My first scientific paper Week 5 Highlight the principles

Vadim Strijov

Moscow Institute of Physics and Technology

2021

Задачи структурной биологии для белков длины m

 $\mathcal{A} = \{\mathsf{Ala}, \mathsf{Arg}, \mathsf{Asn}, \mathsf{Asp}, \mathsf{Cys}, \mathsf{Glu}, \mathsf{Gln}, \mathsf{Gly}, \mathsf{His}, \dots, \mathsf{Trp}, \mathsf{Tyr}, \mathsf{Val}\}$

$$Cys = \underbrace{[N, C_{\alpha}, C, H, O]}_{CKEЛЕТНАЯ ЧАСТЬ}, \underbrace{H_{\alpha}, C_{\beta}, H_{\beta_{1}}, H_{\beta_{2}}, S_{\gamma}, H_{\gamma}]}_{\text{боковая цель}}$$

$$S_{b} = \mathbb{R}^{3 \times 3}, \underbrace{K_{a} = \mathcal{R}^{3 \times 3}}_{CKEЛЕТНАЯ (C, \beta)}, \underbrace{K_{a} = \mathcal{R}^{3 \times 3}}_{CKE}, \underbrace{K_{a} = \mathcal{R}^{3 \times 3}}_{C$$

Условие согласованности прогнозов

 $x_t(:,:) = \sum_{i=1}^n x_t(i,:);$ $x_t(:,:) = \sum_{i=1}^m x_t(:,j);$ $x_t(i,:) = \sum_{j=1}^m x_t(i,j),$ i = 1, ..., n; $x_t(:,j) = \sum_{i=1}^{n} x_t(i,j),$ j = 1, ..., m; $t = 1, \ldots, T$. x 10⁴ $\mathbf{x}(i, j), \text{tons}$

01 - 2007

01 - 2008

Dav

Структура решения

Описание молекулярной химической связи

В данной работе исследуются взаимные пространственные ориентации различных пар молекул, образующих между собой химическую связь. Эта связь характеризуется тремя параметрами:

- r расстояние между молекулами, $r \in [3Å, 20Å];$
- (θ, φ) пара сферических углов, определяющих положение лиганда в системе координат аминокислоты, *theta* $\in [0, \pi], \varphi \in [0, 2\pi].$

Представление выборки для пары ALA-C_{ar}

4 / 18

20 10

+10

20

z

Декодируемые сигналы электрокортикограммы

- Сигналы $\mathbf{s}(t) \in \mathbb{R}^{N_{\mathsf{ch}}}$. N_{ch} число электродов
- $m{\bullet}$ Координаты электродов $m{\mathsf{Z}} = \left\{ (m{\mathsf{z}}_j \in \mathbb{R}^2, j \in \{1 \dots, N_{ch}\}
 ight\}$
- Положение кисти в пространстве $\mathbf{y}(t) \in \mathbb{R}^3$

Chao ZC, Nagasaka Y, Fujii N (2010). "Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys."Frontiers in Neuroengineering 3:3.

Банк тем: сохранение интерпретируемых тем

Банк тем — модель полного набора тем: таких тем, которые

- 1) интерпретируемы,
- существенно различны,
- 3) обеспечивают высокое правдоподобие модели p(Ф, ⊖ | D).

Построение банка тем

Аналогично построению двухуровневой иерархической тематической модели:

На рисунке представлен временной ряд и проекция его фазовой траектории в трехмерное пространство. $\mathbf{x}_t = \mathbf{x}(t)$ – точка на фазовой траектории в момент времени t.

Постановка задачи кластеризации точек.

Сегмент — последовательность точек временного ряда, которая относится к одному характерному физическому действию человека: шаг, прыжок. Цепь — последовательность сегментов, которые образуют квазипериодическую последовательность точек.

а) временной ряда разбитый на сегменты; b) проекции на плоскость фазовых траекторий временного ряда, которые относятся к Туре 1 и Туре 2.

Пространство параметров

Рис.: изолированные оптимумы

Рис.: не изолированные оптимумы

¹https://arxiv.org/pdf/1802.10026.pdf

Ближайшие соседи на фазовых траекториях

Empirical distribution of model parameters

The value of error function $S(\mathbf{w}|\mathfrak{D}, f)$ depends on parameters.

