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@ Supervised Learning
@ Regression and Classification
@ Regularization
@ Learning to Rank

© Unsupervised Learning
@ Density Estimation
@ Clustering and Semi-Supervised Learning
@ Representation Learning and Autoencoders

© Multicriteria and Multimodel Learning
@ Transfer Learning and Multi-task Learning
@ Learning a model from another model
@ Generative Adversarial Net



Supervised Learning Regression and Classification
Regularization
Learning to Rank

General optimization problem for many Machine Learning tasks

Given: a training set of objects {x;}¢_,
Find: parameters w of the predictive model a(x, w)

Minimize the empirical risk

where L;j(w) is a loss function of the model a(x, w) at the object x;
More generally, minimize the regularized empirical risk

l r

D Liw)+ ) 7Ri(w) — min
j=1

i=1

where R; is regularization criterion, 7; is regularization coefficient
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Supervised Learning

Regression and Classification
Regularization
Learning to Rank

Regression as optimization problem

Given: a training set of objects (x;,yi)_;, yi € R

Find: parameters w of the regression model a(x, w)

Minimize the empirical risk

1
Zf(a(x,-, w) —y,-) — min
i=1

Unimodal loss function .Z(¢) of the difference ¢ = a(x, w) — y:
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Supervised Learning Regression and Classification
Regularization
Learning to Rank

Classification as optimization problem

Given: a training set of objects (x;,y)f_;, vi € {—1,+1}
Find: w of the classification model a(x, w) = sign g(x, w)

Minimize the empirical risk

l l
> lalxi-w)yi < 0] < Z(g(xi,w)y;) — min
w
i=1 i=1
Decreasing loss function .Z(1) of the margin p = g(x, w)y:
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Supervised Learning Regression and Classification
Regularization
Learning to Rank

Multi-class classification as optimization problem

Given: a training set of objects (x;,y;)f_y, vi €Y, |Y] <o

Find: w, of the classification model a(x, w) = arg ma\>/<g(x,-, wy )
ye

The model of the class probability for a given object:

exp g(x, wy)
P = = SoftM Y
(y|x, w) S expg(x, W) oyeyaxg(x, wy), yE€E
zeY

where SoftMax: RY — RY is a smooth transformation of a vector
into a normalized vector of a discrete distribution.

Maximize the log-likelihood of the data (log-loss):

¢
—Zln P(yilxi,w) — min
i=1

w
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Supervised Learning Regression and Classification
Regularization
Learning to Rank

Regularizers that penalize the complexity of a linear model

Regularizer is an additive complexity penalty to the main criterion:

Z.ﬂ Xj, W), yi) + T penalty(w) — min

where .i”(a,y) is a loss function, 7 is regularization coefficient

Ly-regularization (ridge regression, SVM):
penalty(w) = [} = 3~ v/

L;-regularization (LASSO, ElasticNet for feature selection):
penalty(w) = [l = 3 .

Lo-regularization (Akaike/Bayes Information Criteria AIC/BIC):
penalty(w) = lwllo = 3 [w; 0]

J=1
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Supervised Learning Regression and Classification
Regularization
Learning to Rank

Non-smooth regularizers for feature selection

A general form of a regularizer with selectivity parameter p:

Zﬁ Xiy W), Yi —i—TZR (wj) — m|n

j=1

Regularizer with grouping effect for multi-collinear features:

Elastic Net: RM(W) = ulw| + w2 -
Support Features Machine (SFM):
2ulwl,  |wl<p; E
Ru(w) =14 7, ) _ :

p2 w2, ) > g

\/

Relevance Features Machine (RFM):
R.(w) = In(,uw2 + 1)

5 4 2 0 2 & &
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Supervised Learning Regression and Classification
Regularization
Learning to Rank

Learning to Rank

Given: a training set of objects {x;}¢_,
i < j — partial order relation on object pairs (x;, x;)

Find: parameters w of the ranking model a(x, w)

i<j = a(x,w)<a(xj,w)

Minimize number of misordered pairs (x;, x;) or approximated
pairwise empirical risk:

Z[a(xj-, w) < a(xj,w)] < ZX(a(xh w) — a(x;, w)) — mmi/n

i<j i<j

pij(w)

where £ (p) is a decreasing loss function of pairwise margin 1;;(w)
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Density Estimation

Given: a training set of objects {x;}¢_,
Find: parameters 6 of the density model p(x|f)
Minimize Likelihood Estimation (MLE)

