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K-nearest neighbours

Classification using k nearest neighbours

© Find k closest objects to the predicted object x in the training
set.

@ Associate x the most frequent class among its k neighbours.

@ Regression case: targets of nearest neighbours are averaged
@ k = 1: nearest neighbour algorithm?
@ Base assumption of the method?:

e similar objects yield similar outputs

Ywhat will happen for K = N?
2what is simpler - to train K-NN model or to apply it?
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K-NN illustration

Classification:
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K-NN illustration

Classification: Regression:
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Sample dataset

Sample dataset
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K-NN decision regions (K=1)
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K-NN decision regions (K=3)
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K-NN decision regions (K=5)
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K-NN decision regions (K=10)
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K-NN decision regions (K=100)
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Example: K-NN regression

K-NN regression, K = 1

true relationship
prediction
data

,Lﬁl'

true relationship
prediction
data

. . .
S . o

K-NN regression, K = 25
.

true relationship
prediction
data
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Parameters of the method

@ Parameters:

o the number of nearest neighbours K
o distance metric p(x, y)

o Modifications:

o forecast rejection option3
e variable K*

3Propose a rule, under what conditions to apply rejection in a) classifica-
tion b) regression
*Propose a method of K-NN with adaptive variable K in different parts
of the feature space
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Properties

o Advantages:

e only similarity between objects is needed, not exact feature
values.

@ so it may be applied to objects with arbitrary complex feature
description

e simple to implement
o interpretable (case based reasoning)
e does not need training

e may be applied in online scenarios
o Cross-validation may be replaced with LOO.

o Disadvantages:

o slow classification with complexity O(N)
e accuracy deteriorates with the increase of feature space
dimensionality
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The curse of dimensionality

@ The curse of dimensionality: with growing D data distribution
becomes sparse and insufficient.
e Example: histogram estimation®

80
70|
60
50
0]
30|
20|
10

0|

®At what rate should training size grow with increase of D to compensate

curse of dimensionality?
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Curse of dimensionality

e Case of K-nearest neigbours:

assumption: objects are distributed uniformly in feature space

o ball of radius R has volume V(R) = CRP, where
D/2
€ = monm-
e ratio of volumes of balls with radius R — ¢ and R:

V(VR(’;)E) _ (R;s)D Do

most of volume concentrates on the border of the ball, so
there lie the nearest neighbours.
nearest neighbours stop being close by distance

@ Good news: in real tasks the true dimensionality of the data is
often less than D and objects belong to the manifold with
smaller dimensionality.
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Dealing with similar rank

When several classes get the same rank, we can assign to class:
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Dealing with similar rank

When several classes get the same rank, we can assign to class:
@ with higher prior probability
@ having closest representative

@ having closest mean of representatives (among nearest
neighbours)

@ which is more compact, having nearest most distant
representative
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Distance metric selection

@ Baseline case - Euclidean metric

@ Necessary to normalize features.

o Define y;, o}, L;, U; to be mean value, standard deviation,
minimum and maximum value of the j-th feature.

Name Transformation | Properties of resulting feature
Autoscaling XJ/ = X’;—“’ zero mean and unit variance.
4
. ;- xi—L; .
Range scaling Xj = UJJ—LJJ belongs to [0, 1] interval.
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Normalization of features

@ Non-linear transformations incorporating features with rare
large values:

o x! = log(x;)
o xI=xP,0<p<1
e For Fi(a) = P(x' < a) transformation X' — F;(x') will give
feature uniformly distributed on [0, 1]°.

8Prove that
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Distance metric selection’

Metric d(x,z)
Euclidean Z,-Dzl(xi — zi)?
Ly Y2~ 2y
Lo max;=12,..0 |Xi - Zi|
L S Ix =7
Canberra ol L2, K ;:‘
Lance-Williams %

"Plot iso-lines for L1, La, Loy metricsiaes
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Other frequently used measures

@ Cosine metric®
<X7 Z> ZIDZ]. Xizi

Ml /58, oy o2, @

s(x,z) =

@ Jaccard metric?10

AN B
f(AB)= 4 Tg

Bls it a measure of distance or a measure of similarity? Use (x,z) =
x|l |z|] cos(a) where « - is the angle between x and y.
o

Is it a measure of distance or a measure of similarity?
10Compare qualitively cosine and Jaccard measures for binary encoded sets.
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Whitening transformation

o x~ F(u,X), p=E[u], £ = cov(x,x), n € RP, ¥ ¢ RPxP

e Whitening transformation:
z=T72(x — p)

o Properties'!:
Ez =0, cov[z,z] = I.

