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General optimization problem for many Mahine Learning tasks

Given: a training set of objets {xi}
ℓ
i=1

Find: parameters w of the preditive model a(x ,w)

Minimize the empirial risk

ℓ∑

i=1

Li (w) → min
w

where Li(w) is a loss funtion of the model a(x ,w) at the objet xi

More generally, minimize the regularized empirial risk

ℓ∑

i=1

Li (w) +

r∑

j=1

τjRj(w) → min
w

where Rj is regularization riterion, τj is regularization oe�ient
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Regression as optimization problem

Given: a training set of objets (xi , yi )
ℓ
i=1, yi ∈ R

Find: parameters w of the regression model a(x ,w)

Minimize the empirial risk

ℓ∑

i=1

L
(
a(xi ,w)− yi

)
→ min

w

Unimodal loss funtion L (ε) of the di�erene ε = a(x ,w)− y :
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Classi�ation as optimization problem

Given: a training set of objets (xi , yi )
ℓ
i=1, yi ∈ {−1,+1}

Find: w of the lassi�ation model a(x ,w) = sign g(x ,w)

Minimize the empirial risk

ℓ∑

i=1

[
g(xi ,w)yi < 0

]
6

ℓ∑

i=1

L
(
g(xi ,w)yi

)
→ min

w

Dereasing loss funtion L (µ) of the margin µ = g(x ,w)y :
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Multi-lass lassi�ation as optimization problem

Given: a training set of objets (xi , yi )
ℓ
i=1, yi ∈ Y , |Y | < ∞

Find: wy of the lassi�ation model a(x ,w) = argmax
y∈Y

g(xi ,wy )

The model of the lass probability for a given objet:

P(y |x ,w) =
exp g(x ,wy )

∑

z∈Y

exp g(x ,wz )
= SoftMax

y∈Y
g(x ,wy ), y ∈ Y

where SoftMax: RY → R
Y
is a smooth transformation of a vetor

into a normalized vetor of a disrete distribution.

Maximize the log-likelihood of the data (log-loss):

−

ℓ∑

i=1

lnP(yi |xi ,w) → min
w
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Regularizers that penalize the omplexity of a linear model

Regularizer is an additive omplexity penalty to the main riterion:

ℓ∑

i=1

L
(
〈xi ,w〉, yi

)
+ τ penalty(w) → min

w

where L (a, y) is a loss funtion, τ is regularization oe�ient

L2-regularization (ridge regression, SVM):

penalty(w) = ‖w‖22 =
n∑

j=1
w2
j .

L1-regularization (LASSO, ElastiNet for feature seletion):

penalty(w) = ‖w‖1 =
n∑

j=1
|wj |.

L0-regularization (Akaike/Bayes Information Criteria AIC/BIC):

penalty(w) = ‖w‖0 =
n∑

j=1

[
wj 6= 0

]
.
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Non-smooth regularizers for feature seletion

A general form of a regularizer with seletivity parameter µ:

ℓ∑

i=1

L
(
〈xi ,w〉, yi

)
+ τ

n∑

j=1

Rµ(wj) → min
w

.

Regularizer with grouping e�et for multi-ollinear features:

Elasti Net: Rµ(w) = µ|w |+ w2

Support Features Mahine (SFM):

Rµ(w) =

{

2µ|w |, |w | 6 µ;

µ2 + w2, |w | > µ;

Relevane Features Mahine (RFM):

Rµ(w) = ln
(
µw2 + 1

)
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Learning to Rank

Given: a training set of objets {xi}
ℓ
i=1

i ≺ j � partial order relation on objet pairs (xi , xj)

Find: parameters w of the ranking model a(x ,w)

i ≺ j ⇒ a(xi ,w) < a(xj ,w)

Minimize number of misordered pairs (xi , xj) or approximated
pairwise empirial risk:

∑

i≺j

[
a(xj ,w) < a(xi ,w)

]
6

∑

i≺j

L
(
a(xj ,w)− a(xi ,w)
︸ ︷︷ ︸

µij (w)

)
→ min

w

where L (µ) is a dereasing loss funtion of pairwise margin µij(w)
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Density Estimation

Given: a training set of objets {xi}
ℓ
i=1

Find: parameters θ of the density model p(x |θ)

Minimize Likelihood Estimation (MLE)

ℓ∑

i=1

ln p(xi |θ) → max
θ

or Maximum A Posteriori (MAP) estimation:

ℓ∑

i=1

ln p(xi |θ) + ln p(θ|γ) → max
θ

where γ is a hyperparameter of a prior distribution
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Mixture Density Estimation

Given: a training set of objets {xi}
ℓ
i=1

Find: parameters wj , θj of the mixture p(x |θ,w) =
K∑

j=1

wjp(x |θj)

