Model generation and selection using coherent Bayesian inference

Vadim Strijov

Visiting Professor at Laboratoire d'Informatique de Grenoble, Apprentissage : modeles et algorithmes

April 22nd, 2015

Problem of model generation and selection

Problem significance

To get an accurate and stable forecast we develop the methods of model selection from the set of admissible basic models.

Our approach

Optimization of parameters for an arbitrary model is a non-trivial optimization problem. Our approach is to simplify the problem by considering sets of the successively generated stable models of given complexity.

Regression analysis: problem statement

We solve a regression problem:

estimate the conditional expectation $E(Y|\mathbf{x}) = f(\mathbf{w}_0, \mathbf{x})$.

The sample: $\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}, i \in \mathcal{I} = \{1, \dots, m\}$. The set \mathfrak{G} is a set of parametric basic functions $g(\mathbf{b}, \mathbf{x}')$.

Regression model

$$f = f(\mathbf{w}, \mathbf{x}) = g_1(\mathbf{b}_1, \mathbf{x}'_1) \circ \cdots \circ g_r(\mathbf{b}_r, \mathbf{x}'_r)(\mathbf{x}),$$

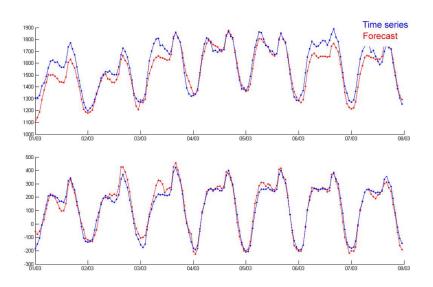
 $f : \mathbb{W} \times \mathbb{X} \to \mathbb{Y}, \text{ or elementwise: } f : (\mathbf{w}, \mathbf{x}) \mapsto y,$

is chosen from the successively generated set \mathfrak{F} .

We find the regression function, the restriction of the model over the set of parameters

$$\hat{f}|_{\mathbb{W}\ni\mathbf{w}=\mathbf{w}_0}:\mathbb{X}\to\mathbb{Y}.$$

Energy consumption one-week forecast, an example



The periodic components of the multivariate time series

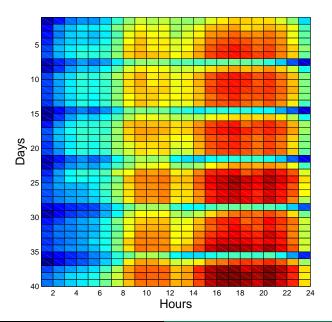
The time series:

- energy price,
- · consumption,
- daytime,
- temperature,
- humidity,
- wind force,
- holiday schedule.

Periods:

- one year seasons (temperature, daytime),
- one week,
- one day (working day, week-end),
- a holiday,
- aperiodic events.

The autoregressive matrix, five week-ends



The autoregressive matrix and the linear model

$$egin{align*} egin{align*} egin{align*}$$

In a nutshell,

$$\mathbf{X}^* = \begin{bmatrix} s_T & \mathbf{x}_{m+1} \\ \frac{1 \times 1}{y} & \frac{1 \times n}{m \times n} \end{bmatrix}.$$

In terms of linear regression:

$$\mathbf{y} = \mathbf{X}\mathbf{w},$$
 $y_{m+1} = s_T = \mathbf{w}^\mathsf{T} \mathbf{x}_{m+1}^\mathsf{T}.$

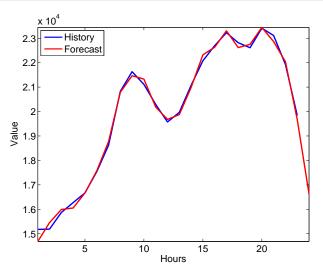
Model generation

Introduce a set of the primitive functions $G = \{g_1, \dots, g_r\}$, for example $g_1 = 1$, $g_2 = \sqrt{x}$, $g_3 = x$, $g_4 = x\sqrt{x}$, etc.

The generated set of features $\mathbf{X} =$

$$\begin{pmatrix} g_1 \circ s_{T-1} & \dots & g_r \circ s_{T-1} & \dots & g_1 \circ s_{T-\kappa+1} & \dots & g_r \circ s_{T-\kappa+1} \\ \hline g_1 \circ s_{(m-1)\kappa-1} & \dots & g_r \circ s_{(m-1)\kappa-1} & \dots & g_1 \circ s_{(m-2)\kappa+1} & \dots & g_r \circ s_{(m-2)\kappa+1} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ g_1 \circ s_{n\kappa-1} & \dots & g_r \circ s_{n\kappa-1} & \dots & g_1 \circ s_{n(\kappa-1)+1} & \dots & g_r \circ s_{n(\kappa-1)+1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ g_1 \circ s_{\kappa-1} & \dots & g_r \circ s_{\kappa-1} & \dots & g_1 \circ s_1 & \dots & g_r \circ s_1 \end{pmatrix} .$$

The one-day forecast (an example)



The function $y = f(\mathbf{x}, \mathbf{w})$ could be a linear model, neural network, deep NN, SVN, ...

Ill-conditioned matrix, or curse of dimensionality

Assume we have hourly data on price/consumption for three years.

