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Problem of model generation and selection

Problem significance

To get an accurate and stable forecast we develop the methods of
model selection from the set of admissible basic models.

Our approach

Optimization of parameters for an arbitrary model is a non-trivial
optimization problem. Our approach is to simplify the problem by
considering sets of the successively generated stable models of
given complexity.
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Regression analysis: problem statement
We solve a regression problem:

estimate the conditional expectation E(Y|x) = f(wpo, x).

The sample: © = {(x,-,y,-)}, i€eZ={1,....,m}. Theset & is a
set of parametric basic functions g(b, x’).

Regression model
f= f(W,X) = gl(b17x/]_) Q@ree0@ gr(bruxlr)(x)7
f:WxX-—Y, orelementwise: f:(w,X)+— y,

is chosen from the successively generated set §.

We find the regression function, the restriction of the model over
the set of parameters

Flwswewy : X = Y.
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Energy consumption one-week forecast, an example
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The periodic components of the multivariate time series

The time series: Periods:
* energy price, ® one year seasons
e consumption, (temperature, daytime),
e daytime, e one week,
e temperature, e one day (working day,
e humidity, week-end),
e wind force, e a holiday,
o holiday schedule. e aperiodic events.
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The autoregressive matrix, five week-ends
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The autoregressive matrix and the linear model

ST ST-1 cee ST—k+1
. S(m—1)k | S(m—1)k—1 -+ S(m—-2)s+1
(m+1)x(n+1) B S Sm_1 o Sa(s_1)41
Sk Sk—1 .. 5
In a nutshell,

X* =

In terms of linear regression:

y = Xw,

T,T
Ym+1 = ST =W Xpig.
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Model generation

Introduce a set of the primitive functions G = {gi,..., 8-},
for example g1 = 1, g@» = /X, g3 = x, g = x /X, etc.

The generated set of features X =

810ST-1 ... 8Brosrt-1 ‘ ‘ 810 ST—k+1 ... BrOST—k+1
810 S(m—l)mfl ... 8ro© S(mfl)nfl PN 810 S(mfg),@Jrl ... 8ro S(mfg),@Jrl
81 © Spr—1 «v. 8BrOSpk—1 <o | 819 Sp(k—1)+1 <o+ 8rOSp(k—1)+1
810 Sk—1 ... 8BroSg—1 81081 ... &o0s
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The one-day forecast (an example)
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The function y = f(x,w) could be a linear model, neural network,
deep NN, SVN, ...
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lll-conditioned matrix, or curse of dimensionality

Assume we have hourly data on price/consumption for three years.

Then the matrix X* is
(m+1)x(n+1)

156 x 168, in details: 52w - 3y x 24h - 7d;

e for 6 time series the matrix X is 156 x 1008,
e for 4 primitive functions it is 156 x 4032,

m << n.

The autoregressive matrix could be considered as ill-conditioned
and multi-correlated. The model selection procedure is required.
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How many parameters must be used to forecast?

The color shows the value of a parameter for each hour.
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Estimate parameters w(7) = (XTX)~ !XTy, then calculate the
sample s(7) = W' (7)Xm41 for each 7 of the next (m + 1-th) period.
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Selection of a stable set of features of restricted size

The sample contains multicollinear x;, X, and noisy X, X features,
columns of the design matrix X. We want to select two features from six.

Stability and accuracy for a fixed complexity

The solution: x3, X4is an orthogonal set of features minimizing the
error function.

Algorithms: GMDH, Stepwise, Ridge, Lasso, Stagewise, FOS, LARS, Genetics, ...
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Model parameter values with regularization

Vector-function f = f(w, X) = [f(w,x1),...,f(w,xy,)]" € Y™.
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S(w) = [[f(w, X) —y[[? +~2]|wl||? S(w) = [[f(w,X) -y,
T(w)<T
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Classification of accelerometric time series

Examples of accelerometric time series for
slow walking and jogging:
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3-dimensional time series of acceleration projections to spatial axis
x = {acc.(t); acc, (t); acc,(t)}7_; r y € R®.

