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Learning with binary loss

X
L = {x1, . . . , xL} — a finite universe set of objects;

A = {a1, . . . , aD} — a finite set of classifiers;

I (a, x) = [classifier a makes an error on object x ] — binary loss;

Loss matrix of size L×D, all columns are distinct:
a1 a2 a3 a4 a5 a6 · · · aD

x1 1 1 0 0 0 1 · · · 1 X — observable
. . . 0 0 0 0 1 1 · · · 1 (training) sample
xℓ 0 0 1 0 0 0 · · · 0 of size ℓ

xℓ+1 0 0 0 1 1 1 · · · 0 X̄ — hidden
. . . 0 0 0 1 0 0 · · · 1 (testing) sample
xL 0 1 1 1 1 1 · · · 0 od size k = L − ℓ

n(a) — number of errors of a classifier a on the set X
L;

n(a, X ) — number of errors of a classifier a on a sample X ⊂ X
L;

ν(a, X ) = n(a, X )/|X | — error rate of a on a sample X ⊂ X
L;
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Example. The loss matrix for a set of linear classifiers

1 vector having no errors

no errors

x1 0
x2 0
x3 0
x4 0
x5 0
x6 0
x7 0
x8 0
x9 0
x10 0
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OC-bound and VC-bound

Example. The loss matrix for a set of linear classifiers

1 vector having no errors
5 vectors having 1 error

no errors 1 error

x1 0 1 0 0 0 0
x2 0 0 1 0 0 0
x3 0 0 0 1 0 0
x4 0 0 0 0 1 0
x5 0 0 0 0 0 1
x6 0 0 0 0 0 0
x7 0 0 0 0 0 0
x8 0 0 0 0 0 0
x9 0 0 0 0 0 0
x10 0 0 0 0 0 0
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Example. The loss matrix for a set of linear classifiers

1 vector having no errors
5 vectors having 1 error
8 vectors having 2 errors

no errors 1 error 2 errors

x1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 . . .
x2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 . . .
x3 0 0 0 1 0 0 0 1 1 0 0 0 0 1 . . .
x4 0 0 0 0 1 0 0 0 1 1 0 0 0 0 . . .
x5 0 0 0 0 0 1 0 0 0 1 1 1 0 0 . . .
x6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 . . .
x7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .
x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
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Probability of overfitting

Def. The learning algorithm µ : X 7→ a takes a training
sample X ⊂ X

L and returns a classifier a ≡ µX ∈ A.

Def. Algorithm µ overfits on a given partition X ⊔ X̄ = X
L if

δ(µ,X ) ≡ ν
(
µX , X̄

)
− ν
(
µX , X

)
> ε.

Def. Probability of overfitting

Qε(µ, XL) = P
[
δ(µ,X ) > ε

]
.

Def. Exact bound: Qε = η(ε).

Def. Upper bound: Qε 6 η(ε).
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Weak (permutational) probabilistic assumptions

Axiom

All partitions X
L = {x1, . . . , xL} = X ⊔ X̄ are equiprobable, where

X — observable training sample of size ℓ;
X̄ — hidden testing sample of size k = L − ℓ;

Probability is defined as a fraction of partitions:

Qε = P
[
δ(µ,X ) > ε

]
=

1

C ℓ
L

∑

X ,X̄

X⊔X̄=X
L

[
δ(µ,X ) > ε

]
.

Interpretation: Only independence of observations is postulated.
Continuous measures, infinite sets, and limits |X | → ∞ are illegal.

Nevertheless, tight generalization bounds can be obtained!
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One-classifier bound (OC-bound)

Let A = {a}, m = n(a). Obviously, µX = a for all X ⊂ X
L.

Definition

Hypergeometric distribution function:

PDF: h
ℓ, m
L (s) = P

[
n(a, X )=s

]
=

C s
mC ℓ−s

L−m

C ℓ
L

;

CDF: H
ℓ, m
L (z) = P

[
n(a, X )6z

]
=

⌊z⌋∑

s=0

h
ℓ, m
L (s).

Theorem (exact OC-bound)

For one-classifier set A = {a}, m = n(a), and any ε ∈ (0, 1)

Qε = H
ℓ, m
L (sm(ε)) , sm(ε) = ℓ

L
(m−εk).
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Hypergeometric distribution, PDF h
ℓ, m
L (s) = C s

mC ℓ−s
L−m/C ℓ

L

h(s|m), L=200, k=100      
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Distribution is concentrated along diagonal s ≈ ℓ
L
m, thus allowing

to predict both n(a) = m and n(a, X̄ ) = m−s
k

from n(a, X ) = s.