Then the matrix
$$\mathbf{X}^*$$
 is $(m+1)\times(n+1)$

 156×168 , in details: $52w \cdot 3y \times 24h \cdot 7d$;

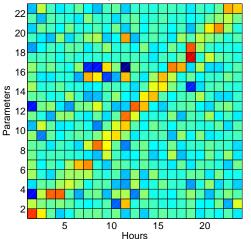
- for 6 time series the matrix **X** is 156×1008 ,
- for 4 primitive functions it is 156×4032 ,

$$m << n$$
.

The autoregressive matrix could be considered as *ill-conditioned* and *multi-correlated*. The model selection procedure is required.

How many parameters must be used to forecast?

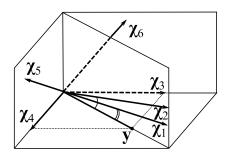
The color shows the value of a parameter for each hour.



Estimate parameters $\mathbf{w}(\tau) = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$, then calculate the sample $s(\tau) = \mathbf{w}^{\mathsf{T}}(\tau)\mathbf{x}_{m+1}$ for each τ of the next (m+1-th) period.

Selection of a stable set of features of restricted size

The sample contains multicollinear χ_1, χ_2 and noisy χ_5, χ_6 features, columns of the design matrix **X**. We want to select two features from six.



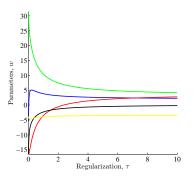
Stability and accuracy for a fixed complexity

The solution: χ_3 , χ_4 is an orthogonal set of features minimizing the error function.

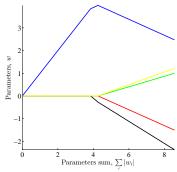
Algorithms: GMDH, Stepwise, Ridge, Lasso, Stagewise, FOS, LARS, Genetics, ...

Model parameter values with regularization

Vector-function
$$\mathbf{f} = \mathbf{f}(\mathbf{w}, \mathbf{X}) = [f(\mathbf{w}, \mathbf{x}_1), \dots, f(\mathbf{w}, \mathbf{x}_m)]^\mathsf{T} \in \mathbb{Y}^m$$
.



$$S(\mathbf{w}) = \|\mathbf{f}(\mathbf{w}, \mathbf{X}) - \mathbf{y}\|^2 + \gamma^2 \|\mathbf{w}\|^2$$

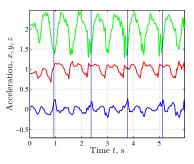


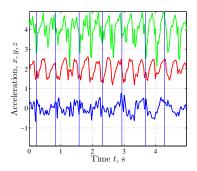
$$S(\mathbf{w}) = \|\mathbf{f}(\mathbf{w}, \mathbf{X}) - \mathbf{y}\|^2,$$

$$T(\mathbf{w}) \leqslant \tau$$

Classification of accelerometric time series

Examples of accelerometric time series for slow walking and jogging:





3-dimensional time series of acceleration projections to spatial axis

$$\mathbf{x} = \{acc_x(t); acc_y(t); acc_z(t)\}_{t=1}^n \mapsto \mathbf{y} \in \mathbb{R}^S.$$

Class labels y_i correspond to one of S = 6 types of activity: Jogging, Walking, Upstairs, Downstairs, Sitting, Standing.

Deep learning for neural networks

Construct a classifier

$$\mathbf{f}=\mathbf{a}(\mathbf{h}_{N}(\ldots \mathbf{h}_{1}(\mathbf{x}))),$$

where \mathbf{h}_k are autoencoding blocks of the form

$$\mathbf{h}_k(\mathbf{x}) = \boldsymbol{\sigma}(\mathbf{W}_k \mathbf{x} + \mathbf{b}_k),$$

and a is multinomial logistic regression classifier

$$\mathbf{a}(\mathbf{x}) = \mathbf{W}_2^\mathsf{T} \mathbf{tanh}(\mathbf{W}_1^\mathsf{T} \mathbf{x}).$$

Vectorize matrices $\mathbf{W}_1 \in \mathbb{R}^{n \times N_h}$, $\mathbf{W}_2 \in \mathbb{R}^{N_h \times S}$ of parameters of each layer to obtain vector of model parameters

$$\mathbf{w} = \text{vec}(\mathbf{W}_1^{\mathsf{T}}|\mathbf{W}_2^{\mathsf{T}}) \in \mathbb{R}^k.$$

Here number N_h of neurons in the hidden layer — the *structure* parameter of the model — is fixed.

Model structure

Model structure

Parameter w_j of model **f** is called *active*, if $w_j \neq 0$.

The set of active indices $A = \{j : w_j \neq 0\} \subseteq \mathcal{J}$ is called *structure* A of model f.

Each structure $\mathcal{A} \subseteq \mathcal{J}$ defines a model $\mathbf{f}_{\mathcal{A}}$

$$\mathbf{f}_{\mathcal{A}}: \hat{\mathbf{w}}_{\mathcal{A}} \in \mathbb{R}^k,$$

where $\hat{\mathbf{w}}_{\mathcal{A}} \in \mathbb{R}^k$ is an optimal parameter vector of $\mathbf{f}_{\mathcal{A}}$ which minimizes error function

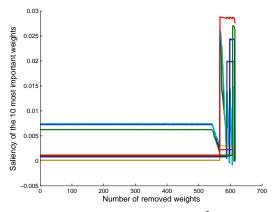
$$S(\mathbf{w}|\mathcal{L}) = -\sum_{i \in \mathcal{K}} \sum_{\xi=1}^{S} t_{i\xi} \ln(p_{\xi}(\mathbf{x}_i, \mathbf{w})), \quad \mathbf{p}(\mathbf{x}) = \frac{\exp(\mathbf{a}(\mathbf{x}))}{\sum_{j} \exp(a_{j}(\mathbf{x}))},$$

computed at learning subset of \mathfrak{D} , defined by set of indices \mathcal{L} .