Class labels y; correspond to one of S = 6 types of activity: Jogging,
Walking, Upstairs, Downstairs, Sitting, Standing.
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Deep learning for neural networks

Construct a classifier
f =a(hn(...hi(x))),
where hy are autoencoding blocks of the form
he(x) = o(Wix + by),
and a is multinomial logistic regression classifier

a(x) = W, tanh(Wj x).

Vectorize matrices W1 € R™No W, € RVNhXS of parameters of
each layer to obtain vector of model parameters

w = vec(W; |W,) € R,

Here number Ny, of neurons in the hidden layer — the structure
parameter of the model — is fixed.
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Model structure

Model structure

Parameter w; of model f is called active, if w; # 0.
The set of active indices A = {j : wj # 0} C J is called structure
A of model f.

Each structure A C J defines a model f4

fa: Wy € RK,
where W4 € R¥ is an optimal parameter vector of f4 which
minimizes error function

o) = Zzt'ﬁ'” pe(xi,w)),  p(x) = %

ek &=1
computed at learning subset of ©, defined by set of indices L.
We chose optimal model 4 from a set § of admissive models:
F= U {fa}
ACT
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Optimal brain damage
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Problem of model generation and selection
The basic goal of research

To develop a methodology for selection of successively generated
models for regression and classification problems.

The approach

we successively generate a set of regression models,

b) we investigate space of model parameters,

c) we compare model elements by estimating a covariance matrix
and its parameters,

d) we choose the model according to the MDL principle.
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Consequent model generation

Obtain data
Assign initial models
Assign primitive functions
/ Assign admissible superpositions
Tune models

Evaluate hyperparameters

Estimate quality of models
Select models

T Modify superpositions
Use terminal functions
Generate new models
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History of the problem

@ Stepwise method of model selection M. A. Efroimson, 1960.
@® Regularization for the inverse problem A.N. Tikhonov, 1963.
© Group method of data handling A. G. lvakhnenko, 1971.
@ Optimal brain damage Y. LeCun, 1999.
©®@ Model hyperparameters estimation Y. Nabney, 2004.
® Symbol regression |. Zelinka, D. Koza, 2004.
@ Least angle regression B. Efron, T. Hastie, 2002.
® Entropy methods for MDL P. Gruenwald, 2006.
© MDL principle in regression J. Rissanen, 2009.
@ Learning of Bayesian network structure T. Jaakkola, 2012.
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Data and parameters generation assumption

Distribution of the dependent random variable y = p=1(X, w)
belongs to the exponential family

p(yln) = h(y)g(n) exp (n"u(y)) (ED)

with a vector ) of parameters. The secial cases: normal (ND) and
binomial (BD) distributions:

p(O1B.w.f) = (27) ¥ B! L exp (—;y ~OTBy-0). (D)

p@w.f)=]]F1-f)" (BD)
i€eT

Distributions p(D|B,w, f) and p(w|A,f): different cases

Dependent variable y Model parameters w
y ~ N(F, azl)def NEB) | w~ N(wg, 02)EN(0,a~11)

y ~ N(f,diag (b1, ..., Bm))) WNN(wo,dlag Yoq,...,an)l)
y ~N(F.B 1) w ~ N(wo,A™")
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Empirical distribution of model parameters

There given a sample {wy,...,wg} of realizations of the m.r.v. w
and an error function S(w|®, f). Consider the set of points
{sk = exp(=S(wi|D,f)) |k =1,...,K}.

x- and y-axis: parameters w, z-axis: exp(—S(w)).
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Empirical distribution approximation

Approximate the set of points {sx} by a function p(w|A) (ND),
considering assumptions about the covariance matrix A~! type:
A=qal, a>0; A =diag(ag,...,an); A, wTAw > 0.

o o1 02 03 0 05 0 01 02 03 0 05 0 o1 0z 03 04 05
wy wy wy

x- and y-axis: parameters w, z-axis: exp(—S(w)).
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Empirical parameter distribution, example