Kuznetsov, Tokmakova, Strijov. 2016. Analytic methods of structure parameter // Informatica

Probabilistic model selection

Bayesian inference delivers the error function $S(\mathbf{w})$

Posterior likelihood Prior

$$p(w|\mathfrak{D}, A, B, f) = \frac{p(\mathfrak{D}|w, B, f)p(w|A, f)}{p(\mathfrak{D}|A, B, f)}$$

Evidence
(bo select a model)

Write the error function given hyperparameters $\boldsymbol{\mathsf{A}}, \boldsymbol{\mathsf{B}}$

$$S(\mathbf{w}) = \underbrace{\frac{1}{2}(\mathbf{y} - \mathbf{f})^{\mathsf{T}} \mathbf{B}(\mathbf{y} - \mathbf{f})}_{\text{approximation error}} + \underbrace{\frac{1}{2}(\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \mathbf{A}(\mathbf{w} - \hat{\mathbf{w}})}_{\text{regularisation error}},$$
$$S = E_{D} + E_{\mathbf{w}} = \lambda^{\mathsf{T}} \mathbf{s}, \quad \text{metaparameters } \lambda = \frac{1}{2}.$$

Evidence of the model

depends on both, error E_D (likelihood) and regularisation E_w (prior).

Parameters w, variance α^{-2} , and $p(w|\mathfrak{D}, \alpha)$ is the evidence.

- Error and its variance for a reinforced sample set

Variance of error increasing over model complexity

Гипотеза порождения данных для линейной модели

Пусть $\mathbb{E}(\mathbf{y}|X) = \mathbf{f}$ и многомерная случайная величина имеет нормальное распределение

$$p(\mathbf{y}) = (2\pi)^{-\frac{m}{2}} \det^{-\frac{1}{2}} \left(B^{-1} \right) \exp \left(-\frac{1}{2} (\mathbf{y} - \mathbf{f})^T B(\mathbf{y} - \mathbf{f}) \right).$$

Рассмотрим три варианта. Элементы вектора у имеют

1) одинаковую дисперсию и независимы, $\mathsf{Cov}(\mathbf{y}_i, \mathbf{y}_l) = 0, i \neq l$,

$$\mathbf{y} \sim \mathcal{N}(\mathbf{f}, \beta^{-1} \mathbf{I}),$$

имеют различную дисперсию и независимы,

$$\mathbf{y} \sim \mathcal{N}(\mathbf{f}, \operatorname{diag}(\beta_1, \dots, \beta_m)^{-1} I)$$

3) описываются ковариационной матрицей общего вида,

$$\mathbf{y} \sim \mathcal{N}(\mathbf{f}, B^{-1});$$

эта матрица симметрична и положительно определена.

Функция правдоподобия данных

Функция вероятности появления зависимой переменной имеет вид

$$p(\mathbf{y}|\mathbf{x},\mathbf{w},B,f) \stackrel{\mathrm{def}}{=} p(D|\mathbf{w},eta,f) = rac{\exp(-E_D)}{Z_D(B)}.$$

Функция ошибки, соответствующая математическому ожиданию регрессионной модели при данной гипотезе, определена как

$$E_D = \frac{1}{2} (\mathbf{y} - \mathbf{f})^T B (\mathbf{y} - \mathbf{f}).$$

Коэффициент Z_D определен выражением, нормирующим функцию плотности нормального распределения

$$Z_D(B) = (2\pi)^{\frac{m}{2}} \det^{\frac{1}{2}}(B^{-1})$$
.

Функция правдоподобия данных при $B = \beta I$

Для гомоскедаксичного случая функция ошибки равна

$$E_D = \frac{1}{2}\beta \sum_{i\in\mathcal{I}} (y_i - f(\mathbf{w}, \mathbf{x}_i))^2,$$

а нормирующий множитель

$$Z_D(\beta) = \left(\frac{2\pi}{\beta}\right)^{\frac{m}{2}}$$

Априорное (sic!) распределение параметров модели

Из принятой гипотезы порождения данных следует нормальность распределения параметров, $\mathbf{w} \sim \mathcal{N}(\mathbf{w_0}, A^{-1})$:

$$p(\mathbf{w}|A, f) = \frac{\exp(-E_{\mathbf{w}})}{Z_{\mathbf{w}}(A)}.$$

Функция-штраф за большое значение параметров модели для принятого распределения определена как

$$E_{\mathbf{w}} = rac{1}{2} (\mathbf{w} - \mathbf{w}_0)^T A(\mathbf{w} - \mathbf{w}_0).$$