We chose optimal model $\hat{\mathbf{f}}_{\mathcal{A}}$ from a set \mathfrak{F} of admissive models:

$$\mathfrak{F}=\bigcup_{\mathcal{A}\subset\mathcal{J}}\{\mathbf{f}_{\mathcal{A}}\}.$$

Optimal brain damage



Dependency of a salency $L_j = \frac{w_j^2}{2\mathbf{H}_{ij}^{-1}}$ from a number of removed parameters.

Problem of model generation and selection

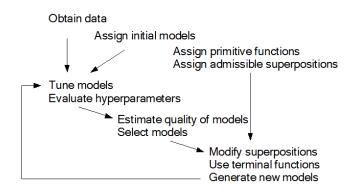
The basic goal of research

To develop a methodology for selection of successively generated models for regression and classification problems.

The approach

- a) we successively generate a set of regression models,
- b) we investigate space of model parameters,
- c) we compare model elements by estimating a covariance matrix and its parameters,
- d) we choose the model according to the MDL principle.

Consequent model generation



History of the problem

- 1 Stepwise method of model selection
- 2 Regularization for the inverse problem
- Group method of data handling
- Optimal brain damage
- **5** Model hyperparameters estimation
- 6 Symbol regression
- 1 Least angle regression
- 8 Entropy methods for MDL
- MDL principle in regression
- Learning of Bayesian network structure

- M. A. Efroimson, 1960.
 - A. N. Tikhonov, 1963.
- A. G. Ivakhnenko, 1971.
 - Y. LeCun. 1999.
 - Y. Nabney, 2004.
- I. Zelinka, D. Koza, 2004.
- B. Efron, T. Hastie, 2002.
 - P. Gruenwald, 2006.
 - J. Rissanen, 2009.
 - T. Jaakkola, 2012.

Data and parameters generation assumption

Distribution of the dependent random variable $\mathbf{y} = \boldsymbol{\mu}^{-1}(\mathbf{X}, \mathbf{w})$ belongs to the *exponential family*

$$p(\mathbf{y}|\boldsymbol{\eta}) = h(\mathbf{y})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{T}\mathbf{u}(\mathbf{y})\right) \tag{ED}$$

with a vector η of parameters. The secial cases: normal (ND) and binomial (BD) distributions:

$$p(\mathfrak{D}|\mathbf{B}, \mathbf{w}, \mathbf{f}) = (2\pi)^{-\frac{m}{2}} |\mathbf{B}^{-1}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{f})^{\mathsf{T}} \mathbf{B}(\mathbf{y} - \mathbf{f})\right), \quad (\mathsf{ND})$$

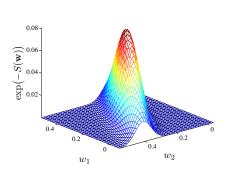
$$p'(\mathfrak{D}|\mathbf{w},\mathbf{f}) = \prod_{i \in \mathcal{I}} f_i^{y_i} (1 - f_i)^{1 - y_i}.$$
 (BD)

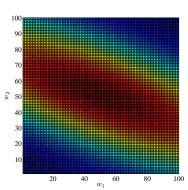
Distributions $p(\mathfrak{D}|\mathbf{B},\mathbf{w},\mathbf{f})$ and $p(\mathbf{w}|\mathbf{A},\mathbf{f})$: different cases

Dependent variable y	Model parameters w
$\mathbf{y} \sim \mathcal{N}(\mathbf{f}, \sigma_{\mathbf{y}}^2 \mathbf{I}) \overset{ ext{def}}{=} \mathcal{N}(\mathbf{f}, eta^{-1} \mathbf{I})$	$\mathbf{w} \sim \mathcal{N}(\mathbf{w}_0, \sigma_{\mathbf{w}}^2 \mathbf{I}) \overset{\mathrm{def}}{=} \mathcal{N}(0, lpha^{-1} \mathbf{I})$
$\mathbf{y} \sim \mathcal{N}(\mathbf{f}, diag^{-1}(eta_1, \dots, eta_m)\mathbf{I})$	$\mathbf{w} \sim \mathcal{N}(\mathbf{w}_0, diag^{-1}(lpha_1, \dots, lpha_n) \mathbf{I})$
$\mathbf{y} \sim \mathcal{N}(\mathbf{f}, \mathbf{B}^{-1})$	$\mathbf{w} \sim \mathcal{N}(\mathbf{w}_0, \mathbf{A}^{-1})$

Empirical distribution of model parameters

There given a sample $\{\mathbf{w}_1, \dots, \mathbf{w}_K\}$ of realizations of the m.r.v. \mathbf{w} and an error function $S(\mathbf{w}|\mathfrak{D}, \mathbf{f})$. Consider the set of points $\{s_k = \exp(-S(\mathbf{w}_k|\mathfrak{D}, \mathbf{f})) | k = 1, \dots, K\}$.



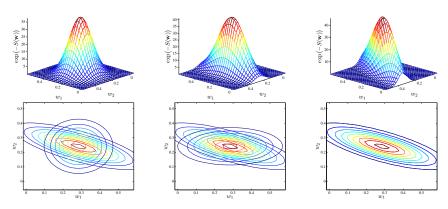


x- and y-axis: parameters \mathbf{w} , z-axis: $\exp(-S(\mathbf{w}))$.