Distribution of parameters w beyond the most probable
neighborhood wyp.
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Most probable and most plausible parameters
Posterior parameter distribution

for the given sample ©, model f = f(w, X) and matrices A, B:

p(Dlw, B, F)p(w|A, )
p(OAB.F)

p(w|®,A,B,f) =

The elements of this expression and the corresponding parameters:
p(w|D, A, B, f) — posterior parameter distribution,
wyp = arg max p(w|D, A, B, f) — most probable parameters,
p(D|w, B, f) — data likelihood,
wy = arg max p(D|w, B, f) — most plausible parameters,
p(w|A, f) — prior distribution,
p(D|A, B, f) — model likelihood.
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Coherent Bayesian inference: model selection

For a set of models § = {fi,..., fx} to approximate D

P(D|fi)p(fk)

f = .
Aeil) SK, p(DIf)p(f)

p(fx) — prior probability,
p(D|fy) — model evidence,
p(fx|D) — posterior probability.

Select the most evident model by comparison
p(f|D) _ p(D|f)p(fk)

p(fa|D) — p(Dlfq)p(fy)

since the denominator does not depend on the model.

Assuming equal prior probability of the models from the set F,
p(fe) = p(fq)

maximize the model evidence.
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Error function of the general form

Writing the error function S(w) in the following form,
S(w) = — In p(D|w, B, )p(w]A, F) = Ey + Eo,
we obtain the following posterior distribution:

exp(—S(w))
p(w|D, A, B, f) x — 7z

The case of normal distribution for the dependent

variable (ND)

S(w) = 5 (w — wo) A(w — wo) + 2 (y — )TB(y — F).

The case of binomial distribution for the dependent

variable (BD)

S(w)=Ey + Z(y,' Inf; + (1 — y;) In(1 — £)).
i€ET
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Posterior parameter distribution with A = «
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x-axis: w is a model parameter.

y-axis: « is an inverted covariance,

z-axis: p(w|D, A, B, f) is a distribution of parameters.
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Selection of the most evident model

There is given a sample D, a set of models § = {f}, kK € K and
prior probabilities p(fx).

The problem is to find the most plausible model f;:

k = arg max p(fi|D) =
kel

arg max / P(D|w, By, fi)p(w|Ag, fi)dw.
KK

Posterior model probability

p(|D) = ﬁp(mfk)p(m,

where the function p(D|fi) of the sample D, with a fixed model f is a
model likelihood. The normalized coefficient doesn't depend on the
model.

V. Strijov at AMA LIG Model generation and selection 29 /53



Finding the most probable parameters

There is given a sample ©, a model f = f(w, x), a data generation
assumption, and an error function

The goal is to find parameters wy, of the model f

Wyp = arg“rréi& S(w|®D, A, B,f).

The covariance matrix estimation

(A,B) = argmax /p(©|w,B,f)p(w|A,f)dw.

n2 IT12
AcR™ BeR™ .
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Model likelihood
Theorem (2014)

The linear model likelihood for the data generation
assumption (ND) has the form

_ |BJZ|A|2

1
p(®D|A,B — exp (yT C'KC -B y) ,
(%IA.B) (27)% K|z 2 )

and its logarithm has the foom  Inp(®|A,B) =
:_;mmpwmﬂw—mmp4MM_ynckc_mﬂ.

Here
K=X"BX+A, C=K!X'B
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Theorem (2013)

For the data generation assumption(ND) with the fixed covariance
matrices A~1, B~! the iterative algorithm of parameters estimation,

Awyp = (J7I)7H <JT(y — f(w, X)) — ;A_lwk) ;

finds a minimum of the error function of general
form S(w|D, A, B, f) with the convergence of vectors sequence wy.

The iterative algorithm wy 1 = Awy1 + wy requires the initial
value wg. The sequence ||wy1 — wy||> monotonically decreases
due to increase of the step k.
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Estimation of parameters w

Theorem (2013)

For the data generation assumption (BD) with the fixed covariance
matrices A~1, B! the iterative algorithm of parameters estimation
for the generalized linear model,

Aw, 1 = (XTBX + A)_1 X'B"y — wy, variant:

1
Awyi1 = (XTBX)IX"B(Xw, — B~ (f —y)) + SWiAwWK,

finds a local minimum of the error function of general form with the
convergence of vectors sequence wy.
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Estimation of covariance matrices A~!, B!

