟∈ℛ𝑚

, (3.34)
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which is to predict a protein sequence 𝑎 ∈ 𝒜𝑚 that would be likely to fold into the target
tertiary backbone structure 𝑏0 ∈ R𝑚×3×3 (see problem (1.6)). As we showed in section 1.2.3,
problem (3.34) can written as follows

𝐸(𝑎, 𝑏0)− min
𝑏∈S𝑚𝑏

𝐸(𝑎, 𝑏)→ min
𝑎∈𝒜𝑚

, (3.35)

where
𝐸(𝑎, 𝑏) := min

𝑟∈ℛ𝑚
𝐸(𝑎, 𝑏, 𝑟). (3.36)

One can see that problem statement (3.35) involves solving rotamer prediction problem
to find coarse-grained energy function (3.36) for each possible sequence 𝑎 ∈ 𝒜𝑚 (number
of these sequences is typically ∼ 20𝑚), what makes this problem statement intractable.
However, if the energy function is the same for all the native structures, that is, the following
condition is satisfied

min
𝑏∈S𝑚b , 𝑟∈ℛ𝑚

𝐸(𝑎, 𝑏, 𝑟) = const(𝑎), (3.37)

then problem (3.34) can be rewritten as follows:

𝐸(𝑎, 𝑏0, 𝑟)→ min
𝑎∈𝒜𝑚, 𝑟∈ℛ𝑚

, (3.38)

which is called the protein design problem. The search space of problem (3.38) is of a huge
cardinality ∼ 200300 for a typical protein of length 𝑚 = 300 and number of rotamers per side
chain |ℛ𝑖| = 10. Hence exhaustive search cannot be applied to find optimal solution and
solve it. To find approximate solution of this problem, algorithms of discrete optimization
(see sections 3.5.1 and 3.5.2) can be applied.

On the other hand, if the energy function in (3.38) is devised to predict the quality of
backbone folding of coarse-grained protein structure:

𝑆 : 𝒜𝑚 × S𝑚
b → R, (3.39)

where scores of all native protein structures are the same (the best backbone folding score
does not depend on a sequence), for example, trained to predict GDT-TS (see section 3.1),
then the protein design problem can be simplified as follows:

𝑆(𝑎, 𝑏0)→ min
𝑎∈𝒜𝑚

. (3.40)

The search space of problem (3.40) is significantly reduced in comparison to problem (3.38).
Therefore, usage of the scoring function that assesses coarse-grained protein models is pre-
ferable for solving the protein design problem.

The main issue of the protein design problem is the assessment of quality of a solution
of problem (3.40), that is, finding a quality criterion for assessing a method for protein
design 𝜙d either approximate or precise:

𝜙d(𝑏0) ≈ Arg min
𝑎∈𝒜

𝑆(𝑎, 𝑏0). (3.41)
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In this paper, we propose the following quality criteria:

𝑄(𝜙d, 𝑏) =
1

|𝜙d(𝑏)|
∑︁

𝑎∈𝜙d(𝑏)

‖𝑏− (𝜋rb ∘ 𝜙cg)(𝑎)‖ , (3.42)

where
𝜙cg : 𝒜𝑚 → 𝒜𝑚 × S𝑚

b (3.43)

is a coarse-grained protein folding algorithm. This criterion checks how well protein sequences
predicted by protein design method 𝜙d fold into a target backbone 𝑏 according to a protein
folding algorithm 𝜙cg. Hence criterion (3.42) requires a protein folding algorithm, which is
usually is imprecise as well and serves as an approximation.

If energy function 𝑆(𝑎, 𝑏0) is pairwise decomposable, that is, equal to the sum of sym-
metrical pairwise energy terms:

𝑆(𝑎, 𝑏0) =
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙), (3.44)

where 𝑎𝑘 and 𝑎𝑙 — types of amino acids 𝑎𝑘 and 𝑎𝑙 respectively, then protein design pro-
blem (3.40) is equivalent to the following discrete optimization problem:

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙)→ min
(𝑎1,...,𝑎𝑚)

. (3.45)

Problem (3.45) is set as problem (3.54). Therefore, methods described in section 3.5 can be
used to solve it or find an approximate solution.

3.4.1 Amino acid distribution

One can see that protein design problem (3.45) does not contain any restrictions on the
proposed sequences. Though, in nature, not each protein sequence is able to fold into a
stable tertiary structure under normal conditions. Hence we are interested in finding protein
sequences that are of a similar pattern to those that have been already discovered in nature.
One possible constraint that can be introduced is a restriction on the distribution of different
amino acid types (we want to encourage the presence of the whole variety of amino acids in
determined sequences and to penalize those sequences that contain too many amino acids of
a certain type, which is not common in discovered proteins). In this section, we introduce
an energy modification to take into account a certain amino acid distribution. To do that,
let us rewrite the protein design problem in probabilistic context and introduce marginal
distribution for amino acids, which is a distribution on a set of all sequences.

First, let us write the probabilistic problem statement for the protein design problem:

𝑝(𝑎|𝑏0)→ max
𝑎

, (3.46)

where probability for protein 𝑎 to fold into conformation 𝑏0 is defined by Boltzmann distri-
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bution

𝑝(𝑏0|𝑎) = exp

(︂
−𝐸(𝑎, 𝑏0)

𝑇

)︂
(3.47)

(we put the normalizing constant to energy function) and energy function 𝐸(𝑎, 𝑏0) is pairwise
decomposable, i.e. can be represented in form (3.44).

Marginal distribution for amino acids

Let us follow the unigram language model when the order of amino acids is irrelevant. This
model sets multinomial distribution over amino acid sequences.

𝑝(𝑎1, . . . , 𝑎𝑚) = 𝑚!
∏︁
𝑎∈𝒜

𝑝𝑚𝑎
𝑎

𝑚𝑎!
, (3.48)

where

𝑚𝑎 =
𝑚∑︁
𝑖=1

1[𝑎𝑖 = 𝑎], 𝑎 ∈ 𝒜. (3.49)

However, energy correction defined by this model will not be pairwise decomposable.
Hence, let us approximate multinomial distribution (3.48) as follows:

𝑝(𝑎1, . . . , 𝑎𝑚) = 𝐶
∏︁
𝑎∈𝒜

𝒩
(︀
𝑚𝑎| 𝑚𝑝𝑎,𝑚𝜎2

𝑎

)︀
, (3.50)

where 𝒩 (𝑥| 𝜇, 𝜎2) = 1√
2𝜋𝜎2

𝑒−
(𝑥−𝜇)2

2𝜎2 is the probability density function of the Gaussian distri-
bution, 𝑝𝑎 and 𝜎𝑎 for each 𝑎 ∈ 𝒜 are constant parameters not dependent on 𝑎1, . . . , 𝑎𝑚, and
𝐶 is a normalizing constant. Lemma 3.4.1 proves that this approximation provides pairwise
decomposable energy correction. Therefore, the total energy function is preserved to be pai-
rwise decomposable and hence the protein design optimization problem still can be reduced
to BQP programming problem.