Empirical distribution approximation

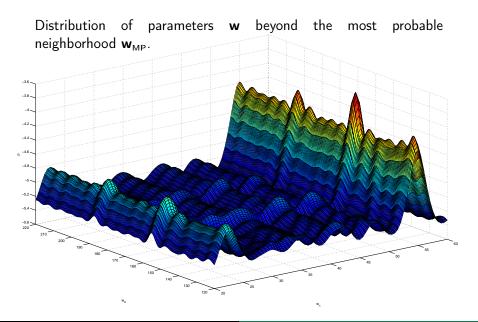
Approximate the set of points $\{s_k\}$ by a function $p(\mathbf{w}|\mathbf{A})$ (ND), considering assumptions about the covariance matrix \mathbf{A}^{-1} type:

considering assumptions about the covariance matrix
$$\mathbf{A}$$
 - type: $\mathbf{A} = \alpha \mathbf{I}, \quad \alpha \geqslant 0; \qquad \mathbf{A} = \operatorname{diag}(\alpha_1, \dots, \alpha_n); \quad \mathbf{A}, \quad \mathbf{w}^\mathsf{T} \mathbf{A} \mathbf{w} \geqslant 0.$



x- and y-axis: parameters \mathbf{w} , z-axis: $\exp(-S(\mathbf{w}))$.

Empirical parameter distribution, example



Most probable and most plausible parameters

Posterior parameter distribution

for the given sample \mathfrak{D} , model f = f(w, X) and matrices A, B:

$$p(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B}, \mathbf{f}) = \frac{p(\mathfrak{D}|\mathbf{w}, \mathbf{B}, \mathbf{f})p(\mathbf{w}|\mathbf{A}, \mathbf{f})}{p(\mathfrak{D}|\mathbf{A}, \mathbf{B}, \mathbf{f})}.$$

The elements of this expression and the corresponding parameters:

 $p(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B}, \mathbf{f})$ — posterior parameter distribution,

 $\mathbf{w}_{\mathsf{MP}} = \arg\max p(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B}, \mathbf{f}) - \mathsf{most}$ probable parameters,

 $p(\mathfrak{D}|\mathbf{w}, \mathbf{B}, \mathbf{f})$ — data likelihood,

 $\mathbf{w}_{\mathsf{ML}} = \operatorname{arg\,max} p(\mathfrak{D}|\mathbf{w}, \mathbf{B}, \mathbf{f}) - \operatorname{most\,plausible\,parameters},$

 $p(\mathbf{w}|\mathbf{A},\mathbf{f})$ — prior distribution,

 $p(\mathfrak{D}|\mathbf{A},\mathbf{B},\mathbf{f})$ — model likelihood.

Coherent Bayesian inference: model selection

For a set of models $\mathfrak{F} = \{f_1, \dots, f_K\}$ to approximate \mathfrak{D}

$$p(f_k|D) = \frac{p(D|f_k)p(f_k)}{\sum_{q=1}^K p(D|f_k)p(f_k)}.$$

 $p(f_k)$ — prior probability,

 $p(D|f_k)$ — model evidence,

 $p(f_k|D)$ — posterior probability.

Select the most evident model by comparison

$$\frac{p(f_k|D)}{p(f_q|D)} = \frac{p(D|f_k)p(f_k)}{p(D|f_q)p(f_q)}$$

since the denominator does not depend on the model.

Assuming equal prior probability of the models from the set \mathfrak{F} ,

$$p(f_k)=p(f_q)$$

maximize the model evidence.

Error function of the general form

Writing the error function $S(\mathbf{w})$ in the following form,

$$S(\mathbf{w}) = -\ln p(\mathfrak{D}|\mathbf{w}, \mathbf{B}, \mathbf{f})p(\mathbf{w}|\mathbf{A}, \mathbf{f}) = E_{\mathbf{w}} + E_{\mathfrak{D}},$$

we obtain the following posterior distribution:

$$p(\mathbf{w}|\mathfrak{D}, A, B, f) \propto \frac{\exp(-S(\mathbf{w}))}{Z_S}.$$

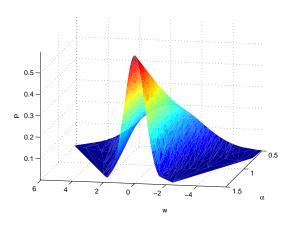
The case of normal distribution for the dependent variable (ND)

$$S(\mathbf{w}) = \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\mathsf{T} \mathbf{A} (\mathbf{w} - \mathbf{w}_0) + \frac{1}{2}(\mathbf{y} - \mathbf{f})^\mathsf{T} \mathbf{B} (\mathbf{y} - \mathbf{f}).$$

The case of binomial distribution for the dependent variable (BD)

$$S(\mathbf{w}) = E_{\mathbf{w}} + \sum_{i \in T} (y_i \ln f_i + (1 - y_i) \ln(1 - f_i)).$$

Posterior parameter distribution with $\mathbf{A} = \alpha \mathbf{I}$



x-axis: w is a model parameter.

y-axis: α is an inverted covariance,

z-axis: $p(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B}, \mathbf{f})$ is a distribution of parameters.

Selection of the most evident model

There is given a sample \mathfrak{D} , a set of models $\mathfrak{F} = \{f_k\}$, $k \in \mathcal{K}$ and prior probabilities $p(f_k)$.

