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Problem statement

Goal
Study deep models properties.

Challenges

e Deep learning models are excessively redundant.
e The model interpretability is lost because of its complexity.

e Uncertainty in the model predictions is hard to estimate.

Solution
Investigate models using Bayesian inference by assuming a prior distribution on
their parameters.
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Bayesian approach

Bayes theorem

m(w)m(D|w)
m(D)

m(w|D) is a posterior of model parameters w given data D
m(w) is a prior distribution

m(D|w) is data likelihood

m(D) is a normalization constant, evidence, given by

(D) = [ n(D|w)m(w)dw.

m(w|D) =

+ allows to obtain the uncertainty of model outcomes
— the posterior becomes intractable for large models

+ the prior distribution choice
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Neural network structure

input 1% hidden 2" hidden 3 hidden ¢* hidden
layer layer layer layer layer

subW(3) subW(1) subW(3) subW(

Nles

)

g (x) = WO (x), h9(x) = o(g"),

¢(-) — nonlinearity, g — pre-nonlinearity, h — post-nonlinearity
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Distibution families with respect to tail behavior

X1 = (E|X\k)l/k, for all k € N,
tail parameter 0 > 0

Distribution Tail Moments
Sub-Gaussian F(x)<e A 1 X|[x < CVk
Sub-Exponential  F(x) < e™™ |1 X« < Ck
Sub-Weibull Fo)<e ™" X < ck?
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Assumptions on neural network

To prove that Bayesian neural networks become heavier-tailed with depth we
make assumptions on:

Parameters. i.i.d with Gaussian prior
w ~ N(u,0°).
Nonlinearity. ReLU-like with envelope property: exist ¢, m > 0 s.t.

lp(u)| > c1 + diju| forallu e Ry orueR_,
|p(u)] < ¢ + co|u| for all u € R.

Examples: ReLU, ELU, PReLU etc.

yd

hw.,?mjm/mmmm,



Introduction

Background

[e] oo}

Theorem (Vladimirova,

Main theorem

2018)

Consider a Bayesian neural network with Gaussian parameters and nonlinearity
satisfying envelope property. Then a unit of {-th hidden layer h'©) follows
sub-Weibull distribution with optimal tail parameter 6 = (/2.

0.15f-_
~ —— sub-W(1/2)
N sub-W(1)
2010 NN sub-W(3/2)
=1

Value

(a) Probability densities

weight distribution

m(w) ~ e

Marginal distibutions:

=

Theorem Sparsity
ocoe 00000
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Value
(b) Distribution tails
. . . - ' 4
{-th layer unit distribution g [ —,
zea—

7O (u) = et
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Regularized problem

L(W) is a loss function, R(W) is a norm on R”, regularizer.

Background
[e]e]

m\AiIn L(W) + AR(W),

Theorem
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Interpretation: shrinkage effect

Sparsity
00000

Figure: £2/“-norm unit balls (in dimension 2) for layers £ = 1,2,3 and 10.
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MAP on weights W is weight decay

Maximum A Posteriori (MAP):
7(W[D) ~ 7(W)r(D|W) — max
—log m(W) —logn(D|W) — min

Gaussian prior on the weights:
L 7l(W(£))2
m(W) = HHe AR
=1 ij

Equivalent to the weight decay penalty (£?):

RW) = >3 (WD) = |lwij3,

=1 i
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MAP on units U induces sparsity
Marginal distibutions:

weight distribution {-th layer unit distribution
m(w) ~ e = 7O (u) ~ et

Sklar’s representation theorem:

H H ) C(F()),

£=1 m=1

where C represents the copula of U (which characterizes all the dependence
between the units).

R(U) = ZZ log 7 (UY)) — log C(F(U)),

£=1 m=1
Hy
~ ZZ [UR) [ — log C(F(U)),
£=1 m=1

~UD B+ P+ -+ VD3 = log C(F(U)).
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MAP on units U induces sparsity

Regularizer:

R(U) ~ U5+ [UP 1 + - + [[UP[3); — log C(F(U)).

Comparison of Bayesian neural network shrinkage effect on weights W and
units U:

Layer Penalty on W  Penalty on U

1 WOI3 22 UMB L2 (weight decay)
2 W@ 2 U@ L' (Lasso)
e WO 2 uOdg e
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Conclusion

(i) We define the notion of sub-Weibull distributions, which are characterized
by tails lighter than (or equally light as) Weibull distributions.

(ii) We proved that the marginal prior distribution of the units are
heavier-tailed as depth increases.

(iii) We offer an interpretation from a sparsity-inducing viewpoint.
Future directions:

® a precise description of the copula would provide valuable information
about the dependence between the units;

e an interpretation of our result in terms of the full posterior distribution
would give an ability to uncertainty;

o Bayesian deep neural networks distributional properties and their
sparsifying mechanisms.
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