Minimize Likelihood Estimation (MLE)

ℓ∑

i=1

ln p(xi |θ,w) → max
θ,w

or Maximum A Posteriori (MAP) estimation:

ℓ∑

i=1

ln p(xi |θ,w) + ln p(θ,w |γ) → max
θ,w

where γ is a hyperparameter of a prior distribution
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Clustering

Given: a training set of objets {xi ∈ R
n : i = 1, . . . , ℓ}

Find:

� enters of lusters µj ∈ R
n
, j = 1, . . . ,K

� what luster ai ∈ {1, . . . ,K} eah objet xi pertains to

Minimize the average intra-luster distanes:

ℓ∑

i=1

‖xi − µai‖
2 → min

{ai}, {µj}

in the ase of the Eulidean metri

‖xi − µj‖
2 =

n∑

d=1

(
xid − µjd

)2
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Semi-Supervised Learning

Given: labeled (xi , yi )
k
i=1 and unlabeled (xi )

ℓ
i=k+1 data

Find: lassi�ation (ai )
ℓ
i=k+1 of unlabeled objets

Minimize the ombined lustering/lassi�ation riterion:

with no lassi�ation model (Transdutive Learning):

ℓ∑

i=1

‖xi − µai‖
2 + λ

k∑

i=1

[
ai 6= yi

]
→ min

{ai}, {µj}

with lassi�ation model, ai = a(xi ,w):

ℓ∑

i=1

‖xi − µai‖
2 + λ

k∑

i=1

L (a(xi ,w), yi ) → min
{ai}, {µj}, w
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Transdutive Learning of a margin-based lassi�er

µi (w) = g(xi ,w)yi is margin of the xi objet

loss funtion L (µ) = (1− µ)+
penalizes labeled objets

for margin dereasing

loss funtion L (µ) =
(
1− |µ|

)

+
penalizes unlabeled objets

for falling into the gap between lasses
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Minimize the ombined lustering/lassi�ation riterion:

k∑

i=1

(
1− µi(w)

)

+
+ γ

ℓ∑

i=k+1

(
1− |µi (w)|

)

+
→ min

w
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Low-rank matrix fatorization

Generation of better feature vetor representation of objets

Reovering missing values in a matrix

Given Z = ‖zij‖n×m matrix, (i , j) ∈ Ω ⊆ {1..n} × {1..m}

Find: matrixes X = ‖xit‖n×k è Y = ‖ytj‖k×m

Minimize

∥
∥Z − XY

∥
∥ =

∑

(i ,j)∈Ω

L

(

zij −
∑

t

xitytj

)

→ min
X ,Y

Why the lassi SVD is abandoned in pratie:

non-square loss funtion L

non-negative matrix fatorization: xit > 0, ytj > 0

sparse data: |Ω| ≪ nm

orthogonality is unneessary or not interpretable
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Autoenoders: unsupervised learning

Given a training set of objets {xi}
ℓ
i=1

Find:

enoder f : X→Z that produes ode vetor z= f (x , α)
deoder g : Z→X that reonstruts vetor x̂=g(z , β) from z

Minimize

the reonstrution error under square loss L (x̂ , x) = ‖x̂ − x‖2:

ℓ∑

i=1

L
(
g(f (xi , α), β), xi

)
→ min

α,β

Examples of autoenoders:

f (x ,A) = A
m×n

x , g(z ,B) = B
n×m

z � linear

f (x ,A) = σ(Ax), g(z ,B) = σ(Bz) � neural
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Autoenoders for supervised learning

Given labeled (xi , yi )
k
i=1 and unlabeled (xi )

ℓ
i=k+1 data

Find:

zi = f (xi , α) � enoder

x̂i = g(zi , β) � deoder

ŷi = ŷ(zi , γ) � preditor

Loss funtion:

L (x̂i , xi ) � for reonstrution

L̃ (ŷi , yi ) � for predition

Minimize the ombined reonstrution/predition riterion:

ℓ∑

i=1

L
(
g(f (xi , α), β), xi

)
+ λ

k∑

i=1

L̃ (ŷ(f (xi , α), γ), yi ) → min
α,β,γ

Dor Bank, Noam Koenigstein, Raja Giryes. Autoenoders. 2020
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Graph Fatorization

Given a set (i , j) ∈ E of edges of the graph 〈V ,E 〉,
similarities Sij between verties of the edge (i , j)