Lemma 3.4.1 (Energy corrections) Let energy 𝐸(𝑎, 𝑏0) in (3.47) be pairwise decompo-
sable:

𝐸(𝑎, 𝑏0) =
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙), (3.51)

and marginal distribution 𝑝(𝑎1, . . . , 𝑎𝑚) be defined by (3.50). Then, after introducing energy
correction terms as follows:

𝐸 ′
𝑘𝑙(𝑎𝑘, 𝑎𝑙) :=

⎧⎨⎩
𝑇
2𝑚
· 1−2𝑝𝑎𝑘

𝜎2
𝑎𝑘

, 𝑎𝑘 = 𝑎𝑙;

− 𝑇
2𝑚
·
(︁

𝑝𝑎𝑘
𝜎2
𝑎𝑘

+
𝑝𝑎𝑙
𝜎2
𝑎𝑙

)︁
, 𝑎𝑘 ̸= 𝑎𝑙,

(3.52)

problem (3.46) is equivalent to minimization of the total energy with the introduced energy
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correction terms:
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸total
𝑘𝑙 (𝑎𝑘, 𝑎𝑙) =

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

[𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙) + 𝐸 ′
𝑘𝑙(𝑎𝑘, 𝑎𝑙)]→ min

(𝑎1,...,𝑎𝑚)
. (3.53)

See the proof in the appendix.

3.5 Pairwise decomposable energy minimization

In this section we will consider the problem of minimization a pairwise decomposable ob-
jective — the sum of pairwise functions of integer variable:

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑦𝑘, 𝑦𝑙)→ min
𝑦1∈{1,...,𝑛1}
·····················
𝑦𝑚∈{1,...,𝑛𝑚}

, (3.54)

where 𝑛𝑖 ∈ N, 𝑖 = 1, . . . ,𝑚.

The problem (3.54) is a problem of discrete optimization, hence algorithms for discrete
optimization can be applied. First, we will consider such algorithms for discrete optimization
as greedy optimization in section 3.5.1 and simulated annealing in section 3.5.2. Then, we
will reduce the pairwise decomposable energy minimization problem (3.54) to the boolean
quadratic programming problem (3.66).

3.5.1 Greedy optimization algorithm

An iterative algorithm is called greedy when it makes a locally optimal choice on each
iteration when solving the decision problem. The latter heuristic is aimed at finding a
decent global optimal solution in a reasonable time. Although there are no theoretical
guarantees on the quality of found solution in general case, in some special cases (as finding
a maximum-weight basis of a matroid) this paradigm provides the exact solution.

For the discrete optimization problem (3.54), it is reasonable to propose greedy optimiza-
tion algorithm 3.5.1, which follows the greedy heuristic in a hope to find a global minimum
of function

𝑓(𝑦1, . . . , 𝑦𝑚) =
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑘𝑙(𝑦𝑘, 𝑦𝑙). (3.55)
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Algorithm 3.5.1 Simple Greedy Search
Input: (𝑦1, . . . , 𝑦𝑚), 𝑦𝑘 ∈ {1, . . . , 𝑛𝑘}, 𝑘 = 1, . . . ,𝑚 # starting point
Output: (𝑦1, . . . , 𝑦𝑚) # approximate solution to problem (3.54)
1: repeat
2: 𝑛← 0
3: for all 𝑘 = 1, . . . ,𝑚 do
4: 𝑦𝑘 := arg min

𝑦∈{1,...,𝑛𝑘}
𝑓(𝑦1, . . . , 𝑦𝑘−1, 𝑦, 𝑦𝑘+1, . . . , 𝑦𝑚)

5: if 𝑦𝑘 ̸= 𝑦𝑘 then
6: 𝑦𝑘 := 𝑦𝑘
7: 𝑛 := 𝑛 + 1
8: until 𝑛 > 0
9: return (𝑦1, . . . , 𝑦𝑚)

On each iteration, it tries all possible values for the optimized variable and chooses one
that minimizes the objective the best.

Note that on each stage of algorithm 3.5.1 an optimization problem is to be solved, which
is to minimize objective over one variable. Now let us consider the function 𝑓(𝑦1, . . . , 𝑦𝑚)
as a function of vector argument 𝑓(𝑦) = 𝑓(𝑦1, . . . , 𝑦𝑚). Hence, we can make the follo-
wing interpretation of the optimization problems that are to be solved on each stage of
algorithm 3.5.1. It is minimization of the objective on the neighborhood 𝑁1(𝑦) of current
approximation, where

𝑁𝑡(𝑦) =
{︁
𝑦′ ∈ ×𝑚

𝑖=1{1, . . . , 𝑛𝑖}
⃒⃒⃒
‖𝑦 − 𝑦′‖0 6 𝑡

}︁
, (3.56)

where ‖𝑦‖0 = |{𝑘 ∈ {1, . . . ,𝑚} | 𝑦𝑘 ̸= 0}| is a cardinality function — the number of non-
zero elements in a vector. One can notice that an obvious possible modification would be
expanding the neighborhood. This brings us to algorithm 3.5.2.

Algorithm 3.5.2 Greedy Search
Input: 𝑡 ∈ N, 𝑦 ∈ ×𝑚

𝑖=1{1, . . . , 𝑛𝑖} # starting point
Output: 𝑦 ∈ ×𝑚

𝑖=1{1, . . . , 𝑛𝑖} # appr. sol. to problem (3.54)
1: repeat
2: 𝑦old := 𝑦
3: 𝑦 := arg min

𝑦′∈𝑁𝑡(𝑦old)

𝑓(𝑦′)

4: until 𝑦 ̸= 𝑦old
5: return 𝑦

Algorithm 3.5.2 is more flexible than 3.5.1. However, the search space cardinality of the
optimization problem on each iteration is

𝐶total(𝑡) =
∑︁

𝐼∈({1,...,𝑚}
𝑡 )

∏︁
𝑖∈𝐼

𝑛𝑖. (3.57)
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In the extreme case 𝑡 = 𝑚, it turns into exhaustive search with the complexity of

𝐶total(𝑚) =
𝑚∏︁
𝑖=1

𝑛𝑖. (3.58)

3.5.2 Simulated annealing

Simulated annealing is a probabilistic technique aimed at approximating the global minimum
of a given function. Initially, it was proposed by Khachaturyan et al. (1981); Semenovskaya
et al. (1985) as a technique for solving problems where finding a better approximate optimal
solution is more important than finding a local optimum. It explores the solution space
iteratively. On each iteration, it considers a neighboring point 𝑦′ ∈ 𝑁𝑡(𝑦) (see (3.56)) of
the current approximate solution 𝑦 and decides whether to accept new point as a new ap-
proximate solution or not. The same iterations are repeated until a given computational
time is exhausted. Similarly to greedy search 3.5.2, it accepts as new approximate solu-
tion points from the neighborhood of current approximate solution at which the objective
function is lower than the value of the objective function in current approximate solution.
However, simulated annealing leaves the probability to accept neighboring points leading
to the objective function growth in order not to get stuck in the local optima. This pro-
bability P(𝑦 → 𝑦′, 𝑇 ) depends on the values of the objective function in current candidate
points 𝑓(𝑦), 𝑓(𝑦′) and a temperature 𝑇 — global time varying parameter. It is common to
use the following probability function:

P(𝑦 → 𝑦′, 𝑇 ) =

{︃
1, 𝑓(𝑦′) < 𝑓(𝑦),

exp
(︁
−𝑓(𝑦′)−𝑓(𝑦)

𝑇

)︁
, otherwise.

(3.59)

The pseudocode for the simulated annealing algorithm is listed bellow.

Algorithm 3.5.3 Simulated Annealing
Input: 𝑡, 𝑘max ∈ N, 𝑦 ∈ ×𝑚

𝑖=1{1, . . . , 𝑛𝑖} # starting point
Output: 𝑦 ∈ ×𝑚

𝑖=1{1, . . . , 𝑛𝑖} # appr. sol. to problem (3.54)
1: for 𝑘 = 1, . . . , 𝑘max do
2: 𝑇 := 𝑘

𝑘max

3: Pick randomly a neighbor 𝑦′ ∈ 𝑁𝑡(𝑦) ⊂ ×𝑚
𝑖=1{1, . . . , 𝑛𝑖}

4: if 𝜉 6 P(𝑦 → 𝑦′, 𝑇 ), 𝜉 ∼ 𝑈 [0, 1] then
5: 𝑦 := 𝑦′ # update approximate solution with probability defined in (3.59)
6: return 𝑦

Here 𝑈 [0, 1] is a uniform distribution that has the following probability density function:

𝑝(𝑥) =

{︃
1, 0 6 𝑥 6 1,

0, otherwise.
(3.60)
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3.5.3 Reduction to the BQP

Let us derive the reduction of the pairwise decomposable energy minimization problem (3.54)
to the boolean quadratic programming problem (3.66).

