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K-nearest neighbours

Classi�cation using k nearest neighbours

1 Find k closest objects to the predicted object x in the training
set.

2 Associate x the most frequent class among its k neighbours.

Regression case: targets of nearest neighbours are averaged

k = 1: nearest neighbour algorithm1

Base assumption of the method2:

similar objects yield similar outputs

1what will happen for K = N?
2what is simpler - to train K-NN model or to apply it?
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K-NN illustration

Classi�cation:

Regression:

3/36



K-NN - Victor Kitov

Basic variant of K-NN

K-NN illustration

Classi�cation: Regression:

3/36



K-NN - Victor Kitov

Basic variant of K-NN

Sample dataset
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Example: K-NN classi�cation
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Example: K-NN regression
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Parameters of the method

Parameters:

the number of nearest neighbours K
distance metric ρ(x , y)

Modi�cations:

forecast rejection option3

variable K 4

3Propose a rule, under what conditions to apply rejection in a) classi�ca-
tion b) regression

4Propose a method of K-NN with adaptive variable K in di�erent parts
of the feature space
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Properties

Advantages:

only similarity between objects is needed, not exact feature
values.

so it may be applied to objects with arbitrary complex feature
description

simple to implement
interpretable (case based reasoning)
does not need training

may be applied in online scenarios
Cross-validation may be replaced with LOO.

Disadvantages:

slow classi�cation with complexity O(N)
accuracy deteriorates with the increase of feature space
dimensionality
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The curse of dimensionality

The curse of dimensionality: with growing D data distribution
becomes sparse and insu�cient.
Example: histogram estimation5

5At what rate should training size grow with increase of D to compensate
curse of dimensionality?
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Curse of dimensionality

Case of K-nearest neigbours:

assumption: objects are distributed uniformly in feature space
ball of radius R has volume V (R) = CRD , where

C = πD/2

Γ(D/2+1) .

ratio of volumes of balls with radius R − ε and R:

V (R − ε)

V (R)
=

(
R − ε
R

)D
D→∞−→ 0

most of volume concentrates on the border of the ball, so
there lie the nearest neighbours.
nearest neighbours stop being close by distance

Good news: in real tasks the true dimensionality of the data is
often less than D and objects belong to the manifold with
smaller dimensionality.
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Dealing with similar rank

When several classes get the same rank, we can assign to class:

with higher prior probability

having closest representative

having closest mean of representatives (among nearest
neighbours)

which is more compact, having nearest most distant
representative
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Distance metric selection

Baseline case - Euclidean metric

Necessary to normalize features.

De�ne µj , σj , Lj , Uj to be mean value, standard deviation,
minimum and maximum value of the j-th feature.

Name Transformation Properties of resulting feature

Autoscaling x ′j =
xj−µj
σj

zero mean and unit variance.

Range scaling x ′j =
xj−Lj
Uj−Lj belongs to [0, 1] interval.
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Normalization of features

Non-linear transformations incorporating features with rare
large values:

x ′i = log(xi )
x ′i = xp, 0 ≤ p < 1

For Fi (α) = P(x i ≤ α) transformation x̃ i → Fi (x
i ) will give

feature uniformly distributed on [0, 1]6.

6Prove that
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Distance metric selection7

Metric d(x, z)

Euclidean
√∑D

i=1
(x i − z i )2

Lp
p

√∑D
i=1

(x i − z i )p

L∞ maxi=1,2,...D |x i − z i |

L1
∑D

i=1
|x i − z i |

Canberra 1

D

∑D
i=1

|x i−z i |
|x i+z i |

Lance-Williams
∑D

i=1 |x i−z i |∑D
i=1|x i+z i |

7Plot iso-lines for L1, L2, L∞ metrics.19/36
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Other frequently used measures

1 Cosine metric8

s(x , z) =
〈x , z〉
‖x‖ ‖z‖

=

∑D
i=1

x iz i√∑D
i=1

(x i )2
√∑D

i=1
(z i )2

2 Jaccard metric910

f (A,B) =
|A ∩ B|
|A ∪ B|

8Is it a measure of distance or a measure of similarity? Use 〈x , z〉 =
‖x‖ ‖z‖ cos(α) where α - is the angle between x and y .

