Bayesian neural networks become heavier-tailed with depth

Mariia Vladimirova

PhD student in Inria Rhone-Alpes, Master student at MIPT

☑ mariia.vladimirova@inria.fr Intelligent Data Processing 2018, Gaeta, Italy October 8, 2018

Theorem 000 Sparsity 00000

Problem statement

Goal Study deep models properties.

Challenges

- Deep learning models are excessively redundant.
- The model interpretability is lost because of its complexity.
- Uncertainty in the model predictions is hard to estimate.

Solution

Investigate models using Bayesian inference by assuming a prior distribution on their parameters.

Background •O Theorem 000 Sparsity 00000

Bayesian approach

Bayes theorem

$$\pi(\mathbf{w}|\mathcal{D}) = rac{\pi(\mathbf{w})\pi(\mathcal{D}|\mathbf{w})}{\pi(\mathcal{D})}.$$

 $\begin{aligned} \pi(\mathbf{w}|\mathcal{D}) &\text{ is a posterior of model parameters } \mathbf{w} \text{ given data } \mathcal{D} \\ \pi(\mathbf{w}) &\text{ is a prior distribution} \\ \pi(\mathcal{D}|\mathbf{w}) &\text{ is data likelihood} \\ \pi(\mathcal{D}) &\text{ is a normalization constant, evidence, given by} \\ \pi(\mathcal{D}) &= \int \pi(\mathcal{D}|\mathbf{w})\pi(\mathbf{w}) \mathbf{dw}. \end{aligned}$

- $+\,$ allows to obtain the uncertainty of model outcomes
- the posterior becomes intractable for large models
- $\pm\,$ the prior distribution choice

Background O● Theorem 000 Sparsity 00000

Neural network structure

 $\phi(\cdot)$ — nonlinearity, ${\bf g}$ — pre-nonlinearity, ${\bf h}$ — post-nonlinearity

Introduction	Background	Theorem	Sparsity
0	00	•00	00000

Distibution families with respect to tail behavior

 $\|X\|_k = \left(\mathbb{E}|X|^k\right)^{1/k}$, for all $k \in \mathbb{N}$, tail parameter heta > 0

Distribution	Tail	Moments
Sub-Gaussian	$\overline{F}(x) \leq \mathrm{e}^{-\lambda x^2}$	$\ X\ _k \leq C\sqrt{k}$
Sub-Exponential	$\overline{F}(x) \leq \mathrm{e}^{-\lambda x}$	$\ X\ _k \leq Ck$
Sub-Weibull	$\overline{F}(x) \leq \mathrm{e}^{-\lambda x^{1/ heta}}$	$\ X\ _k \leq Ck^{ heta}$

Intr	odı	ıcti	on
0			

Background	
00	

Theorem 000 Sparsity 00000

Assumptions on neural network

To prove that Bayesian neural networks become heavier-tailed with depth we make assumptions on:

Parameters. i.i.d with Gaussian prior

 $\mathbf{w} \sim \mathcal{N}(\mu, \sigma^2).$

Nonlinearity. ReLU-like with envelope property: exist $c, m \ge 0$ s.t.

$$ert \phi(u) ert \ge c_1 + d_1 ert u ert$$
 for all $u \in \mathbb{R}_+$ or $u \in \mathbb{R}_-$,
 $ert \phi(u) ert \le c_2 + d_2 ert u ert$ for all $u \in \mathbb{R}$.

Examples: ReLU, ELU, PReLU etc.

Backgr	ound
00	

Theorem 000

Main theorem

Theorem (Vladimirova, 2018)

Consider a Bayesian neural network with Gaussian parameters and nonlinearity satisfying envelope property. Then a unit of ℓ -th hidden layer $h^{(\ell)}$ follows sub-Weibull distribution with optimal tail parameter $\theta = \ell/2$.

Background 00 Theorem 000 Sparsity •0000

Interpretation: shrinkage effect

Regularized problem:

 $\min_{\mathbf{W}} L(\mathbf{W}) + \lambda R(\mathbf{W}),$

 $L(\mathbf{W})$ is a loss function, $R(\mathbf{W})$ is a norm on \mathbb{R}^{p} , regularizer.

Figure: $\mathcal{L}^{2/\ell}$ -norm unit balls (in dimension 2) for layers $\ell = 1, 2, 3$ and 10.