Law of Large Numbers: ν(a, X ) → ν(a) with ℓ, k → ∞.
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Vapnik-Chervonenkis bound (VC-bound), 1971

For any X
L, A, µ, and ε ∈ (0, 1)

Qε = P
[
ν
(
µX , X̄

)
− ν
(
µX , X

)
> ε
]

6

STEP 1: uniform bound makes the result independent on µ:

6 Q̃ε = P max
a∈A

[
ν
(
a, X̄

)
− ν
(
a, X

)
> ε
]

6

STEP 2: union bound (wich is usually higly overestimated):

6 P
∑

a∈A

[
ν
(
a, X̄

)
− ν
(
a, X

)
> ε
]

=

exact one-classifier bound:

=
∑

a∈A

H
ℓ, m
L (sm(ε)) , m = n(a).
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OC-bound vs. VC-bound

The VC-bound [Vapnik and Chervonenkis, 1971] can be represented
as a sum of OC-bounds over all classifiers a ∈ A:

Theorem (OC-bound)

Qε = H
ℓ, m
L (sm(ε)) , m = n(a).

Theorem (VC-bound)

Qε 6 Q̃ε 6
∑

a∈A

H
ℓ, m
L (sm(ε)) , m = n(a).

VC-bound is highly overestimated because of union bound,
which discards the splitting and similarity properties of A.
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Paradigms of COLT not using union bound

Uniform convergence bounds [Vapnik, Chervonenkis, 1968]

Theory of learnable (PAC-learning) [Valiant, 1982]
Data-dependent bounds [Haussler, 1992]

Concentration inequalities [Talagrand, 1995]

Connected function classes [Sill, 1995]
Similar classifiers VC bounds [Bax, 1997]

Margin based bounds [Bartlett, 1998]
Self-bounding learning algorithms [Freund, 1998]

Rademacher complexity [Koltchinskii, 1998]

Adaptive microchoice bounds [Langford, Blum, 2001]
Algorithmic stability [Bousquet, Elisseeff, 2002]

Algorithmic luckiness [Herbrich, Williamson, 2002]
Shell bounds [Langford, 2002]

PAC-Bayes bounds [McAllester, 1999; Langford, 2005]

Splitting and connectivity bounds [Vorontsov, 2010]
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers
Proofs technique: generating and inhibiting subsets

Splitting and Connectivity graph

Define two binary relations on classifiers:
partial order a 6 b: I (a, x) 6 I (b, x) for all x ∈ X

L;
precedence a ≺ b: a 6 b and Hamming distance ‖b − a‖ = 1.

Definition (SC-graph)

Splitting and Connectivity (SC-) graph 〈A, E 〉:
A — a set of classifiers with distinct binary loss vectors;
E =

{
(a, b) : a ≺ b

}
.

Properties of the SC-graph:

each edge (a, b) is labeled by an object xab ∈ X
L such that

0 = I (a, xab) < I (b, xab) = 1;

multipartite graph with layers
Am =

{
a ∈ A : n(a) = m

}
, m = 0, . . . , L + 1;
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Example. Loss matrix and SC-graph for a set of linear classifiers

layer 0

layer 1

layer 2

layer 0

x1 0
x2 0
x3 0
x4 0
x5 0
x6 0
x7 0
x8 0
x9 0
x10 0
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Example. Loss matrix and SC-graph for a set of linear classifiers

layer 0

layer 1

layer 2

layer 0 layer 1

x1 0 1 0 0 0 0
x2 0 0 1 0 0 0
x3 0 0 0 1 0 0
x4 0 0 0 0 1 0
x5 0 0 0 0 0 1
x6 0 0 0 0 0 0
x7 0 0 0 0 0 0
x8 0 0 0 0 0 0
x9 0 0 0 0 0 0
x10 0 0 0 0 0 0
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Example. Loss matrix and SC-graph for a set of linear classifiers

layer 0

layer 1

layer 2

layer 0 layer 1 layer 2

x1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 . . .
x2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 . . .
x3 0 0 0 1 0 0 0 1 1 0 0 0 0 1 . . .
x4 0 0 0 0 1 0 0 0 1 1 0 0 0 0 . . .
x5 0 0 0 0 0 1 0 0 0 1 1 1 0 0 . . .
x6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 . . .
x7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .
x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Konstantin Vorontsov www.ccas.ru/voron/.index-eng.html Splitting and connectivity generalization bounds



Combinatorial framework for generalization bounds
Splitting and Connectivity (SC-) bounds

Application of SC-bound to rule induction

SC-graph, UC-bound and SC-bound
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Connectivity and inferiority of a classifier

Def. Connectivity of a classifier a ∈ A

p(a) = #
{
xba ∈ X

L : b ≺ a
}

— low-connectivity.
q(a) = #

{
xab ∈ X

L : a ≺ b
}

— up-connectivity;

Def. Inferiority of a classifier a ∈ A

r(a) = #
{
xcb ∈ X

L : c ≺ b 6 a
}

∈
{
p(a), . . . , n(a)

}
.