4
Z In p(xi|0) — max

i=1
or Maximum A Posteriori (MAP) estimation:

l

> Inp(xil0) +1np(0y) — max
i=1

where 7 is a hyperparameter of a prior distribution
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Mixture Density Estimation

Given: a training set of objects {x;}¢_,

K
Find: parameters w;, 6; of the mixture p(x|0, w) = > w;p(x|0;)
j=1
Minimize Likelihood Estimation (MLE)
4
Zln p(xil0,w) — max
; 0,w
i=1
or Maximum A Posteriori (MAP) estimation:
‘
Z In p(xi|0, w) + Inp(0, w|y) — max
i=1 v

where 7 is a hyperparameter of a prior distribution
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Clustering

Given: a training set of objects {x; e R": i=1,... ¢}

Find:
— centers of clusters u; € R", j=1,..., K
— what cluster a; € {1,..., K} each object x; pertains to

Minimize the average intra-cluster distances:

0
S i — pa 2 = min
i1 {ai}, {w}
in the case of the Euclidean metric

n

xi — il =" (xia — )

d=1
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Semi-Supervised Learning

Given: labeled (xj,y;)%_; and unlabeled (x;)!_, ; data
Find: classification (a,-)ff:kJrl of unlabeled objects

Minimize the combined clustering/classification criterion:

@ with no classification model (Transductive Learning):

J4 k
P — fa]l® + A i 7 Yi| —
;—1 Ixi — bl ;—1 [ai # i - T'{nu,}

@ with classification model, a; = a(x;, w):

4 k

2
g Xj — [ —i—)\E ZL(a(xi,w),yi) — min
i=1 | «| i1 (ol ). {ait, {u}, w
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Transductive Learning of a margin-based classifier

wi(w) = g(xj, w)y; is margin of the x; object

@ loss function Z(u) = (1 — p)+ 3
penalizes labeled objects 2 (1= s
for margin decreasing i
@ loss function Z(u) = (1 — |,u|)Jr 1 T
- +

penalizes unlabeled objects
for falling into the gap between classes

Minimize the combined clustering/classification criterion:
k

¢
Z(l — MI(W))+ + v Z (1 — |M,’(W)|)+ — mvin

i=1 i=k+1

K. V. Vorontsov (voron®@forecsys.ru) Optimization Problems in Machine Learning 14 /30



Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Low-rank matrix factorization

@ Generation of better feature vector representation of objects
@ Recovering missing values in a matrix

Given Z = ||zjj||nxm matrix, (i,j) € Q C {1..n} x {1..m}
Find: matrixes X = ||Xit|[nxk 1 Y = ||Vg | kxm
Minimize
|1Z - XxY|| = Z x(z,-j—ztjx;tytj) —~ mi
(iJ)eQ

Why the classic SVD is abandoned in practice:

@ non-square loss function &

@ non-negative matrix factorization: xjz > 0, y; >0

@ sparse data: Q| < nm
@ orthogonality is unnecessary or not interpretable
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Autoencoders: unsupervised learning

Given a training set of objects {x;}_;

Find:
encoder f: X — Z that produces code vector z=f(x, «)
decoder g: Z— X that reconstructs vector X=g(z, §) from z

Minimize
the reconstruction error under square loss . (%, x) = ||% — x||*:

14
Zg(g(f(xi,a),/i),x,-) — r;”ﬁn
i=1 ’

Examples of autoencoders:

f(x,A)= A x, g(z,B)= B z — linear
mxn nxm

f(x,A) = o(Ax), g(z,B) = 0c(Bz) — neural
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Autoencoders for supervised learning

Given labeled (x;,y;)¥ ; and unlabeled (x;){_,.; data

Find: ° Encoder Ds;uder ° :

« ¢
zj = f(xj, &) — encoder °qo 2 °®
s ( 4 e
% =g(zi,B) — deco.der x| |® : : : : o ||
Vi = y(zi,7y) — predictor : o0 o0 :
Loss function: ® ®

a

lassification

Z(%;,x;) — for reconstruction

Z(¥i,yi) — for prediction

YY)

Minimize the combined reconstruction/prediction criterion:

‘ k
> Z(g(f(xi,0),8),%) + A L(H(F(xi,0),7), i) — min
i=1 i=1

a,Byy

Dor Bank, Noam Koenigstein, Raja Giryes. Autoencoders. 2020
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

Graph Factorization

Given a set (i,j) € E of edges of the graph (V| E),
similarities Sj; between vertices of the edge (7, )
For example, Sjj = [(/,/) € E] is binary adjacency matrix