The problem is to find the most plausible model f_k :

$$\begin{split} \hat{k} &= \argmax_{k \in \mathcal{K}} p(f_k | \mathfrak{D}) = \\ & \underset{k \in \mathcal{K}}{\arg\max} \int_{\mathbf{w} \in \mathbb{W}_k} p(\mathfrak{D} | \mathbf{w}, \mathbf{B}_k, \mathbf{f}_k) p(\mathbf{w} | \mathbf{A}_k, \mathbf{f}_k) d\mathbf{w}. \end{split}$$

Posterior model probability

$$p(f_k|\mathfrak{D}) = \frac{1}{p(\mathfrak{D})}p(\mathfrak{D}|f_k)p(f_k),$$

where the function $p(\mathfrak{D}|f_k)$ of the sample \mathfrak{D} , with a fixed model f_k is a model likelihood. The normalized coefficient doesn't depend on the model.

Finding the most probable parameters

There is given a sample \mathfrak{D} , a model $\mathbf{f} = \mathbf{f}(\mathbf{w}, \mathbf{x})$, a data generation assumption, and an error function

$$S(\mathbf{w}|\mathfrak{D}, \hat{\mathbf{A}}, \hat{\mathbf{B}}, \mathbf{f}) = -\ln(p(\mathfrak{D}|\mathbf{w}, \mathbf{B}, \mathbf{f})p(\mathbf{w}|\mathbf{A}, \mathbf{f})).$$

The goal is to find parameters \mathbf{w}_{MP} of the model f

$$\mathbf{w}_{\mathsf{MP}} = \arg\min_{\mathbf{w} \in \mathbb{W}} S(\mathbf{w}|\mathfrak{D}, \hat{\mathbf{A}}, \hat{\mathbf{B}}, \mathbf{f}).$$

The covariance matrix estimation

$$(\hat{\mathbf{A}}, \hat{\mathbf{B}}) = \underset{\mathbf{A} \in \mathbb{R}^{n^2}, \mathbf{B} \in \mathbb{R}^{m^2}}{\operatorname{arg max}} \int_{\mathbf{w} \in \mathbb{W}} p(\mathfrak{D}|\mathbf{w}, \mathbf{B}, \mathbf{f}) p(\mathbf{w}|\mathbf{A}, \mathbf{f}) d\mathbf{w}.$$

Theorem (2014)

The linear model likelihood for the data generation assumption (ND) has the form

$$p(\mathfrak{D}|\mathbf{A},\mathbf{B}) = \frac{|\mathbf{B}|^{\frac{1}{2}}|\mathbf{A}|^{\frac{1}{2}}}{(2\pi)^{\frac{m}{2}}|\mathbf{K}|^{\frac{1}{2}}} \exp\left(\frac{1}{2}\mathbf{y}^{\mathsf{T}}(\mathbf{C}^{\mathsf{T}}\mathbf{K}\mathbf{C} - \mathbf{B})\mathbf{y}\right),$$

and its logarithm has the form $\ln p(\mathfrak{D}|\mathbf{A},\mathbf{B}) =$

$$=-\frac{1}{2}\big(\ln|\mathbf{K}|+m\ln 2\pi-\ln|\mathbf{B}|-\ln|\mathbf{A}|-\mathbf{y}^{\mathsf{T}}(\mathbf{C}^{\mathsf{T}}\mathbf{K}\mathbf{C}-\mathbf{B})\mathbf{y}\big).$$

Here

$$K = X^TBX + A, \quad C = K^{-1}X^TB.$$

Estimation of parameters w

Theorem (2013)

For the data generation assumption(ND) with the fixed covariance matrices \mathbf{A}^{-1} , \mathbf{B}^{-1} the iterative algorithm of parameters estimation,

$$\Delta \mathbf{w}_{k+1} = (\mathbf{J}^\mathsf{T} \mathbf{J})^{-1} \left(\mathbf{J}^\mathsf{T} \big(\mathbf{y} - \mathbf{f}(\mathbf{w}, \mathbf{X}) \big) - \frac{1}{\beta} \mathbf{A}^{-1} \mathbf{w}_k \right),$$

finds a minimum of the error function of general form $S(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B}, \mathbf{f})$ with the convergence of vectors sequence \mathbf{w}_k .

Remark

The iterative algorithm $\mathbf{w}_{k+1} = \Delta \mathbf{w}_{k+1} + \mathbf{w}_k$ requires the initial value \mathbf{w}_0 . The sequence $\|\mathbf{w}_{k+1} - \mathbf{w}_k\|^2$ monotonically decreases due to increase of the step k.

Estimation of parameters w

Theorem (2013)

For the data generation assumption (BD) with the fixed covariance matrices \mathbf{A}^{-1} , \mathbf{B}^{-1} the iterative algorithm of parameters estimation for the generalized linear model,

$$\Delta \mathbf{w}_{k+1} = (\mathbf{X}^\mathsf{T} \mathbf{B} \mathbf{X} + \mathbf{A})^{-1} \mathbf{X}^\mathsf{T} \mathbf{B}^\mathsf{T} \mathbf{y} - \mathbf{w}_k$$
, variant:

$$\Delta \mathbf{w}_{k+1} = (\mathbf{X}^\mathsf{T} \mathbf{B} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{B} (\mathbf{X} \mathbf{w}_k - \mathbf{B}^{-1} (\mathbf{f} - \mathbf{y})) + \frac{1}{2} \mathbf{w}_k^\mathsf{T} \mathbf{A} \mathbf{w}_k,$$

finds a local minimum of the error function of general form with the convergence of vectors sequence \mathbf{w}_k .