Background 00 Theorem 000

Sparsity

MAP on weights \boldsymbol{W} is weight decay

Maximum A Posteriori (MAP):

$$\begin{array}{lll} \pi(\mathbf{W}|\mathcal{D}) \sim \pi(\mathbf{W})\pi(\mathcal{D}|\mathbf{W}) & \to & \max\\ -\log \pi(\mathbf{W}) - \log \pi(\mathcal{D}|\mathbf{W}) & \to & \min \end{array}$$

Gaussian prior on the weights:

$$\pi(\mathbf{W}) = \prod_{\ell=1}^{L} \prod_{i,j} e^{-\frac{1}{2}(W_{i,j}^{(\ell)})^2}$$

Equivalent to the *weight decay* penalty (\mathcal{L}^2) :

$$R(\mathbf{W}) = \sum_{\ell=1}^{L} \sum_{i,j} (W_{i,j}^{(\ell)})^2 = \|\mathbf{W}\|_2^2,$$

Background	
00	

Theorem 000

Sparsity

MAP on units \boldsymbol{U} induces sparsity

Marginal distibutions:

weight distribution
$$\ell$$
-th layer unit distribution $\pi(w) \approx e^{-w^2}$ \Rightarrow $\pi^{(\ell)}(u) \approx e^{-u^{2/\ell}}$

Sklar's representation theorem:

$$\pi(\mathbf{U}) = \prod_{\ell=1}^{L} \prod_{m=1}^{H_{\ell}} \pi_m^{(\ell)}(U_m^{(\ell)}) C(F(\mathbf{U})),$$

where C represents the copula of ${\bf U}$ (which characterizes all the dependence between the units).

$$\begin{aligned} R(\mathbf{U}) &= -\sum_{\ell=1}^{L} \sum_{m=1}^{H_{\ell}} \log \pi_{m}^{(\ell)}(U_{m}^{(\ell)}) - \log C(F(\mathbf{U})), \\ &\approx \sum_{\ell=1}^{L} \sum_{m=1}^{H_{\ell}} |U_{m}^{(\ell)}|^{2/\ell} - \log C(F(\mathbf{U})), \\ &\approx \|\mathbf{U}^{(1)}\|_{2}^{2} + \|\mathbf{U}_{1}^{(2)}\|_{1} + \dots + \|\mathbf{U}^{(L)}\|_{2/L}^{2/L} - \log C(F(\mathbf{U})). \end{aligned}$$

Background 00 Theorem 000

Sparsity

MAP on units \boldsymbol{U} induces sparsity

Regularizer:

$$R(\mathbf{U}) \approx \|\mathbf{U}^{(1)}\|_2^2 + \|\mathbf{U}_1^{(2)}\|_1 + \dots + \|\mathbf{U}^{(L)}\|_{2/L}^{2/L} - \log C(F(\mathbf{U})).$$

Comparison of Bayesian neural network shrinkage effect on weights $\boldsymbol{\mathsf{W}}$ and units $\boldsymbol{\mathsf{U}}:$

Layer	Penalty on W	Penalty on	U
1	$\ \mathbf{W}^{(1)}\ _2^2$, \mathcal{L}^2	$\ {f U}^{(1)} \ _2^2$	\mathcal{L}^2 (weight decay)
2	$\ \mathbf{W}^{(2)} \ _2^2$, \mathcal{L}^2	$\ \mathbf{U}^{(2)}\ $	\mathcal{L}^1 (Lasso)
l	$\ \mathbf{W}^{(\ell)}\ _2^2$, \mathcal{L}^2	$\ {f U}^{(\ell)} \ _{2/\ell}^{2/\ell}$	$\mathcal{L}^{2/\ell}$

Intro	duc	tion	
0			

Background
00

Theorem 000 Sparsity 00000

Conclusion

- (i) We define the notion of *sub-Weibull* distributions, which are characterized by tails lighter than (or equally light as) Weibull distributions.
- (ii) We proved that the marginal prior distribution of the units are *heavier-tailed* as depth increases.
- (iii) We offer an interpretation from a *sparsity-inducing viewpoint*.

Future directions:

- a precise description of the copula would provide valuable information about the dependence between the units;
- an interpretation of our result in terms of the full posterior distribution would give an ability to uncertainty;
- Bayesian deep neural networks distributional properties and their sparsifying mechanisms.