Let the vector of parameters wo = [wy(q), - - ., Wn(g)]" be fixed.

Theorem (2013)

In a neighborhood of the parameters wg the covariance matrix
estimations A1, B~! for the data generation assumption (ND) has
the form

1 4 .
o = 5)\, <\/1 =+ m — 1) 9 Where )\,‘ = Bdlag(h,),

m—y W Aj

)\j—i—aj'

The sequences ||Ax1 — Axl|? and ||Bx+1 — Bi]|? monotonically
decrease due to increase of the step k.
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Estimation of parameters and covariance matrices
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The set of basic functions &

There is given a set & = {id, g1,...,g/|g = g(b,x’)}, that is, there
are given

1) the function g : (b, x")—x"

2) its parameters b,

3) arity v(g) of the function g and an order of arguments,
4) a domain dom(g) and a codomain cod(g).

Consider a model f(w, x) given by a superposition

f(w,x) = (gi(1) © - ° &i(k))(x), rae w = [bjy,... bl

An admissible superposition

is a superposition such that
cod(gj(k+1)) € dom(gij(x)), B Bcex k=1,... ., K —1.
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Generation of the model set §
To generate the models we use

1) the set dom(x),
2) the set of basic functions & = {id, g}, g : x—x/,
3) the set Gen of rules for superposition generation,

4) the set Rem of rules for isomorphic superpositions simplification
and estimation.

We propose the following basic methods for the superpositions
generation:

— inductive generation,
— structure learning,

— direct search.
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MpaBuna nocrtpoeHns aepesa [ cynepno3nuun f:

Rty 1) the root * of the tree '+ has the single vertex,

2) other vertices V; correspond to the functions
g& €6 Vi g,

(‘sum_"r 3) the number of children V; of the vertex V; equals to
/\ an arity of the corresponding function g;:
s ST val(V;) = v(g.(i),
P s (Vi) = v(gni)
Yeone? 4) the domain of the function g,;y of a child V;
e ‘_‘__/\_\ contains the codomain of the function g,;) of the
X “In { X yparent Vi: dom(gy)) 2 cod(gj)).
J 5) an order of vertices traversal with a parent vertex V;
ST corresponds to the order of arguments of the
5 ! . .
M’ corresponding function g,

f= Sin(X) + (ln X)X 6) the leaves I's correspond to the independent
variables, elements of the vector x.
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Link matrix Z; estimation limitations

The link matrix Z¢ for the tree I'f

U ‘ sum times In sin  x

Lk * 1 0 0 0 0

{ sum 0 1 1 0 O

times | 0 0 0 1 1

£ sum In 0 0 0 0 1

/\ sin 0 0 0 0 1
sm: (}311165‘: The link probability matrix P for the tree I'¢
,_J-.\ A. ‘ sum times In sin  x
X {In Ox ¥ | 07 01 01 01 02
J """ sum | 02 07 08 01 02
emime times | 0.1 0.3 0 08 0.8
LX) In |02 01 03 01 09

£ sin(x) i (Inx)x sin 0.1 02 01 0 038

3 is a set of matrices corresponding to the
superpositions from F.
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Structure learning problem

There is given a sample © = {(Dy, fx)} where the element
Dy,=( X, Y ), there given & and

mxn mx1

§={fs|fs: (Wg,X)—y,seN}
The goal

to find an algorithm a : Dy — f; following the condition

Zi = argr?é\%(Z Pij x Z; ;.
iy

The index §, 4yto fz provides a minimum for the error function S:

in S | W, Dy),
M8 Ny O [k Dy

§
where Wy is an optimal vector of parameters f; for each f; € § with
the fixed Dy:

Wy arg 1 m|n S(W | fs, Dg).
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An example of the time series sample for physical activity monitorin
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Initial and forecasted superposition

5] 5 5

10 10| 10|

15 15| 15|
5 10 15 5 10 15 5 10 15

f = wy cos(wax + w3) + wax + ws In(wex + we) + wg,

f = cos(x) + x + In(x), w=[1,1,0,1,1,1,0,0]".
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Successive model generation and selection

The set A uniquely defines a model f4 € §.