Estimation of covariance matrices A^{-1} , B^{-1}

Let the vector of parameters $\mathbf{w}_0 = [w_{1(0)}, \dots, w_{n(0)}]^T$ be fixed.

Theorem (2013)

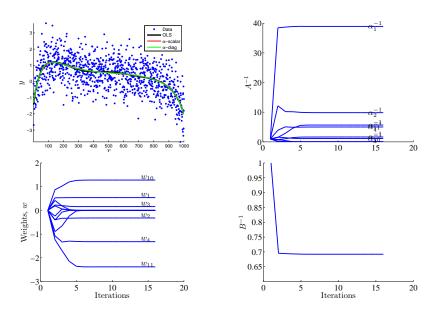
In a neighborhood of the parameters \mathbf{w}_0 the covariance matrix estimations $\mathbf{A}^{-1}, \mathbf{B}^{-1}$ for the data generation assumption (ND) has the form

$$lpha_i = rac{1}{2} \lambda_i \left(\sqrt{1 + rac{4}{(w_i - w_{i(0)})^2 \lambda_i}} - 1
ight), ext{ where } \lambda_i = eta ext{diag}(h_i),$$

$$eta = rac{m-\gamma}{2(\mathbf{f}-\mathbf{y})^\mathsf{T}\mathbf{B}'(\mathbf{f}-\mathbf{y})},$$
 где $\gamma = \sum_{j=1}^W rac{\lambda_j}{\lambda_j + lpha_j}.$

The sequences $\|\mathbf{A}_{k+1} - \mathbf{A}_k\|^2$ and $\|\beta_{k+1} - \beta_i\|^2$ monotonically decrease due to increase of the step k.

Estimation of parameters and covariance matrices



The set of basic functions &

There is given a set $\mathfrak{G} = \{id, g_1, \dots, g_l | g = g(\mathbf{b}, \mathbf{x}')\}$, that is, there are given

- 1) the function $g:(\mathbf{b},\mathbf{x}')\mapsto\mathbf{x}''$,
- 2) its parameters b,
- 3) arity v(g) of the function g and an order of arguments,
- 4) a domain dom(g) and a codomain cod(g).

Consider a model $f(\mathbf{w}, \mathbf{x})$ given by a superposition

$$f(\mathbf{w}, \mathbf{x}) = (g_{i(1)} \circ \cdots \circ g_{i(K)})(\mathbf{x}),$$
 где $\mathbf{w} = [\mathbf{b}_{i(1)}^\mathsf{T}, \dots, \mathbf{b}_{i(K)}^\mathsf{T}]^\mathsf{T}.$

An admissible superposition f

is a superposition such that

$$\operatorname{cod}(g_{i(k+1)}) \subseteq \operatorname{dom}(g_{i(k)})$$
, для всех $k = 1, \ldots, K-1$.

Generation of the model set \mathfrak{F}

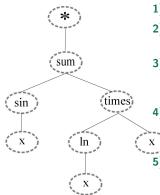
To generate the models we use

- 1) the set dom(x),
- 2) the set of basic functions $\mathfrak{G} = \{id, g\}, g : \mathbf{x} \mapsto \mathbf{x}',$
- 3) the set Gen of rules for superposition generation,
- 4) the set Rem of rules for isomorphic superpositions simplification and estimation.

We propose the following basic methods for the superpositions generation:

- inductive generation,
- structure learning,
- direct search.

Правила построения дерева Γ_f суперпозиции f:

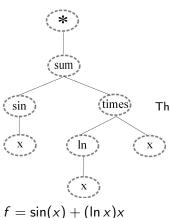


 $f = \sin(x) + (\ln x)x$

- 1) the root * of the tree Γ_f has the single vertex,
- 2) other vertices V_i correspond to the functions $g_r \in \mathfrak{G} \colon V_i \mapsto g_r$,
- 3) the number of children V_j of the vertex V_i equals to an arity of the corresponding function g_r : val $(V_i) = v(g_{r(i)})$,
- 4) the domain of the function $g_{r(i)}$ of a child V_j contains the codomain of the function $g_{r(j)}$ of the x parent V_i : $dom(g_{r(i)}) \supseteq cod(g_{r(i)})$,
- 5) an order of vertices traversal with a parent vertex V_i corresponds to the order of arguments of the corresponding function $g_{r(i)}$,
- 6) the leaves Γ_f correspond to the independent variables, elements of the vector \mathbf{x} .

Link matrix Z_f estimation limitations

The link matrix \mathbf{Z}_f for the tree Γ_f



	sum	times	ln	sin	X
*	1	0	0	0	0
sum	0	1	1	0	0
times	0	0	0	1	1
ln	0	0	0	0	1
sin	0	0	0	0	1

The link probability matrix \mathbf{P}_f for the tree Γ_f

	sum	times	ln	sin	X
*	0.7		0.1	0.1	0.2
sum	0.2	0.7	8.0	0.1	0.2
times	0.1	0.3	0	8.0	8.0
ln	0.2	0.1	0.3	0.1	0.9
sin	0.1	0.2	0.1	0	8.0

 \mathfrak{J} is a set of matrices corresponding to the superpositions from \mathfrak{F} .