Let Q be the energy block matrix as follows:

Q =

⎡⎢⎢⎢⎣
[𝐸11(𝑦1, 𝑦1)] [𝐸12(𝑦1, 𝑦2)] · · · [𝐸11(𝑦1, 𝑦𝑚)]
[𝐸21(𝑦2, 𝑦1)] [𝐸22(𝑦2, 𝑦2)] · · · [𝐸2𝑚(𝑦2, 𝑦𝑚)]

...
... . . . ...

[𝐸𝑚1(𝑦𝑚, 𝑦1)] [𝐸𝑚2(𝑦𝑚, 𝑦2)] · · · [𝐸𝑚𝑚(𝑦𝑚, 𝑦𝑚)]

⎤⎥⎥⎥⎦ , (3.61)

of blocks

[𝐸𝑘𝑙(𝑦𝑘, 𝑦𝑙)] =

⎡⎢⎢⎢⎣
𝐸𝑘𝑙(1, 1) 𝐸𝑘𝑙(1, 2) · · · 𝐸𝑘𝑙(1, 𝑛𝑙)
𝐸𝑘𝑙(2, 1) 𝐸𝑘𝑙(2, 2) · · · 𝐸𝑘𝑙(2, 𝑛𝑙)

...
... . . . ...

𝐸𝑘𝑙(𝑛𝑘, 1) 𝐸𝑘𝑙(𝑛𝑘, 2) · · · 𝐸𝑘𝑙(𝑛𝑘, 𝑛𝑙)

⎤⎥⎥⎥⎦ , (3.62)

Then the problem (3.54) is equivalent to the following one:

minimize
𝑥

𝑥TQ𝑥

subject to 𝑥 = [𝑥1T
, . . . ,𝑥𝑚T]T

𝑥𝑘 ∈ {0, 1}𝑛𝑘 , 𝑘 = 1, . . . ,𝑚,

‖𝑥𝑘‖0 = 1, 𝑘 = 1, . . . ,𝑚.

(3.63)

The dimensionality of this problem is

𝑛 =
𝑚∑︁
𝑘=1

𝑛𝑘. (3.64)

Let us introduce the binary matrix A ∈ R𝑚×𝑛 :

A =

⎡⎢⎢⎢⎣
1 · · · 1 0 · · · 0 · · · · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · · · · 0 · · · 0
... . . . ...

... . . . ... · · · · · · ... . . . ...

⏟  ⏞  
𝑛1

0 · · · 0 ⏟  ⏞  
𝑛2

0 · · · 0 · · · · · · ⏟  ⏞  
𝑛𝑚

1 · · · 1

⎤⎥⎥⎥⎦ . (3.65)

Then, the problem (3.63) can be written as problem (3.66).
The proposed reduction enables usage of convex relaxation techniques (section 3.6) for

solving the initial decomposable energy minimization problem (3.54).

3.6 Boolean quadratic programming

∙ 𝒮𝑛 = {𝑋 ∈ R𝑛×𝑛 | 𝑋 = 𝑋T} — space of symmetric matrices,
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∙ 𝒮𝑛
+ = {𝑋 ∈ R𝑛×𝑛 | 𝑋 = 𝑋T ⪰ 0} — space of symmetric positive semidefinite matrices,

In this section, we investigate the optimization problem

minimize
𝑥∈{0,1}𝑛

𝑥TQ𝑥

subject to A𝑥 = 1𝑚,
(3.66)

where

∙ Q ∈ 𝒮𝑛 — symmetric real matrix,

∙ A ∈ {0, 1}𝑚×𝑛 — boolean matrix of form (3.65),

∙ 1𝑚 = [1, . . . , 1⏟  ⏞  
𝑚

]T — vector of all ones.

Problem (3.66) is NP-hard in general case (even if the matrix Q is positive semidefinite:
Q ∈ 𝒮𝑛

+) since the problem MAXCUT, which is known to be NP-complete, can be reduced to
it. Hence problem (3.66) cannot be solved efficiently in a reasonable time in the assumption
that P ̸= NP. In this section, we will discuss possible techniques for relaxing the non-convex
problem (3.66) into convex optimization problem.

3.6.1 Continuous relaxation

First, let us regularize the matrix of the quadratic form Q:

Q̂ := Q− 𝜆min(Q) · I𝑛⏟  ⏞  
∈𝒮𝑛

+

, (3.67)

where 𝜆min(Q) is the smallest eigenvalue of the Q matrix:

𝜆min(Q) = min{𝜆 ∈ R | det(Q− 𝜆I𝑛) = 0}. (3.68)

Now, since 𝑥 ∈ {0, 1}𝑛, and hence

𝑥TI𝑛𝑥 = 𝑥T𝑥 =
𝑛∑︁

𝑖=1

𝑥2
𝑖 =

𝑛∑︁
𝑖=1

𝑥𝑖 = 1T
𝑛𝑥, (3.69)

the BQP problem (3.66) can be rewritten as follows:

minimize
𝑥∈{0,1}𝑛

𝑥TQ̂𝑥 + 𝜆min(Q)1T
𝑛𝑥

subject to A𝑥 = 1𝑚.
(3.70)

Here the matrix of the quadratic form is positive semidefinite. Therefore, relaxing the
constraints 𝑥 ∈ {0, 1}𝑛 to convex constraints 𝑥 ∈ [0, 1]𝑛, we relax non-convex problem (3.70)
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to a convex one:
minimize

𝑥
𝑥TQ̂𝑥 + 𝜆min(Q)1T

𝑛𝑥

subject to A𝑥 = 1𝑚,

0𝑛 6 𝑥 6 1𝑛.

(3.71)

Note that the optimal value of relaxation (3.71) provides the lower bound on the optimal
value of initial BQP problem (3.66).

Problem (3.71) is convex, and more precisely, it is a convex quadratic programming
problem, and hence it can be solved efficiently (Boyd and Vandenberghe, 2004; Gill and
Wong, 2015). There are many well-developed packages to solve quadratic programming
problems, such as Gurobi (Gurobi Optimization, 2016), MOSEK (ApS, 2015), etc.

Rounding strategy

To get an upper bound on the optimal value of initial BQP problem (3.66), one needs
to perform the so-called rounding procedure, when the obtained optimal solution of relax-
ation (3.71) is projected onto the feasible set. Rounding procedure is highly important
because it links the optimal solution of the relaxation and an approximate solution of the
initial non-convex problem. Though it is complicated to derive the projection in general
case, we will do that for constraint matrices of special form (3.65). In this case, the following
rounding strategy can be proposed:

�̂�∑︀𝑡−1
𝑖=1 𝑛𝑖+𝑘 :=

⎧⎨⎩1, 𝑘 =
̂︀

arg max
𝑗=1,...,𝑛𝑡

𝑥∑︀𝑡−1
𝑖=1 𝑛𝑖+𝑗,

0, otherwise,
𝑘 = 1, . . . , 𝑛𝑡, 𝑡 = 1, . . . ,𝑚, (3.72)

where ̂︀
arg max

𝑗
𝑥𝑗 = min

(︂
Arg max

𝑗
𝑥𝑗

)︂
. (3.73)

It is clear that formula (3.72) defines a projection of a point 𝑥 ∈ [0, 1]𝑛 onto the search
space 𝑉 = {𝑥 ∈ {0, 1}𝑛 |A𝑥 = 1𝑚}, that is,

‖𝑥− �̂�‖ = min
𝑥′∈𝑉
‖𝑥− 𝑥′‖.