Нормирующая константа Z_w равна

$$Z_{\mathbf{w}}(A) = (2\pi)^{\frac{n}{2}} \det^{\frac{1}{2}}(A^{-1}).$$

При равенстве дисперсий элементов вектора параметров

$$Z_{\mathbf{w}}(\alpha) = \left(\frac{2\pi}{\alpha}\right)^{\frac{m}{2}}$$
 is $E_{\mathbf{w}} = \frac{1}{2}\alpha \|\mathbf{w}\|^2.$

Байесовский вывод, первый уровень

Апостериорное распределение параметров модели для заданных матриц *A*, *B* имеет вид

$$p(\mathbf{w}|D,A,B,f) = \frac{p(D|\mathbf{w},B,f)p(\mathbf{w}|A,f)}{p(D|A,B,f)}.$$

Элементы этого выражения и соответствующие им параметры:

- $p(\mathbf{w}|D, A, B, f)$ апостериорное распределение параметров,
- $\mathbf{w}_{MP} = \arg \max p(\mathbf{w}|D, A, B, f)$ наиболее вероятные параметры,
- $p(D|\mathbf{w}, B, f) функция правдоподобия данных,$
- $\mathbf{w}_{ML} = \arg \max p(D|\mathbf{w}, B, f)$ наиболее правдоподобные параметры,
- $p(\mathbf{w}|A, f)$ априорное распределение параметров,
- p(D|A, B, f) функция правдоподобия модели.

Апостериорное распределение параметров, частный случай

Апостериорное распределение параметров модели для заданных матриц *A*, *B*

$$p(\mathbf{w}|D,A,B,f) = \frac{p(D|\mathbf{w},B,f)p(\mathbf{w}|A,f)}{p(D|A,B,f)}.$$

Записывая функцию ошибки $S = E_{w} + E_{D}$ в виде

$$S(\mathbf{w}) = \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^T A(\mathbf{w} - \mathbf{w}_0) + \frac{1}{2}(\mathbf{y} - \mathbf{f})^T B(\mathbf{y} - \mathbf{f}),$$

получаем вместо вышестоящего выражение

$$p(\mathbf{w}|D, A, B, f) \propto \frac{\exp(-S(\mathbf{w}))}{Z_S},$$

где Z_S — нормирующий множитель.

Апостериорное распределение параметров, частный случай

При рассмотрении частных случаев ковариационных матриц $B = \beta I_m$ и $A = \alpha I_n$ и при $\mathbf{w}_0 = \mathbf{0}$ апостериорное распределение параметров принимает вид

$$p(\mathbf{w}|D,\alpha,\beta,f) = \frac{p(D|\mathbf{w},\beta,f)p(\mathbf{w}|\alpha,f)}{p(D|\alpha,\beta,f)}.$$

а функция ошибки —

$$S(\mathbf{w}) = \frac{1}{2}\alpha \|\mathbf{w}\|^2 + \frac{1}{2}\beta \|\mathbf{y} - \mathbf{f}\|^2.$$

Параметры α и β в последнем выражении играют роль регуляризирующих множителей.

Функция ошибки включает две матрицы ковариации

Согласно первому уровню Байесовского вывода

$$S(\mathbf{w}|D, f) = \frac{1}{2}(\mathbf{w} - \mathbf{w}_{\text{MP}})^{\mathsf{T}}A(\mathbf{w} - \mathbf{w}_{\text{MP}}) + \frac{1}{2}(\mathbf{f} - \mathbf{y})^{\mathsf{T}}B(\mathbf{f} - \mathbf{y}).$$

Имеется девять возможных вариантов гипотезы порождения данных.

Обратная ковариационная матрица параметров зависимой переменной $A = \alpha I_n$ $B = \beta I_m$ $A = \text{diag}(\alpha_1, \dots, \alpha_n)$ $B = \text{diag}(\beta_1, \dots, \beta_m)$ A B

0 $\frac{1}{Z_S}$ 0.4 0.2 0.2 0.4 0 w_2 w_1