For example, Sij = [(i , j) ∈ E ] is binary adjaeny matrix

Find: vetor representation (embedding) of verties suh that

adjaent verties would have similar vetors

Minimize the reonstrution error of graph edges:

in the ase of undireted graph and symmetri S matrix

∑

(i ,j)∈E

(
〈zi , zj〉 − Sij

)2
→ min

Z
, Z ∈ R

V×d

in the ase of direted graph and asymmetri S matrix

∑

(i ,j)∈E

(
〈ϕi , θj〉 − Sij

)2
→ min

Φ,Θ
, Φ,Θ ∈ R

V×d

I.Chami et al. Mahine learning on graphs: a model and omprehensive taxonomy. 2020.
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GraphEDM: a big family of graph autoenoders

Graph Enoder Deoder Model generalizes more than 30 models:

W ∈ R
V×V

is input data about edges

X ∈ R
V×n

is input feature data about verties

Z ∈ R
V×d

is vetor representation (embedding) of verties

DEC(Z ; ΘD) is deoder reonstruting the edge data

DEC(Z ; ΘS) is deoder solving an applied supervised task

yS is (semi-)supervised data about verties or edges

L is loss funtion

I.Chami et al. Mahine learning on graphs: a model and omprehensive taxonomy. 2020.
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Pre-training of neural networks

Convolutional Neural Network (CNN) for image lassi�ation:

z = f (x , α) is onvolutional layers for image vetorization

y = g(z , β) is feedforward layers for vetor lassi�ation

Jason Yosinski, Je� Clune, Yoshua Bengio, Hod Lipson. How transferable are features

in deep neural networks? 2014.
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Transfer learning

f (x , α) is the universal part of the model (objet vetorization)
g(x , β) is a spei� part of the model targeted for an applied task

Base task on a dataset {xi}
ℓ
i=1 with loss Li :

ℓ∑

i=1

Li

(
f (xi , α), g(xi , β)

)
→ min

α,β

Target task on another dataset {x ′i }
m
i=1, with another L ′

i , g
′
:

m∑

i=1
L

′
i

(
f (x ′i , α), g

′(x ′i , β
′)
)

→ min
β′

if m ≪ ℓ then pre-training vetorizer f (xi , α) ould be better than

m∑

i=1
L

′
i

(
f (x ′i , α), g

′(x ′i , β
′)
)

→ min
α,β′

Sinno Jialin Pan, Qiang Yang. A Survey on Transfer Learning. 2009
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Multi-task learning

f (x , α) is the universal part of the model (objet vetorization)
gt(x , β) is a spei� part of the model targeted for the task t ∈ T

Joint training of the model f from datasets Xt of tasks t ∈ T :

∑

t∈T

∑

i∈Xt

Lti

(
f (xti , α), gt (xti , βt)

)
→ min

α,{βt}

The property of learnability: we learn the task 〈Xt ,Lt , gt〉 better
by augmenting data size |Xt |

Learning to learn: we learn eah of the tasks 〈Xt ,Lt , gt〉 better
by augmenting the number of tasks |T |

Few-shot learning: to solve the problem t, a small number

of examples may be enough, sometimes even one

M.Crawshaw. Multi-task learning with deep neural networks: a survey. 2020

Y.Wang et al. Generalizing from a few examples: a survey on few-shot learning. 2020
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Foundation Models

Multi-task learnable data vetorization is a reent trend in AI/ML

R.Bommasani et al. (Center for Researh on Foundation Models, Stanford University)

On the opportunities and risks of foundation models // CoRR, 20 August 2021.
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Distillation and surrogate modeling

Learning a resoure intensive heavy model a(x ,w)

ℓ∑

i=1
L

(
a(xi ,w), yi

)
→ min

w

Learning a light model b(x ,w ′), possibly on other dataset

k∑

i=1
L

(
b(x ′i ,w

′), a(x ′i ,w)
)

→ min
w ′

Examples:

approximation of a heavy model, whih is alulated on

a superomputer for months (limate, aerodynamis, et.),

by a light surrogate model

approximation of a heavy neural network whih learns for

weeks on big data, by a light neural network with fewer

neurons and onnetions
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Learning Using Privileged Information (LUPI)

x∗i � information about xi available only for training

Student model and teaher model are learned separately:

ℓ∑

i=1

L
(
a(xi ,w), yi

)
→ min

w

ℓ∑

i=1

L
(
a(x∗i ,w

∗), yi
)
→ min

w

Student model learns from responses of the teaher model:

ℓ∑

i=1
L

(
a(xi ,w), yi

)
+ µL

(
a(xi ,w), a(x∗i ,w

∗)
)

→ min
w

Student model and teaher model are learned together:

ℓ∑

i=1
L

(
a(xi ,w), yi

)
+ λL

(
a(x∗i ,w

∗), yi
)
+

+ µL
(
a(xi ,w), a(x∗i ,w

∗)
)

→ min
w ,w∗

D.Lopez-Paz, L.Bottou, B.Sholkopf, V.Vapnik. Unifying distillation and privileged

information. 2016.
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Generative Adversarial Net (GAN)

Generator G (z) learns to generate realisti objets x from noise z

Disriminator D(x) learns to distinguish is objet real or fake

Antonia Creswell et al. Generative Adversarial Networks: an overview. 2017.