We also can randomly sample neighboring points 𝑥′ around the found optimal solution of
relaxation (3.71):

𝑥′ ∼ 𝒩 (𝑥, diag(𝑥1 − 𝑥2
1, . . . , 𝑥𝑛 − 𝑥2

𝑛)), (3.74)

and then perform rounding procedure (3.72). This sampling technique generates new points
from the distribution taking into account the optimal solution of the relaxation. These ge-
nerated points are projected onto the feasible set, and the obtained rounded approximations
might correspond to the objective values that are lower than initially obtained upper bound.
Though these rounding and sampling procedures are heuristics, often they help to tighten
the gap between the upper and lower bounds significantly (D’Aspremont and Boyd, 2003).
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3.6.2 Lagrangian relaxation

The Lagrangian relaxation technique is based on the fact that the dual of any optimization
problem is always convex and its solution provides a lower bound for the primal problem.
First, let us derive the Lagrangian relaxation for non-convex problem (3.66).

𝐿(𝑥,𝜆,𝑢) = 𝑥TQ𝑥 +
𝑛∑︁

𝑖=1

𝜆𝑖(𝑥
2
𝑖 − 𝑥𝑖) + 𝑢T(A𝑥− 1𝑚) =

= 𝑥T (Q + diag(𝜆))𝑥− 𝜆T𝑥 + 𝑢T(A𝑥− 1𝑚) =

= 𝑥T (⏟  ⏞  
P(𝜆)

Q + diag(𝜆))𝑥− (⏟  ⏞  
𝑞T(𝜆,𝑢)

𝜆T − 𝑢TA)𝑥− ⏟  ⏞  
𝑟(𝑢)

𝑢T1𝑚.

(3.75)

Then, the dual function is calculated minimizing the Lagrangian over primal variables 𝑥:

𝑔(𝜆,𝑢) = inf
𝑥∈R𝑛

𝐿(𝑥,𝜆,𝑢) = inf
𝑥∈R𝑛

[𝑥TP(𝜆)𝑥− 𝑞T(𝜆,𝑢)𝑥− 𝑟(𝑢)] =

=

{︃
−1

4
𝑞T(𝜆,𝑢)P+(𝜆)𝑞(𝜆,𝑢)− 𝑟(𝑢), P(𝜆) ⪰ 0 and 𝑞(𝜆,𝑢) ⊥ kerP(𝜆),

−∞, otherwise,
(3.76)

where P+(𝜆) is the Moore–Penrose pseudoinverse of matrix P(𝜆). Hence, optimal value of
the dual problem would be the solution of problem (3.77),

maximize
𝜆∈R𝑛,𝑢∈R𝑚

− 1

4
𝑞T(𝜆,𝑢)P+(𝜆)𝑞(𝜆,𝑢)− 𝑟(𝑢)

subject to P(𝜆) ⪰ 0,

𝑞(𝜆,𝑢) ⊥ kerP(𝜆).

(3.77)

To simplify the constraints in problem (3.77), we need the Schur lemma.

Definition 3.6.1 (Schur complement) Let X be a symmetric block matrix given by

X =

[︂
A B
BT C

]︂
∈ 𝒮𝑛. (3.78)

Then, if det𝐴 ̸= 0, the matrix
S = C−BTA+B (3.79)

is called Schur complement of the block A in X.

Lemma 3.6.1 (Schur (Boyd and Vandenberghe, 2004)) Let X be a symmetric block
matrix given by

X =

[︂
A B
BT C

]︂
,

where B = [𝑏1, . . . , 𝑏𝑝] ∈ R𝑚×𝑝. Let S be the Schur complement of the block A in X. Then,
the following two statements are true.

1. X ≻ 0 if and only if A ≻ 0 and S ≻ 0.
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2. X ⪰ 0 if and only if A ⪰ 0, S ⪰ 0, and 𝑏𝑖 ⊥ kerA, 𝑖 = 1, . . . , 𝑝.

Proof Let us consider the following quadratic optimization problem

𝑢TA𝑢 + 2𝑣TBT𝑢 + 𝑣TC𝑣 → inf
𝑢

. (3.80)

This problem is bounded if and only if A ⪰ 0 and B𝑣 ⊥ kerA. The optimal solution then
would be 𝑢 = −A+B𝑣, and the optimal value:

inf
𝑢

[︂
𝑢
𝑣

]︂T [︂
A B
BT C

]︂
⏟  ⏞  

X

[︂
𝑢
𝑣

]︂
=

⎧⎨⎩𝑣T(C−BTA+B⏟  ⏞  
S

)𝑣, A ⪰ 0 and B𝑣 ⊥ kerA,

−∞, otherwise.
(3.81)

Note that problem (3.80) has the only optimal solution if and only if matrix A is strictly
positive definite: A ≻ 0. Now proof becomes straightforward.

Now, according to the Schur lemma, problem (3.77) is equivalent to the following opti-
mization problem:

maximize
𝜆∈R𝑛,𝑢∈R𝑚

𝛾 − 𝑟(𝑢)

subject to
[︂

P(𝜆) 1
2
𝑞(𝜆,𝑢)

1
2
𝑞T(𝜆,𝑢) −𝛾

]︂
∈ 𝒮𝑛+1

+ .
(3.82)

This is a problem of semidefinite programming with 2𝑛 variables. The optimal value of
relaxation (3.82) provides a lower bound on the optimal value of initial BQP problem (3.66).
It can be efficiently solved by modern solvers for cone optimization (Boyd and Vandenberghe,
2004). The numerical solution can be computed using the MOSEK (ApS, 2015) solver.

3.6.3 Semidefinite relaxation

In this section, we will consider the relaxation of the BQP problem (3.66) into a semidefinite
programming (SDP) problem (Boyd and Vandenberghe, 1997; Ghaoui, 2013; D’Aspremont
and Boyd, 2003).

The semidefinite programming problem is aimed at finding the optimal value of a linear
objective function over the cone of positive semidefinite matrices 𝒮𝑛

+ or over its intersection
with an affine space, which is a set of solutions of a system of linear equations

{𝑥 ∈ R𝑛 | A𝑥 = 𝑏} . (3.83)

SDP belongs to a cone programming subfield and can be solved efficiently by interior point
methods (Boyd and Vandenberghe, 2004).

Note that using the cyclic property of trace, one can derive

𝑥TQ𝑥 = Tr(𝑥TQ𝑥) = Tr(Q𝑥𝑥T). (3.84)

Also note that boolean constraints 𝑥 ∈ {0, 1}𝑛 can be equivalently replaced with 𝑥2
𝑖 −𝑥𝑖 = 0.

Therefore, introducing a new variable X = 𝑥𝑥T ∈ 𝒮𝑛
+, the BQP problem (3.66) can be
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rewritten as follows:
minimize

𝑥,X
Tr(QX)

subject to A𝑥 = 1𝑚,

𝑋𝑖𝑖 − 𝑥𝑖 = 0, 𝑖 = 1, . . . , 𝑛,

X = 𝑥𝑥T.