Example:
p(a) = #{x1 , x2} = 2,
q(a) = #{x3 , x4} = 2,
r(a) = #{x1 , x2} = 2.

 

m - 1

m

m + 1

 a

x1 x2

x3 x2 x1 x4

x5 x2 x3 x4 x1 x6

x7 x2 x5 x4 x3 x6 x1 x8
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Uniform Connectivity (UC-) bound

Theorem (UC-bound)

For all X
L, µ, A and ε ∈ (0, 1)

Q̃ε 6
∑

a∈A

[p 6 k]

(
C

ℓ−q
L−q−p

C ℓ
L

)
H

ℓ−q, m−p
L−q−p (sm(ε))

where m = n(a), q = q(a), p = p(a).

1 UC-bound improves the VC-bound, even if p(a) ≡ q(a) ≡ 0:

Q̃ε 6
∑
a∈A

H
ℓ, m
L (sm(ε)).

2 The contribution of a ∈ A decreases exponentially by p(a)
⇒ connected sets are less subjected to overfitting.

3 UC-bound relies on connectivity, but disregards splitting.
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Pessimistic Empirical Risk Minimization

Definition (ERM)

Learning algorithm µ is Empirical Risk Minimization if

µX ∈ A(X ), A(X ) = Arg min
a∈A

n(a, X );

A choice of a classifier a from A(X ) is ambiguous.
Pessimistic choice will result in modestly inflated upper bound.

Definition (pessimistic ERM)

Learning algorithm µ is pessimistic ERM if

µX = arg max
a∈A(X )

n(a, X̄ );
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SC-bound is exact for some model sets of classifiers
Proofs technique: generating and inhibiting subsets

The Splitting and Connectivity (SC-) bound

Theorem (SC-bound)

For pessimistic ERM µ, any X
L, A and ε ∈ (0, 1)

Qε 6
∑

a∈A

[r 6 k]

(
C

ℓ−q
L−q−r

C ℓ
L

)
H

ℓ−q, m−r
L−q−r (sm(ε)) ,

where m = n(a), q = q(a), r = r(a).

1 If q(a) ≡ r(a) ≡ 0 then SC-bound transforms to VC-bound:

Qε 6
∑
a∈A

H
ℓ, m
L (sm(ε)).

2 The contribution of a ∈ A decreases exponentially by:
q(a) ⇒ connected sets are less subjected to overfitting;
r(a) ⇒ only lower layers contribute significantly to Qε.
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Experiment on model data: SC-bound vs. Monte Carlo estimate

Separable two-dimensional task, L = 100, two classes.
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SC-bound is exact for some model sets of classifiers
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Experiment on model data: UC-bound vs. Monte Carlo estimate

Separable two-dimensional task, L = 100, two classes.
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers
Proofs technique: generating and inhibiting subsets

Experiment on model data: SC-bounds vs. VC-bound

Two-dimensional task, L = 100, two classes.

Correct — 0% errors;
Noise20 — 20% errors;
Random — 50% errors;
Vapnik — data-independent VC-bound.
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Monotone chain of classifiers

Def. Monotone chain of classifiers: a0 ≺ a1 ≺ · · · ≺ aD .

Example: 1-dimensional threshold classifiers aj(x) = [x − θj ];

2 classes {•, ◦}
6 objects

//

x
•

x4
•

x5
•

x6
◦

x1
◦

x2
◦

x3
�

θ0

�

θ1

�

θ2

�

θ3

SC-graph:

/.-,()*+a0

/.-,()*+a1

/.-,()*+a2

/.-,()*+a3

x1

OO

x2

OO

x3

OO

m=0

m=1

m=2

m=3

Loss matrix:

a0 a1 a2 a3

x1 0 1 1 1
x2 0 0 1 1
x3 0 0 0 1
x4 0 0 0 0
x5 0 0 0 0
x6 0 0 0 0
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Two-dimensional monotone lattice of classifiers

Example:

2-dimensional linear classifiers,
2 classes {•, ◦},
6 objects

•
x5

•
x3

•
x1

◦
x2

◦
x4

◦
x6

a00

a20
��

��
��

��
��

��
��

a11
��

��
��

��
��

��
��

a02
��

��
��

��
��

��
��

a01
ffffffffffffffffffffffffff

a10
gggggggggggggggggggggggggg

SC-graph:

76540123a00

76540123a01
76540123a10

76540123a02
76540123a11

76540123a20

76540123a03
76540123a12

76540123a21
76540123a30

x1

YY222

x3

YY222

x5

YY222

x2

EE���

x4

EE���

x6

EE���

EE���

YY222

EE���

YY222
EE���

YY222

m=0

m=1

m=2

m=3

Loss matrix:

a00 a01 a10 a02 a11 a20 a03 a12 a21 a30

x1 0 1 0 1 1 0 1 1 1 0
x2 0 0 1 0 1 1 0 1 1 1
x3 0 0 0 1 0 0 1 1 0 0
x4 0 0 0 0 0 1 0 0 1 1
x5 0 0 0 0 0 0 1 0 0 0
x6 0 0 0 0 0 0 0 0 0 1
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers
Proofs technique: generating and inhibiting subsets

SC-bound is exact(!) for multidimensional(!) lattices of classifiers

Denote d = (d1, . . . , dh) an h-dimensional index vector, dj = 0, 1, . . .
Denote |d| = d1 + . . . + dh.

Definition

Monotone h-dimensional lattice of classifiers of height D:

A =

{
ad, |d| 6 D

∣∣∣∣
c < d ⇒ ac < ad

n(ad) = m0 + |d|

}
.

Theorem (exact SC-bound)

If A is monotone h-dimensional lattice of height D, D > k , and
µ is pessimistic ERM then for any ε ∈ (0, 1)

Qε =
k∑

t=0

C t
h+t−1

C ℓ−h
L−h−t

C ℓ
L

H
ℓ−h, m0

L−h−t (sm0+t(ε)) .
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SC-bound is exact for some model sets of classifiers
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Sets of classifiers with known SC-bound

Model sets of classifiers with known exact SC-bound:

monotone chains and multidimensional lattices;

unimodal chains and multidimensional lattices;

pencils of monotone chains;

layers and intervals of boolean cube;

hamming balls and their lower layers;

some sparse subsets of multidimensional lattices;

some sparse subsets of hamming balls;

Real sets of classifiers with known tight SC-bound:

conjunction rules (see further);
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Generating and inhibiting subsets of objects

Conjecture

For any a ∈ A generating set Xa ⊂ X
L and inhibiting set X ′

a ⊂ X
L

exist such that if classifier a ∈ A is a result of learning then
all objects Xa lie in the training set and
all objects X ′

a lie in the testing set:

[
µX=a

]
6
[
Xa ⊆ X

][
X ′

a ⊆ X̄
]
.

Xa︷ ︸︸ ︷
︸ ︷︷ ︸

X — training

X ′
a︷ ︸︸ ︷

︸ ︷︷ ︸
X̄ — testing︸ ︷︷ ︸

X
L
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Bounds based on generating and inhibiting subsets

Lemma (Probability of obtaining each of classifiers)

If Conjecture is true then for any µ, X , a ∈ A

P
[
µX=a

]
6 Pa = C ℓa

La
/C ℓ

L.

where La = L − |Xa| − |X ′
a|, ℓa = ℓ − |Xa|.

Theorem (Probability of overfitting)

If Conjecture is true then for any X
L, µ, A and ε ∈ (0, 1)

Qε 6
∑

a∈A

PaH
ℓa, ma

La
(sa(ε)) ,

where ma = n(a, XL) − n(a, Xa) − n(a, X ′
a),

sa(ε) = ℓ
L

(
n(a, XL) − εk

)
− n(a, Xa).
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SC-bound is exact for some model sets of classifiers
Proofs technique: generating and inhibiting subsets

Correspondence between SC-graph and generating/inhibiting subsets

Upper connectivity of a classifier a ∈ A

q(a) = |Xa|, Xa =
{
xab ∈ X

L : a ≺ b
}

— generating subset.

Inferiority of a classifier a ∈ A

r(a) = |X ′
a|, X ′

a =
{
xcb ∈ X

L : c ≺ b 6 a
}

— inhibiting subset.

 

m - 1

m

m + 1

 a

x1 x2

x3 x2 x1 x4

x5 x2 x3 x4 x1 x6

x7 x2 x5 x4 x3 x6 x1 x8
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Classifier — weighted voting of conjunctive rules

Rule-based classifier (weighted voting of rules):

a(x) = arg max
y∈Y

∑

r∈Ry

wr r(x),

where Y — set of class labels,
Ry — set of rules that votes for the class y ,
r : X → {0, 1} — rule, and wr — its weight.