Find: vector representation (embedding) of vertices such that
adjacent vertices would have similar vectors

Minimize the reconstruction error of graph edges:
@ in the case of undirected graph and symmetric S matrix

Z (<Z,',Zj> — SU)2 — mZin, Z € RY>*d
(iJ)eE
@ in the case of directed graph and asymmetric S matrix

> ((pi6)) = 53)" = min.  ,0 e RV
(ij)EE ’

I.Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.
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Density Estimation
Unsupervised Learning Clustering and Semi-Supervised Learning
Representation Learning and Autoencoders

GraphEDM: a big family of graph autoencoders

Graph Encoder Decoder Model generalizes more than 30 models:

owml [: {oml

: ENC(WV, X; 0F DECZO ..“* LSp |<-
1 | | !

i Input | i Oulput:

| > ! : :

! . : DEC(Z; G)D ; -~ La REC

LT '_______: -

W e RV*V is input data about edges

X € RY*" is input feature data about vertices

Z € RY*9 s vector representation (embedding) of vertices
DEC(Z; ©P) is decoder reconstructing the edge data
DEC(Z; ©°) is decoder solving an applied supervised task
y> is (semi-)supervised data about vertices or edges

L is loss function

I.Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.
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Multicriteria and Multimodel Learning

Pre-training of neural networks

Transfer Learning and Multi-task Learning
Learning a model from another model
Generative Adversarial Net

Convolutional Neural Network (CNN) for image classification:
@ z = f(x,«) is convolutional layers for image vectorization

o y = g(z,p) is feedforward layers for vector classification

[ loss J«
[

softmax

k fc2
- —f— — -
fc1

[ conv3 |

[ conv2 |

I cor:v1 }

I Data and labels (e.g. ImageNet)

TRANSFER

Shallow classifier (e.g. SVM)

- [ features

fc1

[ conv3 \

[ conv2

[ conv
f

Target data and labels

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. How transferable are features

in deep neural networks? 2014.
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Transfer Learning and Multi-task Learning
Learning a model from another model
Multicriteria and Multimodel Learning Generative Adversarial Net

Transfer learning

f(x, ) is the universal part of the model (object vectorization)
g(x, B) is a specific part of the model targeted for an applied task

Base task on a dataset {x;}¢_; with loss .%}:
L

> Zi(f(xi.a),g(xi,8)) — min
i=1 B

Target task on another dataset {x/}™ ,, with another .Z7, g
m
> Z’(f(x{,a),g'(x{,ﬂ')) — r%i/n
i=1

if m < { then pre-training vectorizer f(x;, ) could be better than

> 2(F(x,0).8/(x.5)) — min
i=1 a,p’

Sinno Jialin Pan, Qiang Yang. A Survey on Transfer Learning. 2009
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Transfer Learning and Multi-task Learning
Learning a model from another model
Multicriteria and Multimodel Learning Generative Adversarial Net

Multi-task learning

f(x, ) is the universal part of the model (object vectorization)
gt(x, B) is a specific part of the model targeted for the task t € T

Joint training of the model f from datasets X; of tasks t € T:

> 2 gti(f(xti:a);gt(xti,,ﬁt)) —  min

teT ieX; o,{ft}

The property of learnability: we learn the task (X;,. %%, gt) better
by augmenting data size | X¢|

Learning to learn: we learn each of the tasks (X, %}, g¢) better
by augmenting the number of tasks | T|

Few-shot learning: to solve the problem t, a small number
of examples may be enough, sometimes even one

M.Crawshaw. Multi-task learning with deep neural networks: a survey. 2020
Y.Wang et al. Generalizing from a few examples: a survey on few-shot learning. 2020
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Transfer Learning and Multi-task Learning
Learning a model from another model

Multicriteria and Multimodel Learning Generative Adversarial Net

Foundation Models

Multi-task learnable data vectorization is a recent trend in Al/ML

Machine Learning @) (.
E:aerr:ﬁng Foundation Models {-%§:')
N
Emergence of... “how" features functionalities
Homogenization of...  learning algorithms architectures  models
A
7

Text | ‘ ) Question ., Image y
ﬁ‘ i Answering ° == ﬁﬁ Captioning /
\(J 94 __9 \\("y

©J))images 4
[ >IN

0 Sentiment j

s.peecr{W ‘J\; i g&') Adaptation ' % ’, .| Analysis gdh’ g::;cgtnition
_,_Training Foundation = . *