Structure learning problem

There is given a sample $\mathfrak{D} = \{(\mathbf{D}_k, f_k)\}$ where the element $\mathbf{D}_k = (\mathbf{X}, \mathbf{y}, \mathbf{y})$, there given \mathfrak{G} and $\mathfrak{F} = \{f_s \mid \mathbf{f}_s : (\hat{\mathbf{w}}_k, \mathbf{X}) \mapsto \mathbf{y}, s \in \mathbb{N}\}.$

The goal

to find an algorithm $a: \mathbf{D}_k \mapsto f_s$ following the condition

$$\mathbf{Z}_{f_s} = \arg\max_{\mathbf{Z} \in \mathfrak{J}} \sum_{i,j} P_{ij} \times Z_{i,j}.$$

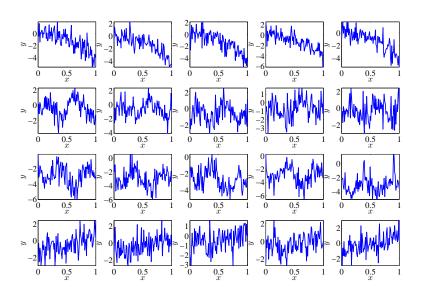
The index \hat{s} , 4TO $f_{\hat{s}}$ provides a minimum for the error function S:

$$\hat{s} = \arg\min_{s \in \{1, \dots, |\mathfrak{F}|\}} S(f_s \mid \hat{\mathbf{w}}_k, \mathbf{D}_k),$$

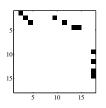
where $\hat{\mathbf{w}}_k$ is an optimal vector of parameters f_s for each $f_s \in \mathfrak{F}$ with the fixed \mathbf{D}_k :

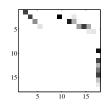
$$\hat{\mathbf{w}}_k = \arg\min_{\mathbf{w} \in \mathbb{W}_s} S(\mathbf{w} \mid f_s, \mathbf{D}_k).$$

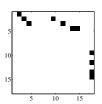
An example of the time series sample for physical activity monitoring



Initial and forecasted superposition







$$f = w_1 \cos(w_2 x + w_3) + w_4 x + w_5 \ln(w_6 x + w_7) + w_8$$

$$f = \cos(x) + x + \ln(x),$$
 $\mathbf{w} = [1, 1, 0, 1, 1, 1, 0, 0]^{\mathsf{T}}.$

Successive model generation and selection

The set A uniquely defines a model $f_A \in \mathfrak{F}$.

The successive modification procedure

Add: to add an index j to the set $A_k = A_{k-1} \cup \{j\}$, that corresponds to the maximum value of the model likelihood

$$\hat{j} = rg \max_{j \in \mathcal{J} \setminus \mathcal{A}_k} p(f_{\mathcal{A}_k} | \mathbf{w}_{\mathsf{MP}}, \mathbf{A}, \mathbf{B}, \mathfrak{D}).$$

Del: to remove an index j from the set $\mathcal{A}_k = \mathcal{A}_{k-1} \setminus \{j\}$ to maximum increase the stability, $\hat{j} = \underset{j \in \mathcal{A}_k}{\arg\max} \, Q(f_{\mathcal{A}_k} | \mathbf{w}_{\mathsf{MP}}, \mathbf{A}, \mathbf{B}, \mathfrak{D})$:

$$\hat{j} = rg\max_{j \in \mathcal{A}_{k-1}} \sum_{g=t-\hat{i}+1}^t q_g^j,$$
 где $\hat{i} = \sum_{g=1}^t \left[\eta_g^2 > \eta_t
ight].$

The stages Add and Del repeated independently such that the inequality holds on each stage: $\max_{\Delta H \cup \mathrm{Del} L \subset \mathbb{N}} \left(\mathcal{E}(f_{\mathcal{A}_k'}) \right) - \mathcal{E}(f_{\mathcal{A}_k}) \leqslant \Delta \mathcal{E}.$

The algorithm is repeated while the expectation of the likelihood function $\mathsf{E}\mathcal{E}(f_{\mathcal{A}_k})$ remains constant.

Optimal pruning strategy

We approximate error function S by

$$\Delta S = S(\mathbf{w}_0 + \Delta \mathbf{w}) - S(\mathbf{w}_0) = \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \mathbf{H} \Delta \mathbf{w}$$

near its local optimum \mathbf{w}_0 . Here $\Delta w = \mathbf{w} - \mathbf{w}_0$ and \mathbf{H} stands for Hessian matrix of S.

Since

$$w_j = 0 \equiv \mathbf{e}_j^\mathsf{T} \Delta \mathbf{w} + w_j = 0,$$

we specify Lagrange function

$$L = \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w} - \lambda_i (\mathbf{e}_j^{\mathsf{T}} \Delta \mathbf{w} + w_j)$$

for conditional optimization $\Delta S \to \min$, $\mathbf{e}_j^\mathsf{T} \Delta \mathbf{w} + w_j = 0$. The optimal pruning criterion is then given by

$$\hat{j} = \underset{j \in \mathcal{A}}{\operatorname{argmin}} L_j, \text{ where } L_j = \frac{w_j^2}{2[\mathbf{H}^{-1}]_{j,j}}.$$