1prove them
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distance)

(A): object in initial feature space with Mahalonobis sphere
Go = {x: pm(x, p) = a}.

(B): the image of objects and sphere in normalized space
(Im[Gy] = {z: pe(z,0) = a}.

(A) (B)
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Distance between normalized feature vectors

@ Distance between normalized x and x’ is equal to Euclidean
distance between z = ¥ 1/2(x — p) and 2/ = L 2(X' — p):

om(x,x") = pe(z,2) \/(z—z (z—2)=
— \/(X _ X/)Tz—1/2z—1/2(x _ X/)

= \/(X —x) T (x —x')

@ This is known as Mahalonobis distance'?.

12
How will Mahalanobis distance look like when features are uncorrelated?
Interpret the result.
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Let training set x1, X2, ...xy be rearranged to x;;, X;,, ...x;, by
increasing distance to the test pattern x:

d(x,xi) < d(x,x;,) < ... <d(x,x;,).

Define Z1 = Xjyy 22 = Xjpy oo ZK = Xijg-

Usual K-NN algorithm can be defined, using C discriminant
functions:

K
g8c(x)=> Izx €wl, c¢=1,2,..C.
k=1

25/36



K-NN - Victor Kitov
Weighted voting

Let training set x1, X2, ...xy be rearranged to x;;, X;,, ...x;, by
increasing distance to the test pattern x:

d(x,xi) < d(x,x;,) < ... <d(x,x;,).

Define Z1 = Xjyy 22 = Xjpy oo ZK = Xijg-

Usual K-NN algorithm can be defined, using C discriminant
functions:

K
x) = Z]I[zk cwel], c=12 ..C.
Weighted K-NN algorithm uses weighted voting scheme:
K
ZW (k, d(x,z))[zx € we], c¢=1,2,...C.
k=1
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Commonly chosen weights

Index dependent weights:
we = ok, ae(0,1)

K+1—k
wy = ———

Distance dependent weights:
d(zk ,x)—d(z,x
w, = [TESGES o) # d(a)
1 d(zk,x) = d(z1, x)

1
d(zy, x)

Wy =
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K-NN decision regions (K=1, weights=1/distance)
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K-NN decision regions (K=3, weights=1/distance)
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K-NN decision regions (K=5, weights=1/distance)
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K-NN decision regions (K=10, weights=1/distance)
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K-NN decision regions (K=30, weights=1/distance)
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K-NN decision regions (K=100, weights=1/distance)
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Example: K-NN regression with weights

K-NN regression, K = 1, weights = 1/distance)

true relationship
prediction
data

_Lgd"

true relationship
prediction
data

_-\(‘!'

true relationship
prediction
data
A
.
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Margin definition

e Consider the training set: (xi, 1), (x2, &), ...(xn, cn), where ¢;
is the correct class for object x;, and C ={1,2,...C} - is the
set of all classes.

@ Define the margin:

M(xi, ci) = ge(xi) — oo _}gc(Xi)

e margin is negative <=> object x; was incorrectly classified
o the value of margin shows how much the classifier is inclined
to vote for class ¢;
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Categorization of objects based on margin

Margin

0.8 1

0.6 1

0.4 border objects

- | @D

-0.2 4

-0.6 1

well classified objects

o

20 40 60 80 100 120 140 160 180 200 i

Good classifier should:

@ minimize the number of negative margin region
o classify correctly with high margin
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Alternative to K-NN: Parzen window method!3

Parzen window method:

N
F(X) =arg Teag/(Z]I[y,, =ylK <p(hx(’):;")>
n=1

@ Selection of h(x):

e h(x) = const
o h(x) = p(x, zk), where zx - K-th nearest neighbour.

o better for unequal distribution of objects

13
Under what selection of K(u) and h(x) will Parzen window reduce to
simple K-NN?
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