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Introduction Background Theorem Sparsity

Problem statement

Goal
Study deep models properties.

Challenges

• Deep learning models are excessively redundant.

• The model interpretability is lost because of its complexity.

• Uncertainty in the model predictions is hard to estimate.

Solution
Investigate models using Bayesian inference by assuming a prior distribution on
their parameters.
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Bayesian approach

Bayes theorem

π(w|D) =
π(w)π(D|w)

π(D)
.

π(w|D) is a posterior of model parameters w given data D
π(w) is a prior distribution
π(D|w) is data likelihood
π(D) is a normalization constant, evidence, given by
π(D) =

∫
π(D|w)π(w)dw.

+ allows to obtain the uncertainty of model outcomes

– the posterior becomes intractable for large models

± the prior distribution choice
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Neural network structure
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g(`)(x) = W(`)h(`−1)(x), h(`)(x) = φ(g(`)),

φ(·) — nonlinearity, g — pre-nonlinearity, h — post-nonlinearity
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Distibution families with respect to tail behavior

‖X‖k =
(
E|X |k

)1/k
, for all k ∈ N,

tail parameter θ > 0

Distribution Tail Moments

Sub-Gaussian F (x) ≤ e−λx
2

‖X‖k ≤ C
√
k

Sub-Exponential F (x) ≤ e−λx ‖X‖k ≤ Ck

Sub-Weibull F (x) ≤ e−λx
1/θ

‖X‖k ≤ Ckθ
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Assumptions on neural network

To prove that Bayesian neural networks become heavier-tailed with depth we
make assumptions on:

Parameters. i.i.d with Gaussian prior

w ∼ N (µ, σ2).

Nonlinearity. ReLU-like with envelope property: exist c,m ≥ 0 s.t.

|φ(u)| ≥ c1 + d1|u| for all u ∈ R+ or u ∈ R−,

|φ(u)| ≤ c2 + d2|u| for all u ∈ R.

Examples: ReLU, ELU, PReLU etc.
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Main theorem

Theorem (Vladimirova, 2018)

Consider a Bayesian neural network with Gaussian parameters and nonlinearity
satisfying envelope property. Then a unit of `-th hidden layer h(`) follows
sub-Weibull distribution with optimal tail parameter θ = `/2.

(a) Probability densities (b) Distribution tails

Marginal distibutions:

weight distribution

π(w) ≈ e−w2 ⇒
`-th layer unit distribution

π(`)(u) ≈ e−u2/`
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Interpretation: shrinkage effect

Regularized problem:

min
W

L(W) + λR(W),

L(W) is a loss function, R(W) is a norm on Rp, regularizer.

Figure: L2/`-norm unit balls (in dimension 2) for layers ` = 1, 2, 3 and 10.
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MAP on weights W is weight decay

Maximum A Posteriori (MAP):

π(W|D) ∼ π(W)π(D|W) → max
− log π(W)− log π(D|W) → min

Gaussian prior on the weights:

π(W) =
L∏
`=1

∏
i,j

e−
1
2
(W

(`)
i,j )2 .

Equivalent to the weight decay penalty (L2):

R(W) =
L∑
`=1

∑
i,j

(W
(`)
i,j )2 = ‖W‖22,
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MAP on units U induces sparsity

Marginal distibutions:

weight distribution

π(w) ≈ e−w2 ⇒
`-th layer unit distribution

π(`)(u) ≈ e−u2/`

Sklar’s representation theorem:

π(U) =
L∏
`=1

H∏̀
m=1

π(`)
m (U(`)

m )C(F (U)),

where C represents the copula of U (which characterizes all the dependence
between the units).

R(U) = −
L∑
`=1

H∑̀
m=1

log π(`)
m (U(`)

m )− logC(F (U)),

≈
L∑
`=1

H∑̀
m=1

|U(`)
m |2/` − logC(F (U)),

≈ ‖U(1)‖22 + ‖U(2)
1 ‖1 + · · ·+ ‖U(L)‖2/L2/L − logC(F (U)).
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MAP on units U induces sparsity

Regularizer:

R(U) ≈ ‖U(1)‖22 + ‖U(2)
1 ‖1 + · · ·+ ‖U(L)‖2/L2/L − logC(F (U)).

Comparison of Bayesian neural network shrinkage effect on weights W and
units U:

Layer Penalty on W Penalty on U

1 ‖W(1)‖22, L2 ‖U(1)‖22 L2 (weight decay)

2 ‖W(2)‖22, L2 ‖U(2)‖ L1 (Lasso)

` ‖W(`)‖22, L2 ‖U(`)‖2/`2/` L2/`
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Conclusion

(i) We define the notion of sub-Weibull distributions, which are characterized
by tails lighter than (or equally light as) Weibull distributions.

(ii) We proved that the marginal prior distribution of the units are
heavier-tailed as depth increases.

(iii) We offer an interpretation from a sparsity-inducing viewpoint.

Future directions:

• a precise description of the copula would provide valuable information
about the dependence between the units;

• an interpretation of our result in terms of the full posterior distribution
would give an ability to uncertainty;

• Bayesian deep neural networks distributional properties and their
sparsifying mechanisms.
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