(3.85)

In SDP relaxation the non-convex rank constraint 𝑋 = 𝑥𝑥T is replaced with a convex
semidefiniteness constraint X ⪰ 𝑥𝑥T but first, let us introduce additional constraints that
would tighten the convex search space in semidefinite relaxation. First, note that from the
first constraint one can derive the following A𝑥𝑥T = 1𝑚𝑥

T, and hence AX = 1𝑚𝑥
T. Second,

we add constraints X ∈ [0, 1]𝑛×𝑛. Now, let us relax the non-convex rank constraint X = 𝑥𝑥T

and write the semidefinite relaxation:

minimize
𝑥,X

Tr (QX)

subject to A𝑥 = 1𝑚,

AX = 1𝑚𝑥
T,

0 6 𝑋𝑖𝑗 6 1, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛,

𝑋𝑖𝑖 − 𝑥𝑖 = 0, 𝑖 = 1, . . . , 𝑛,[︂
X 𝑥
𝑥T 1

]︂
∈ 𝒮𝑛+1

+ ,

(3.86)

where the semidefiniteness constraint X ⪰ 𝑥𝑥T is written in matrix form using lemma 3.6.1.
Again, as in case of continuous relaxation (see section 3.6.1), the optimal value of relax-

ation (3.86) provides a lower bound on the optimal value of initial BQP problem (3.66).
Problem (3.86) is the SDP problem, which can be solved efficiently by modern solvers for

cone optimization (Boyd and Vandenberghe, 2004). The numerical solution can be computed
using the MOSEK (ApS, 2015) solver.

Rounding strategy

To get the upper bound on the optimal value of initial BQP problem (3.66), one needs
to come up with a rounding procedure to project the optimal solution of relaxation (3.86)
onto the feasible set. The same rounding strategy as described for continuous relaxation in
section 3.6.1 can be used (see formula (3.72)). The matrix X− 𝑥𝑥T ∈ 𝒮𝑛

+ composed of the
optimal solution of the SDP relaxation problem is positive semidefinite, and hence it is a
covariance matrix. Therefore, one can also randomly sample neighboring points 𝑥′ near the
found optimal solution of relaxation (3.86):

𝑥′ ∼ 𝒩 (𝑥,X− 𝑥𝑥T), (3.87)

and then perform rounding procedure (3.72).
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Chapter 4

Results and Discussion

4.1 Protein quality assessment

We measured the performance of the SBROD method on the very recent CASP11 Stage1 and
CASP11 Stage2 datasets (Moult et al., 2016). We downloaded CASP11 Stage1 and Stage2
server prediction datasets from the official CASP website at http://predictioncenter.
org/download_area/CASP11 and merged them with the published target structures. As
a result, we obtained 84 and 83 sets of model structures with the corresponding target
structures (84 and 83 domains) for CASP11 Stage1 and CASP11 Stage2 sets, respectively.
The actual GDT-TS were computed using the TM-score utility by Zhang and Skolnick (2007).

Being trained on the CASP[5-10] datasets (Moult et al., 2003, 2005, 2007, 2009, 2011,
2014), the SBROD method proved to have the performance close to state-of-the-art QA
methods when testing on the CASP11 dataset (Moult et al., 2016).

To compare the performance of the SBROD scoring function and other protein QA met-
hods, for each QA method 𝑆, we evaluate the predicted scores 𝑆(𝑃 ) ∈ R of each model in
each decoy domain 𝒟 from the test set, and then estimate the four different performance
measures for each decoy domain 𝒟 and corresponding native structure 𝑃 :

∙ the score loss

Loss(𝑃,𝒟;𝑆) =

⃒⃒⃒⃒
max
𝑃 ′∈𝒟

𝑆*
GDT-TS(𝑃 ′, 𝑃 )− 𝑆*

GDT-TS(arg max
𝑃 ′∈𝒟

𝑆(𝑃 ′), 𝑃 )

⃒⃒⃒⃒
, (4.1)

∙ Pearson correlation coefficient between predicted scores 𝑆(𝑃 ′) of the decoy models from
the domain 𝒟 and the actual scores 𝑆*

GDT-TS(𝑃 ′, 𝑃 ),

∙ Spearman’s rank correlation coefficient — Pearson correlation coefficient between ranks
of scores rg𝑆(𝑃 ′) and rg𝑆*

GDT-TS(𝑃 ′, 𝑃 ), 𝑃 ′ ∈ 𝒟,

∙ Kendall rank correlation coefficient.

Finally, we calculate the average of the estimated performance measures over all the decoy
domains in the test set.
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4.1.1 Dependence on smoothness

To measure the dependence on the level of smoothing in the feature extraction procedure,
we trained distinct SBROD scoring function on the CASP[5-9] datasets using the feature
generation procedure described above, without smoothing: 𝜎𝑎 = 𝜎𝑟 = 𝜎ℎ = 𝜎𝑠 = 0. Then,
we estimated the performance of this trained scoring function on the validation set CASP10
(Stage1 and Stage2 together), with different levels of smoothing in the feature extraction
procedure, changing the parameters of truncated Gaussian kernels 𝜎𝑎, 𝜎𝑟, 𝜎ℎ, 𝜎𝑠. The results
are shown in figure 4-1. One can see that the use of the smoothing technique described above
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Figure 4-1: The Performance of SBROD on CASP10 dataset (stage1 and stage2 together) for
different parameters of smoothing 𝜎𝑎 = 𝜎𝑟 = 𝜎ℎ = 𝜎𝑠 = 𝜎 being trained on the CASP[5-9]
datasets using features without smoothing (𝜎 = 0)

improves the performance of the scoring potential. The optimal parameter of smoothing
according to all the performance measures appeared to be 𝜎 = 0.1866. This value was used
in all further experiments on the test sets CASP11 Stage1 and Stage2.

4.1.2 Performance comparison

To compare the performance of the proposed SBROD scoring function and nine state-of-
the-art protein QA methods, we used the results obtained by Cao and Cheng (2016). They
measured the performance of the QA methods using SCWRL4 (Krivov et al., 2009) (as they
stated in a private correspondence) for preprocessing and GDT-TS computed by the LGA
utility (Zemla, 2003). As the LGA utility (Zemla, 2003) is not an open-source product but
the TM-score utility (Zhang and Skolnick, 2007) is, we have been using the latter. Neverthe-
less, SBROD is not sensible to side-chains packing and hence to preprocessing by SCWRL4
as well, and the difference between the GDT-TS computed by the TM-score utility (Zhang
and Skolnick, 2007) and the LGA utility (Zemla, 2003) is negligible. Therefore, the measu-
rements estimated by Cao and Cheng (2016) are consistent, and they are comparable to the
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Table 4.1: Performance on CASP11 Stage1 dataset

QA Method GDT-TS loss Pearson Spearman Kendall
SBROD (this study) 0.083 0.645 0.522 0.388
ProQ2 0.090 0.643 0.506 0.379
ProQ2-refine 0.093 0.653 0.535 0.402
Qprob 0.097 0.631 0.517 0.389
ModelEvaluator 0.097 0.600 0.470 0.353
VoroMQA 0.108 0.561 0.426 0.318
Wang-SVM 0.109 0.655 0.535 0.401
Dope 0.111 0.542 0.416 0.316
SBROD (regression) 0.124 0.568 0.441 0.323
RWplus 0.135 0.536 0.433 0.433
RF_CB_SRS_OD 0.162 0.486 0.357 0.357

Table 4.2: Performance on CASP11 Stage2 dataset

QA Method GDT-TS loss Pearson Spearman Kendall
SBROD (this study) 0.057 0.441 0.426 0.298
ProQ2 0.058 0.372 0.366 0.256
Qprob 0.068 0.381 0.387 0.272
VoroMQA 0.069 0.401 0.386 0.269
ProQ2-refine 0.069 0.370 0.375 0.264
ModelEvaluator 0.072 0.324 0.305 0.212
SBROD (regression) 0.074 0.385 0.365 0.255
Dope 0.077 0.304 0.324 0.228
RWplus 0.084 0.295 0.314 0.220
Wang-SVM 0.085 0.362 0.351 0.245
RF_CB_SRS_OD 0.097 0.360 0.350 0.243

performance of the SBROD scoring function measured as described above.
Tables 4.1 and 4.2 list the performance measures computed for the SBROD scoring

function (ranking and regression modifications, see section 3.2.2, in combination with the
smooth feature extraction procedure, when 𝜎𝑎 = 𝜎𝑟 = 𝜎ℎ = 𝜎𝑠 = 0.1866) and for nine
other state-of-the-art methods on CASP11 Stage 1 dataset. It can be seen that our method
outperforms these state-of-the-art methods on both stages of the CASP11 experiment.