Decomposition of the covariance matrix A^{-1}

Consider the condition numbers $\eta_j = \frac{\lambda_{\max}}{\lambda_j}$ in the singular decomposition of the covariance matrix $\mathbf{A}^{-1}\mathbf{V} = \mathbf{V}\mathbf{\Lambda}^2$. Find covariance of the parameters \mathbf{w}

$$\mathbf{Var}(\mathbf{w}) = \frac{1}{\beta} (\mathbf{V}^\mathsf{T})^{-1} \mathbf{\Lambda}^{-2} \mathbf{V}^{-1} = \frac{1}{\beta} \mathbf{V} \mathbf{\Lambda}^{-2} \mathbf{V}^\mathsf{T},$$

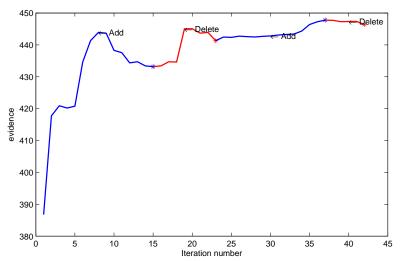
where β is an inverse covariance of the residuals, and the covariance of the parameter w_j is a j-th diagonal element Var(w).

Removal of the index \hat{j} from the set $A_k = A_{k-1} \setminus \{\hat{j}\}$

$$\hat{j} = \arg\max_{j \in \mathcal{A}_{k-1}} \sum_{g=t-\hat{i}+1}^t q_g^j$$
, where $\hat{i} = \sum_{g=1}^t \left[\eta_g^2 > \eta_t\right]$, where $\beta extsf{var}(w_i) = \sum_{i=1}^n rac{\upsilon_{ij}^2}{\lambda_i^2} = (q_{i1} + q_{i2} + \ldots + q_{in})$

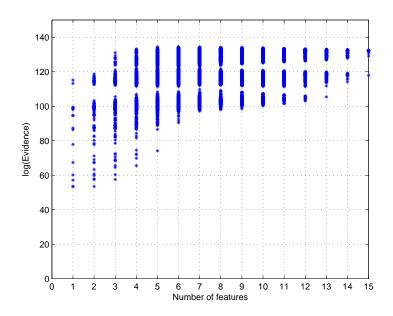
makes maximum increase the model stability f_{A_k} on the pair of steps k, k-1.

Likelihood maximization during the successive model modification

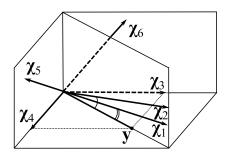


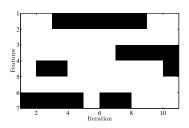
x-axis: iterations k, y-axis: likelihood $p(f_{A_k}|\mathbf{w}_{MP}, \mathbf{A}, \mathbf{B}, \mathfrak{D})$.

Change of likelihood at the arbitrary modification



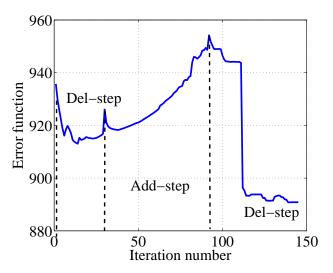
Choice of the most plausible and stable model





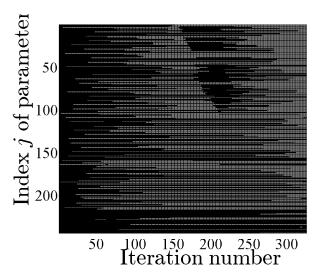
x-axis: the iterations k, y-axis: the indices of the elements j, the black rectangle: the index j added to the set A_k .

Modification procedure: adding and deleting connetions



Modification procedure runs until the process stabilizes. The termination criterion

Iterations of modification procedure



Black cells denote active parameters $w_j j \in A$.

Model complexity, robustness and precision

To compare models we use three quality criteria for model ${\bf f}$ with parameter vector ${\bf w}$: complexity, robustness and precision.

Complexity C is the size of the set A of active parameters:

$$C(\mathbf{w}) = \sum_{i=1}^k [w_i \neq 0].$$

Robustness $\eta = \eta(\hat{\mathbf{w}})$ is equal to the condition number of inverse covariance matrix \mathbf{A} of \mathbf{w} :

$$\eta(\hat{\mathbf{w}}) = rac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}},$$

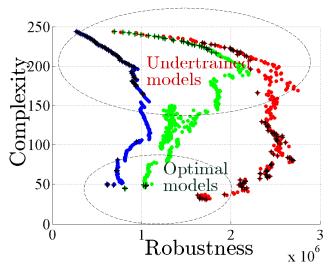
where λ . stand for eigenvalues of **A**.

Robustness increases with decrease of η : the best case is

$$\lambda_{\min} = \lambda_{\max}, \ \eta = 1.$$

Precision S is measured as error $S(\mathbf{w}|\mathcal{L})$.

Model interpretation



Generated models in complexity-robustness coordinates.

Comparative study

Dataset: Energy consumption, an example

Algorithm	$S_{\mathcal{L}}$	$S_{\mathcal{C}}$	AIC	BIC	C_p	$\lg \kappa$	k
Genetics	0,073	0,107	-1152	-1072	337	13	26
GMDH	0,146	0,194	-1076	-1045	745	6	10
Stepwise	0,128	0,154	-1092	-1055	644	7	12
Ridge	0,111	0,146	-819	-330	832	33	160
Lasso	0,121	0,147	-1089	-1034	611	5	18
Stagewise	0,071	0,096	-1157	-1077	324	9	26
FOS	0,106	0,135	-1105	-1044	527	7	20
LARS	0,098	0,095	-1102	-1017	492	7	28
Consequent	0,097	0,123	-1118	-1054	469	5	21