Zhengwei Wang et al. Generative Adversarial Networks: a survey and taxonomy. 2019.

Chris Niholson. A Beginner's Guide to Generative Adversarial Networks.

https://pathmind.om/wiki/generative-adversarial-network-gan. 2019.

K.V. Vorontsov (voron�foresys.ru) Optimization Problems in Mahine Learning 26 / 30



Supervised Learning

Unsupervised Learning

Multiriteria and Multimodel Learning

Transfer Learning and Multi-task Learning

Learning a model from another model

Generative Adversarial Net

Generative Adversarial Net (GAN)

Given a training set of objets {xi}
ℓ
i=1

Find two probabilisti models:

model G (z , α) generates x ∼ p(x |z , α) from noise z

model D(x , β) = p(1|x , β) reognizes if objet x is real

Minimax in the antagonisti game of generator vs. disriminator:

disriminator D(x , β) learns to maximize log-likelihood

in order to better distinguish real objet x from the fake one

generator G (z , α) learns to minimize log-likelihood

in order to generate realisti objets x
ℓ∑

i=1

lnD(xi , β) + ln
(
1− D(G (zi , α), β)

)
→ max

β
min
α

Ian Goodfellow et al. Generative Adversarial Nets. 2014
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Examples of how GAN generates realisti image and video

Chuan Li, Mihael Wand. Preomputed Real-Time Texture Synthesis with Markovian

Generative Adversarial Networks. 2016.

Xiaoxing Zeng, Xiaojiang Peng, Yu Qiao. DF2Net: A Dense Fine Finer Network for

Detailed 3D Fae Reonstrution. ICCV-2019.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dane Now.

ICCV-2019.
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Optimization riteria indue a typology of ML tasks

1

Ïðåäâàðèòåëüíàÿ îáðàáîòêà (data preparation)

èçâëå÷åíèå ïðèçíàêîâ (feature extration)

îòáîð ïðèçíàêîâ (feature seletion)

âîññòàíîâëåíèå ïðîïóñêîâ (missing values)

�èëüòðàöèÿ âûáðîñîâ (outlier detetion)

2

Îáó÷åíèå ñ ó÷èòåëåì (supervised learning)

êëàññè�èêàöèÿ (lassi�ation)

ðåãðåññèÿ (regression)

ðàíæèðîâàíèå (learning to rank)

ïðîãíîçèðîâàíèå (foreasting)

3

Îáó÷åíèå áåç ó÷èòåëÿ (unsupervised learning)

êëàñòåðèçàöèÿ (lustering)

âîññòàíîâëåíèå ïëîòíîñòè (density estimation)

ïîèñê àññîöèàòèâíûõ ïðàâèë (assoiation rule learning)

îäíîêëàññîâàÿ êëàññè�èêàöèÿ (anomaly detetion)

4

×àñòè÷íîå îáó÷åíèå (semi-supervised learning)

òðàíñäóêòèâíîå îáó÷åíèå (transdutive learning)

îáó÷åíèå ñ ïîëîæèòåëüíûìè ïðèìåðàìè (PU-learning)



Optimization riteria indue a typology of ML tasks

5

Îáó÷åíèå ïðåäñòàâëåíèé (representation learning)

îáó÷åíèå ïðèçíàêîâ (feature learning)

ìàòðè÷íûå ðàçëîæåíèÿ (matrix fatorization)

îáó÷åíèå ìíîãîîáðàçèé (manifold learning)

6

�ëóáîêîå îáó÷åíèå (deep learning)

7

Îáó÷åíèå áëèçîñòè/ñâÿçåé (similarity/relational learning)

8

Ïåðåíîñ îáó÷åíèÿ (transfer learning)

9

Ìíîãîçàäà÷íîå îáó÷åíèå (multitask learning)

10

Ïðèâèëåãèðîâàííîå îáó÷åíèå (privileged learning, distilling)

11

Ñîñòÿçàòåëüíîå îáó÷åíèå (adversarial learning)

12

Îáó÷åíèå ñòðóêòóðû ìîäåëè (struture learning)

13

Äèíàìè÷åñêîå îáó÷åíèå (online/inremental learning)

14

Àêòèâíîå îáó÷åíèå (ative learning)

15

Îáó÷åíèå ñ ïîäêðåïëåíèåì (reinforement learning)

16

Ìåòà-îáó÷åíèå (meta-learning, AutoML)
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