We have also tested the performance of the SBROD scoring and compared it with other
QA methods on the MOULDER dataset (Saven, 2013). The results are listed in table 1
Taking into account that other methods were developed to predict the RMSD similarity, we
have also tested the performance with the RMSD similarity as the target quality function 2.
One can see that on all the investigated datasets (see tables 4.1, 4.2, 1, 2) the proposed QA
method SBROD provides the quality comparable to the state-of-the-art methods.

To calculate individual contributions for all the four groups of features, we set to zero all
the trained weights 𝑤𝑖 (see formula (3.28)) corresponding to feature groups that are not under
consideration (see formula (3.26)) and estimated the quality measures on the CASP11 Stage2
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Table 4.3: Contribution to the performance for different feature groups on CASP11 Stage2
dataset. Parameters of smoothing 𝜎𝑎 = 𝜎𝑟 = 𝜎ℎ = 𝜎𝑠 = 0.1866

Feature groups GDT-TS loss Pearson Spearman Kendall
All features 0.057 0.441 0.426 0.298
Atomic pairwise 0.069 0.344 0.327 0.224
Residue pairwise 0.078 0.380 0.365 0.253
Solvation shell 0.107 0.267 0.271 0.189
Hydrogen bonds 0.112 0.142 0.126 0.089

test set. Then, we repeated a similar procedure for the other three feature groups. The results
are listed in table 4.3. It can be observed from table 4.3 that features corresponding to the
atomic backbone representation contribute to the quality of picking the best available model
the most. However, features representing pairs of protein residues as rigid frames provide
the best correlation performance. Note that knowledge of only the solvation shell without
interior protein conformation gives significant prediction quality. Weights corresponding to
the hydrogen bonds features provide very poor prediction ability. This might be the case
because the information about the hydrogen bonds is already included in other features and
can be inferred from the residue pairwise representation. Finally, one can see that usage of
all the proposed features provides a significant gain in quality compared to the usage of each
feature extraction procedure individually.

4.2 Rotamer prediction

In this computational experiment, we compared different methods for solving the rotamer
prediction problem (3.32). More precisely, we compared greedy search algorithm 3.5.1, si-
mulated annealing 3.5.3 with 5 · 105 iterations, continuous relaxation (3.71), Lagrangian
relaxation (3.82) (to find a lower bound on the optimal value), semidefinite relaxation (3.86)
with sampling of 5 · 105 random approximations near the optimal solution of the relaxation.
We also used the greedy search algorithm to improve approximate solutions found by con-
tinuous and semidefinite relaxations. To solve numerically relaxation problems, Splitting
Conic Solver (SCS) (O’Donoghue et al., 2016) with the CVXPY interface (Diamond and
Boyd, 2016) was used with tolerance parameter eps = 10−4.

In this section, we show the results for solving the rotamer prediction optimization pro-
blem, where a model of the force field proposed by Miao et al. (2011) was used.

4.2.1 Data description

To compile the dataset, 40 first protein structures from the test set of SCWRL4 (Krivov et al.,
2009) were used. The backbone-dependent rotamer library (Shapovalov and Dunbrack, 2011)
was used to define the rotamer space (see definition (1.3)) reducing the continuous set of side
chain conformations to a discrete set of rotamers. For each pair of amino acids in a protein,
the five most probable according to the rotamer library rotamers were altered, and the total
energy was calculated using the forcefield proposed by Miao et al. (2011). Then, the pairwise
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energy terms were turned into symmetric matrices (3.61) (of sparsity about 99%), and the
obtained matrices were truncated to the maximum matrix size of 700× 700 to simplify the
numerical experiments.

4.2.2 Optimization results

Figure 4-2 shows the overall summary for all the discussed methods. One can see that
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Figure 4-2: Upper and lower bounds on the optimum value of the rotamer prediction opti-
mization problem when solving by different methods

semidefinite relaxation provides the best lower bound on the optimal value of energy, while
the lower bound provided by continuous relaxation appears to be extremely poor. The lower
bound provided by the Lagrangian relaxation appears to be not that good as one provided
by the semidefinite relaxation, which is quite close to the upper bounds found by other
algorithms.

Figure 4-3 shows histograms for the normalized (divided by the lower bound provided by
the semidefinite relaxation) approximate optimal values of the rotamer prediction problem
obtained by algorithms of greedy optimization, simulated annealing, continuous relaxation
and semidefinite relaxation followed by rounding procedure (3.72), and continuous and se-
midefinite relaxations improved by greedy search after the rounding procedure.

Figure 4-4 shows box plots depicting the normalized approximate optimal values obtai-
ned by the optimization algorithms considered. The depicted box plots consist of box and
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Figure 4-3: Histograms with smoothed curves accumulated for 40 proteins in the dataset for
normalized approximate optimal values obtained by different optimization methods

whisker plots. Each box has the bottom and the top at the first and the third quartiles,
with the median band inside. Whiskers are plotted to include the data that are still within
1.5IQR from the lower and upper quartile correspondingly, where IQR = 𝑄3 − 𝑄1 is the
interquartile range. Beyond the whiskers, points are considered outliers and marked as indi-
vidual circles. One can see that rounded approximate solution of the continuous relaxation
is the worst solution of the initial problem compared to other methods considered. However,
the greedy search algorithm improves it significantly, while usage of just the greedy search
algorithm does not lead to the same level of quality. The figure shows that simulated annea-
ling in combination with the greedy search algorithm and semidefinite relaxation followed by
sampling and rounding procedures (3.87) and (3.72) achieve the best approximate optimal
values, which are very close disregarding few outliers. One can see that greedy search almost
does not improve the approximate optimal solutions found by the semidefinite relaxation.
This makes SDP the most robust and preferable among the methods considered. Note that
normalized quality below �̂�

|𝐿SDP|
= 1 is actually impossible and such bugs depicted in figu-

res 4-3 and 4-4 are caused by the modest accuracy of the SCS solver (O’Donoghue et al.,
2016) that was used to solve numerically the semidefinite relaxation and to find the lower
bound on the optimal value.

Figures -3 and -4 in the appendix show individual results for quality and execution time.

4.3 Protein design

The experiment for protein design was conducted on all 352 protein structures from the
test set of SCWRL4 (Krivov et al., 2009). We tested the same optimization algorithms
using the same computational environment as when conducting the experiment for rotamer
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Figure 4-4: Box plots for 40 proteins in the dataset for normalized approximate optimal
values obtained by different optimization methods

prediction (see section 4.2). The DFIRE-C𝛼 (Zhang et al., 2004) energy function was used
as a coarse-grained potential (3.44). This potential requires only positions of C𝛼 atoms when
calculating the energy of atomic pairwise interactions. Due to the high dimension of arising
BQP problem (3.66), we restricted the length of predicted protein sequences to make the
computational experiments feasible. The matrices Q were truncated to the maximum size
of 20𝑚× 20𝑚, where the parameter of the sequence length 𝑚 was variated from 5 to 30.