Conjunctive rule:

r(x) =
∧

j∈J

[
fj(x) 6 θj

]
,

where fj(x) — real features, θj — thresholds, j = 1, . . . , n;
J ⊆ {1, . . . , n} — subset of features, usually |J| . 7;
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Rule evaluation heuristics

Intrinsically the rule learning is a two-criteria optimization problem:

N(r , X ) = 1
|X |#

{
xi ∈ X : r(xi ) = 1, yi 6= y

}
→ min

r
;

P(r , X ) = 1
|X |#

{
xi ∈ X : r(xi ) = 1, yi = y

}
→ max

r
;

Practically one-criterion heuristics H(P, N) → max
r

are used:

Information gain;

Gini Index;

Fisher exact test, χ2 or ω2 statistical tests, etc.

A common drawback of all these criteria:

Ignoring an overfitting that results from thresholds θj learning:
N(r , X̄ ) will be greater than expected;
P(r , X̄ ) will be less than expected.
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Problem: rules are typically overfitted in real applications

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4

6

8

10

12

14

16

18

20

Training error, %

Testing error, %

Real task: predicting the result of atherosclerosis surgical treatment, L = 98.
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SC-modification of rule evaluation heuristics

Problem:

Estimate N(r , X̄ ) and P(r , X̄ ) to select rules more carefully.

Solution:

1. Calculate data-dependent SC-bounds:

P
[
N(r , X̄ ) − N(r , X ) > ε

]
6 η

N
(ε);

P
[
P(r , X ) − P(r , X̄ ) > ε

]
6 η

P
(ε);

2. Invert SC-bounds: with probability at least 1 − η

N(r , X̄ ) 6 N̂(r , X̄ ) = N(r , X ) + ε
N
(η);

P(r , X̄ ) > P̂(r , X̄ ) = P(r , X ) − ε
P
(η).

3. Substitute P̂ , N̂ in a one-criterion heuristic: H(P̂, N̂) → max
r

.
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Classes of equivalent rules: one point per rule

Example: separable 2-dimensional task, L = 10, two classes.
rules: r(x) =

[
f1(x) 6 θ1 and f2(x) 6 θ2

]
.
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Classes of equivalent rules: one point per class

Example: the same classification task. One point per class.
rules: r(x) =

[
f1(x) 6 θ1 and f2(x) 6 θ2

]
.
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Classes of equivalent rules: SC-graph

Example: SC-graph isomorphic to the graph at previous slide.
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Experiment on real data sets

Data sets from UCI repository:

Task Objects Features

australian 690 14

echo cardiogram 74 10

heart disease 294 13

hepatitis 155 19

labor relations 40 16

liver 345 6

Learning algorithms:

WV — weighted voting (boosting);

DL — decision list;

LR — logistic regression.

Testing method: 10-fold cross validation.
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Experiment on real data sets. Results

tasks

Algorithm austr echo heart hepa labor liver

RIPPER-opt 15.5 2.97 19.7 20.7 18.0 32.7

RIPPER+opt 15.2 5.53 20.1 23.2 18.0 31.3

C4.5(Tree) 14.2 5.51 20.8 18.8 14.7 37.7

C4.5(Rules) 15.5 6.87 20.0 18.8 14.7 37.5

C5.0 14.0 4.30 21.8 20.1 18.4 31.9

SLIPPER 15.7 4.34 19.4 17.4 12.3 32.2

LR 14.8 4.30 19.9 18.8 14.2 32.0

WV 14.9 4.37 20.1 19.0 14.0 32.3

DL 15.1 4.51 20.5 19.5 14.7 35.8

WV+CS 14.1 3.2 19.3 18.1 13.4 30.2

DL+CS 14.4 3.6 19.5 18.6 13.6 32.3

Two top results are highlighted for each task.
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Conclusions

Combinatorial framework can give tight and
sometimes exact generalization bounds.

OC (one-classifier) bound is exact.

UC (uniform connectivity) bound rely on connectivity
but neglect splitting.

SC (splitting and connectivity) bound is most tight and
even exact for monotone chains and lattices of classifiers.

SC-bound being applied to rule induction
reduces testing error of classifiers by 1–2%.
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Questions, please

Konstantin Vorontsov
vokov@forecsys.ru

http://www.ccas.ru/voron

www.MachineLearning.ru/wiki (in Russian):

Участник:Vokov

Слабая вероятностная аксиоматика

Расслоение и сходство алгоритмов (виртуальный семинар)
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