9

Is it a measure of distance or a measure of similarity?
10Compare qualitively cosine and Jaccard measures for binary encoded sets.
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Whitening transformation

x ∼ F (µ,Σ), µ = E[µ], Σ = cov(x , x), µ ∈ RD , Σ ∈ RDxD

Whitening transformation:

z = Σ−1/2(x − µ)

Properties11:
Ez = 0, cov [z , z ] = I .

11Prove them
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Distance metric selection

Distance between whitened objects (Mahalanobis
distance)

(A): object in initial feature space with Mahalonobis sphere
Gα = {x : ρM(x , µ) = α}.

(B): the image of objects and sphere in normalized space
(Im[Gα] = {z : ρE (z , 0) = α}.
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Distance between normalized feature vectors

Distance between normalized x and x ′ is equal to Euclidean
distance between z = Σ−1/2(x − µ) and z ′ = Σ−1/2(x ′ − µ):

ρM(x , x ′) = ρE (z , z ′) =
√

(z − z ′)T (z − z ′) =

=
√

(x − x ′)TΣ−1/2Σ−1/2(x − x ′)

=
√

(x − x ′)TΣ−1(x − x ′)

This is known as Mahalonobis distance12.

12

How will Mahalanobis distance look like when features are uncorrelated?
Interpret the result.
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Weighted voting

Let training set x1, x2, ...xN be rearranged to xi1 , xi2 , ...xiN by
increasing distance to the test pattern x :
d(x , xi1) ≤ d(x , xi2) ≤ ... ≤ d(x , xiN ).
De�ne z1 = xi1 , z2 = xi2 , ...zK = xiK .
Usual K-NN algorithm can be de�ned, using C discriminant
functions:

gc(x) =
K∑

k=1

I[zk ∈ ωc ], c = 1, 2, ...C .

Weighted K-NN algorithm uses weighted voting scheme:

gc(x) =
K∑

k=1

w(k , d(x , zk))I[zk ∈ ωc ], c = 1, 2, ...C .
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Commonly chosen weights

Index dependent weights:

wk = αk , α ∈ (0, 1)

wk =
K + 1− k

K

Distance dependent weights:

wk =

{
d(zK ,x)−d(zk ,x)
d(zK ,x)−d(z1,x) , d(zK , x) 6= d(z1, x)

1 d(zK , x) = d(z1, x)

wk =
1

d(zk , x)
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Example: K-NN classi�cation with weights
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Example: K-NN classi�cation with weights
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Weighted voting

Example: K-NN regression with weights
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Margin de�nition

Consider the training set: (x1, c1), (x2, c2), ...(xN , cN), where ci
is the correct class for object xi , and C = {1, 2, ...C} - is the
set of all classes.

De�ne the margin:

M(xi , ci ) = gci (xi )− max
c∈C\{ci}

gc(xi )

margin is negative <=> object xi was incorrectly classi�ed
the value of margin shows how much the classi�er is inclined
to vote for class ci
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Categorization of objects based on margin

Good classi�er should:

minimize the number of negative margin region
classify correctly with high margin

35/36



K-NN - Victor Kitov

Weighted voting

Alternative to K-NN: Parzen window method13

Parzen window method:

f̂ (x) = argmax
y∈Y

N∑
n=1

I[yn = y ]K

(
ρ(x , xn)

h(x)

)

Selection of h(x):

h(x) = const
h(x) = ρ(x , zK ), where zK - K -th nearest neighbour.

better for unequal distribution of objects

13

Under what selection of K(u) and h(x) will Parzen window reduce to
simple K-NN?
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