4.3.1 Optimization results

We variated the maximal lengths of the predicted protein sequences and measured the qua-
lity of approximate optimal values found along with the execution time. This experiment
was repeated 352 times for each protein structure in the dataset and then results were
averaged for each value of the fixed maximal length. We measured the quality using two
metrics. As the first quality criterion, we used the approximate optimum value found by
different optimization methods, that is, the upper bound on the actual optimal value for
BQP problem (3.66).

Figure 4-5 shows the upper bounds on the optimal energy for different lengths of proteins
averaged over 352 runs, for all structures in the dataset. One can see that the continuous
relaxation followed by rounding procedure (3.72) provides the worst approximate solution
among all the methods in test. Then, greedy search and continuous relaxation followed by
the rounding procedure and greedy search show slightly worse results compared to the rest
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Figure 4-5: Upper bounds on the optimal value averaged over 352 protein structures in the
dataset depending on the sequence length

methods. One can conclude from figure 4-5 that the obtained protein design problems are
easy to solve since almost all the tested methods provide approximately the same upper
bounds. This outcome might have been caused by the specificity of the forcefield used
(DFIRE-C𝛼 by Zhang et al. (2004)) as it encourages appearing of the Cysteine bridges
making the optimal protein sequence to consist of only Cys amino acids.

Figure 4-6 shows average number of common amino acids for the corresponding positi-
ons in predicted and the native protein sequences:

∑︀𝑚
𝑖=1 1[𝑎𝑖 = �̂�𝑖], where �̂� ∈ 𝒜𝑚 is the

predicted sequence, 𝑎 ∈ 𝒜𝑚 is the native sequence. The figure confirms unworthiness of sco-
ring potential DFIRE-C𝛼 for the protein design problem as the precision for the predicted
sequences is about 0.03, which is worse than for random guessing. Also, note that the best
continuous relaxation shows the best precision whereas it provides the worst approximate
solution when comparing the approximate optimum values.

The discussed results appeal to further development of scoring potentials tuned specifi-
cally for the protein design problem. As long as the proposed regression modification of the
SBROD scoring function was trained to predict GDT-TS of protein backbone structures, it
potentially could be applied to the protein design problem instead of basic coarse-grained
energy potentials such as DFIRE-C𝛼. However, such experiments go out of the scope of the
current thesis project.

Figures -5 and -6 in the appendix show the quality and execution time for protein design
on each individual protein structure truncated to the maximum length 𝑚 = 30. For the sake
of compactness, only results for first 80 protein structures in the dataset are presented.
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Figure 4-6: Average ratio of correctly predicted amino acids for different protein lengths

4.3.2 Energy correction

The computational experiment conducted by Riazanov et al. (2016) revealed that for almost
all input backbones, optimal solutions of the protein design problem with C𝛼-C𝛼 poten-
tial (Rajgaria et al., 2006) are sequences that consist entirely of amino acids Cys and Tyr.
This finding is rather expected yet undesirable as we discussed in section 2.3. To overcome
this issue, we introduced energy correction terms (3.52) that make amino acids of diffe-
rent types more evenly distributed along the sequences predicted. To determine introduced
energy corrections (3.52), the parameters 𝑝𝑎 and 𝜎𝑎 for amino acids 𝑎 ∈ 𝒜 were defined for
simplicity as follows: 𝑝𝑎 = 1

|𝒜| , 𝜎𝑎 = 1 ∀𝑎 ∈ 𝒜.
Figures -7 and -8 in appendix show frequencies for occurrences of amino acids Cys and Glu

in predicted sequences depending on the temperature factor 𝛽 = 1
𝑇

(see formula (3.47)). It
can be seen from the figures that when temperature 𝑇 = 1

𝛽
is low (𝛽 close to 1) the predicted

protein sequences consist of mostly the Cys amino acids (the distribution is concentrated
near 0.8-1.0). On the contrary, there are almost no Glu amino acids in sequences predicted
when the energy corrections are small (low temperature). One can conclude from figures -7
and -8 that the frequencies of occurrence for amino acids becomes more evenly distributed
and their mean values are shifted close to 𝑝𝑎 = 1

|𝒜| = 1
20

when increasing the temperature 𝑇 .
Figure -9 in the appendix shows mutation of frequencies for each amino acid type depending
on the temperature factor 𝛽 = 1

𝑇
.
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Chapter 5

Conclusions

In this thesis project, we investigated the main and the most challenging problems of com-
putational biology: protein folding, side chain prediction, and protein design.

The physical nature of protein design makes this problem hard to devise computational
techniques for solving it without involving biochemical experiments since the predicted se-
quences are usually new and their tertiary structures are not yet discovered. However, the
performance of computational techniques for protein design can be estimated approximately
by testing foldings of the sequences found. This makes the protein folding problem essential
for the development of the computational tools for protein design.

We proposed a novel method for protein quality assessment that is a crucial part of
methods for protein folding. The proposed method is computationally efficient, and it uses
only structural features, what makes its corresponding scoring function smooth. Performed
computational experiment and comparison with other state-of-the-art methods for protein
quality assessment proved the proposed QA method to achieve the state-of-the-art quality.

The regression modification of the proposed quality assessment method can be potentially
applied for solving protein design problem, and this can be a direction for further research.

The proposed QA methods provide pairwise decomposable scoring functions, which ena-
ble the reduction of the initial problem to the problem of boolean quadratic programming
(BQP). Note that for any energy function the arising problems of discrete optimization can
be represented as problems of boolean polynomial programming and then be reduced to the
boolean quadratic programming. However, this reduction makes the eventual BQP problem
of huge dimension and impossible to solve using current computational facilities. This fact
makes the proposed scoring function that includes only terms corresponding to pairwise inte-
ractions between amino acids especially important for considered problems of computational
biology.

We analyzed the techniques for relaxing the arising NP-hard BQP problems into problems
of convex optimization and compared them to other methods for combinatorial optimiza-
tion: greedy search and simulated annealing algorithms. We introduced additional linear
constraint to the semidefinite relaxation that tightened the search space and sustained that
performing the computational experiment. Lower bounds provided by SDP relaxation can
be used by other algorithms for discrete optimization but the computational cost remains
dramatic. It appeals for further development and advances in computational techniques for
convex optimization.
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Besides that, we proposed pairwise energy correction terms that regulate the contribution
of an energy function used to diversify occurrence of different amino acids in the sequences
predicted minimizing the total energy of the structure for protein design problem. The
performed computational experiment confirmed theoretical assumptions.
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Appendix

Proof of Lemma 3.4.1

− log 𝑝(𝑎|𝑏0) = − log 𝑝(𝑏0|𝑎)− log 𝑝(𝑎) + const = (1)
(3.47)
(3.50)
=

𝐸(𝑎, 𝑏0)

𝑇
−
∑︁
𝑎∈𝒜

log𝒩
(︀
𝑚𝑎| 𝑚𝑝𝑎,𝑚𝜎2

𝑎

)︀
+ const = (2)

=
𝐸(𝑎, 𝑏0)

𝑇
+
∑︁
𝑎∈𝒜

(𝑚𝑎 −𝑚𝑝𝑎)
2

2𝑚𝜎2
𝑎

+ const . (3)

Let us consider the sum over all amino acid types separately.