The successive modification procedure

Add: to add an index j to the set Ay = Ax_1 U {j}, that corresponds to
the maximum value of the model likelihood

j = argmax p(£a, wwe, A, B, D).
JET\ Ak

Del: to remove an index j from the set Ay = Ax_1\{j} to maximum
increase the stability, j = arg max Q(f4, |wwp, A, B, D) :
JEAK

t

fzal’ maX j rge > o
j=arg max > g ra Z ]

g=t—i+1 =

The stages Add and Del repeated independently such that the inequality holds

. ’ — < .
on each stage Add%iﬁeN(E(fAk)) E(fa,) < AE
The algorithm is repeated while the expectation of the likelihood

function EE(fy4,) remains constant.
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Optimal pruning strategy

We approximate error function S by
1
AS = S(wp + Aw) — S(wp) = EAWTHAW

near its local optimum wg. Here Aw = w — wg and H stands for
Hessian matrix of S.
Since N

wij=0=e; Aw + w; =0,

we specify Lagrange function
1
L= 5AwTHAw — (e} Aw + w;)

for conditional optimization AS — min, eJTAw +w; =0.
The optimal pruning criterion is then given by
w2

~

J =argminL;, where [; = — I
jeEA ! 2[H 1]jJ
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Decomposition of the covariance matrix A~!

Consider the condition numbers 7; = % in the singular
J

decomposition of the covariance matrix A~V = VA2, Find
covariance of the parameters w

1 T\—1p—2y—1 1 —2yT
Z(VT)TIA2V L = VARV,
g p
where [ is an inverse covariance of the residuals, and the
covariance of the parameter w; is a j-th diagonal element Var(w).

Var(w) =

Removal of the index j from the set A, = A,_1\{/}

t t
. , . )
J= argjenlla‘\(x1 Z q, Wwhere | = Z [ng > n¢] , where
g=t—i+1 g=1
no,2

U
Bvar(w;) :Z /\2 =(qn+ g2+ ...+ Gin)

=1
makes maximum mcrease the model stability f4, on the pair of

steps k, k — 1.
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Likelihood maximization during the successive model modification
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x-axis: iterations k, y-axis: likelihood p(f4,|wwmp, A, B, D).
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Change of likelihood at the arbitrary modification
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Choice of the most plausible and stable model

Features
PN

Iteration

x-axis: the iterations k, y-axis: the indices of the elements j, the
black rectangle: the index j added to the set Ay.
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Modification procedure: adding and deleting connetions
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Modification procedure runs until the process stabilizes. The

termination criterion
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Iterations of modification procedure

Index j of parameter

50 J00 150 200 250 300
teration number

Black cells denote active parameters w; j € A.
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Model complexity, robustness and precision

To compare models we use three quality criteria for model f with
parameter vector w: complexity, robustness and precision.

Complexity C is the size of the set A of active parameters:
k
C(w) = [w; #0].
i=1

Robustness 1 = n(w) is equal to the condition number of inverse
covariance matrix A of w:

)\max

n(Ww) =

) Y
min

>

where \. stand for eigenvalues of A.

Robustness increases with decrease of 7: the best case is
Amin = Amax, 7= 1.

Precision S is measured as error S(w|L).
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Model interpretation
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Generated models in complexity-robustness coordinates.
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Comparative study

Dataset: Energy consumption, an example

Algorithm Se Se AlIC BIC (, lIgk k
Genetics 0,073 0,107 -1152 -1072 337 13 26
GMDH 0,146 0,194 -1076 -1045 745 6 10
Stepwise 0,128 0,154 -1092 -1055 644 7 12
Ridge 0,111 0,146 -819 -330 832 33 160
Lasso 0,121 0,147 -1089 -1034 611 5 18
Stagewise 0,071 0,096 -1157 -1077 324 9 26
FOS 0,106 0,135 -1105 -1044 527 7 20
LARS 0,098 0,095 -1102 -1017 492 7 28
Consequent | 0,097 0,123 -1118 -1054 469 5 21

V. Strijov at AMA LIG Model generation and selection 53 /53