∑︁
𝑎∈𝒜

(𝑚𝑎 −𝑚𝑝𝑎)
2

2𝑚𝜎2
𝑎

=
∑︁
𝑎∈𝒜

1

2𝑚𝜎2
𝑎

(︃
𝑚∑︁
𝑖=1

(1[𝑎𝑖 = 𝑎]− 𝑝𝑎)

)︃2

= (4)

=
∑︁
𝑎∈𝒜

1

2𝑚𝜎2
𝑎

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

(1[𝑎𝑘 = 𝑎]− 𝑝𝑎) (1[𝑎𝑙 = 𝑎]− 𝑝𝑎) = (5)

=
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

∑︁
𝑎∈𝒜

1

2𝑚𝜎2
𝑎

(1[𝑎𝑘 = 𝑎]− 𝑝𝑎) (1[𝑎𝑙 = 𝑎]− 𝑝𝑎)⏟  ⏞  
𝑀(𝑎𝑘,𝑎𝑙)

. (6)

Then,

𝑀(𝑎𝑘, 𝑎𝑙) =
∑︁
𝑎∈𝒜

1

2𝑚𝜎2
𝑎

(1[𝑎𝑘 = 𝑎]− 𝑝𝑎) (1[𝑎𝑙 = 𝑎]− 𝑝𝑎) = (7)

=
∑︁
𝑎∈𝒜

1

2𝑚𝜎2
𝑎

(︀
1[𝑎𝑘 = 𝑎]1[𝑎𝑙 = 𝑎] + 𝑝2𝑎

)︀
− 𝑝𝑎𝑘

2𝑚𝜎2
𝑎𝑘

− 𝑝𝑎𝑙
2𝑚𝜎2

𝑎𝑙

= (8)

=
∑︁
𝑎∈𝒜

𝑝2𝑎
2𝑚𝜎2

𝑎

+
∑︁
𝑎∈𝒜

1

2𝑚𝜎2
𝑎

1[𝑎𝑘 = 𝑎]1[𝑎𝑙 = 𝑎]− 𝑝𝑎𝑘
2𝑚𝜎2

𝑎𝑘

− 𝑝𝑎𝑙
2𝑚𝜎2

𝑎𝑙

= (9)

=
1[𝑎𝑘 = 𝑎𝑙]

2𝑚𝜎2
𝑎𝑘

− 𝑝𝑎𝑘
2𝑚𝜎2

𝑎𝑘

− 𝑝𝑎𝑙
2𝑚𝜎2

𝑎𝑙

+ const . (10)

Therefore, energy corrections 𝐸 ′
𝑘𝑙(𝑎𝑘, 𝑎𝑙) defined by (3.52) make problem (3.53) equivalent
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to problem (3.46). This makes clear from continuing derivation (3):

− log 𝑝(𝑎|𝑏0)

(3)
(6)
(10)
=

𝐸(𝑎, 𝑏0)

𝑇
+

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

[︂
1[𝑎𝑘 = 𝑎𝑙]

2𝑚𝜎2
𝑎𝑘

− 𝑝𝑎𝑘
2𝑚𝜎2

𝑎𝑘

− 𝑝𝑎𝑙
2𝑚𝜎2

𝑎𝑙

]︂
+ const = (11)

(3.52)
=

𝐸(𝑎, 𝑏0)

𝑇
+

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸 ′
𝑘𝑙(𝑎𝑘, 𝑎𝑙)

𝑇
+ const ∝ (12)

∝ 𝐸(𝑎, 𝑏0) +
𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸 ′
𝑘𝑙(𝑎𝑘, 𝑎𝑙) + const = (13)

(3.51)
=

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

[𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙) + 𝐸 ′
𝑘𝑙(𝑎𝑘, 𝑎𝑙)] + const . (14)
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Table 1: Performance on the MOULDER dataset. The SBROD scoring function is trained
on the CASP[5-11] datasets. The metrics are calculated with the GDT-TS as a target scoring
function. Results are sorted by Pearson correlation

QA Method GDT-TS loss Pearson Spearman Kendall
SVM_SCORE 0.023 0.938 0.935 0.778
SBROD (this study) 0.041 0.927 0.920 0.755
Native_Overlap_3.5 0.008 0.922 0.922 0.781
PSIPRED_WEIGHT 0.040 0.919 0.910 0.738
PSIPRED_PERCENT 0.050 0.910 0.900 0.723
PROSA_COMB 0.040 0.889 0.900 0.723
MODCHECK 0.052 0.888 0.887 0.708
DOPE_AA 0.034 0.887 0.909 0.743
MP_COMBI 0.050 0.879 0.889 0.708
PROSA_SURF 0.065 0.873 0.873 0.692
ROSETTA 0.042 0.868 0.878 0.694
MP_SURF 0.071 0.855 0.864 0.677
RWplus 0.055 0.847 0.871 0.696
DFIRE 0.040 0.846 0.883 0.709
Xd 0.077 0.838 0.835 0.656
GA341 0.076 0.838 0.913 0.741
SOLVX 0.100 0.815 0.810 0.614
PROSA_PAIR 0.070 0.799 0.818 0.626
DOPE_BB 0.053 0.798 0.826 0.634
MP_PAIR 0.080 0.793 0.812 0.615
FRST 0.100 0.761 0.773 0.588
Anolea_PUC 0.123 0.682 0.667 0.484
Anolea_Z 0.097 0.592 0.645 0.457
GB 0.056 0.584 0.794 0.609
EEF1 0.054 0.535 0.791 0.605
SIFT 0.220 0.226 0.275 0.187
Anolea_PE 0.453 0.093 0.127 0.091
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Table 2: Performance on the MOULDER dataset. The SBROD scoring function is trained
on the CASP[5-11] datasets. The metrics are calculated with the RMSD as a target scoring
function. Results are sorted by Pearson correlation

QA Method GDT-TS loss Pearson Spearman Kendall
Native_Overlap_3.5 0.099 0.901 0.905 0.751
SVM_SCORE 0.601 0.874 0.881 0.696
DOPE_AA 0.675 0.870 0.872 0.690
SBROD (this study) 0.890 0.866 0.868 0.682
PSIPRED_WEIGHT 0.792 0.858 0.865 0.672
PSIPRED_PERCENT 0.919 0.847 0.855 0.661
DFIRE 0.692 0.847 0.859 0.677
ROSETTA 0.868 0.846 0.843 0.652
RWplus 1.272 0.846 0.852 0.670
PROSA_COMB 0.844 0.835 0.839 0.648
MP_COMBI 1.231 0.816 0.823 0.627
MODCHECK 1.045 0.806 0.827 0.634
PROSA_SURF 1.045 0.803 0.819 0.629
MP_SURF 1.811 0.783 0.809 0.615
DOPE_BB 1.119 0.783 0.787 0.589
GA341 1.604 0.768 0.849 0.654
SOLVX 2.431 0.753 0.762 0.566
Xd 1.741 0.753 0.770 0.585
PROSA_PAIR 1.961 0.748 0.752 0.560
MP_PAIR 1.770 0.730 0.739 0.544
FRST 2.081 0.693 0.699 0.515
Anolea_PUC 2.368 0.673 0.645 0.462
GB 1.562 0.620 0.751 0.562
Anolea_Z 1.903 0.588 0.615 0.433
EEF1 1.386 0.577 0.758 0.567
SIFT 6.052 0.203 0.257 0.175
Anolea_PE 10.748 0.136 0.159 0.115
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Figure -3: The quality of solving the rotamer prediction problem by different algorithms on
truncated matrices of size 700× 700. The quality is measured as approximate optimal value
divided by the lower bound on the approximate value found by the SDP relaxation
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Figure -7: The occurrence frequency of amino acid Cys in the predicted sequences depending
on the temperature factor 𝛽 = 1

𝑇
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Figure -8: The occurrence frequency of amino acid Glu in the predicted sequences depending
on the temperature factor 𝛽 = 1
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