3 gtrtuctured Model

- é -0 e Bl
30 sionals gD & T, | % 9 & i

R.Bommasani et al. (Center for Research on Foundation Models, Stanford University)
On the opportunities and risks of foundation models // CoRR, 20 August 2021.

ization Problems in Machine Lear

K. V. Vorontsov (voron®@forecsys.ru) Opti



Transfer Learning and Multi-task Learning
Learning a model from another model
Multicriteria and Multimodel Learning Generative Adversarial Net

Distillation and surrogate modeling

Learning a resource intensive heavy model a(x, w)
¢
> ZL(a(xi,w),y;) — min
i=1 W
Learning a light model b(x, w’), possibly on other dataset

k
> ZL(b(xf,w'), a(x;, w)) — rrvlvi,n
i=1
Examples:
@ approximation of a heavy model, which is calculated on
a supercomputer for months (climate, aerodynamics, etc.),
by a light surrogate model
@ approximation of a heavy neural network which learns for
weeks on big data, by a light neural network with fewer
neurons and connections
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Transfer Learning and Multi-task Learning
Learning a model from another model
Multicriteria and Multimodel Learning Generative Adversarial Net

Learning Using Privileged Information (LUPI)

x7 — information about x; available only for training

Student model and teacher model are learned separately:

Z.i”( (xi,w), yi) — m|n é,ﬁf(a(x,-*, w*),yi) — mMi/n

Student model learns from responses of the teacher model:

4
;f(a(x,, w),yi) + pZ (a(xi, w), a(x/, w*)) — min

w

Student model and teacher model are learned together:

¢
;x(a(x,, w),yi) + A& (a(x7, w"), yi) +
+ pu? (a(xi, w),a(x;, w*)) — min

W, W

D.Lopez-Paz, L.Bottou, B.Scholkopf, V.Vapnik. Unifying distillation and privileged
information. 2016.
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Transfer Learning and Multi-task Learning
Learning a model from another model
Multicriteria and Multimodel Learning Generative Adversarial Net

Generative Adversarial Net (GAN)

Generator G(z) learns to generate realistic objects x from noise z
Discriminator D(x) learns to distinguish is object real or fake

Real Face
Sampling
] Discriminator
Deep Convolutional Network (DCN)
X
— &
—>
Generator X
Deconvolutional Network (DN) X
B2 ¥ Generated Face
3 O
c /O\O/
e S —_— PR
g _— /O\O/ e
8 S oS
c SO
I O X
[:4

Antonia Creswell et al. Generative Adversarial Networks: an overview. 2017.
Zhengwei Wang et al. Generative Adversarial Networks: a survey and taxonomy. 2019.
Chris Nicholson. A Beginner's Guide to Generative Adversarial Networks.
https://pathmind.com/wiki/generative-adversarial-network-gan. 2019.
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Transfer Learning and Multi-task Learning
Learning a model from another model
Multicriteria and Multimodel Learning Generative Adversarial Net

Generative Adversarial Net (GAN)

Given a training set of objects {x;}_;
Find two probabilistic models:

@ model G(z,«) generates x ~ p(x|z,a) from noise z
@ model D(x,3) = p(1|x, B) recognizes if object x is real

Minimax in the antagonistic game of generator vs. discriminator:

@ discriminator D(x, 3) learns to maximize log-likelihood
in order to better distinguish real object x from the fake one

@ generator G(z,«) learns to minimize log-likelihood
in order to generate realistic objects x

ZInD xi, 3) +In(1 = D(G(z,a), 8)) — maxmln

[e7

lan Goodfellow et al. Generative Adversarial Nets. 2014
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Learning a model from another model
Multicriteria and Multimodel Learning Generative Adversarial Net

Examples of how GAN generates realistic image and video

(d) input image () output 3d face (f) textured 3d face Source Subject Target Subject 1 Target Subject 2

Chuan Li, Michael Wand. Precomputed Real-Time Texture Synthesis with Markovian
Generative Adversarial Networks. 2016.

Xiaoxing Zeng, Xiaojiang Peng, Yu Qiao. DF2Net: A Dense Fine Finer Network for
Detailed 3D Face Reconstruction. ICCV-2019.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now.
1ICCV-20109.
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Optimization criteria induce a typology of ML tasks

O [lpegsaputenshas obpabotka (data preparation)

o

]
o
o

n3snederue npusnakos (feature extraction)
otbop npusHakos (feature selection)
BOCCTaHoBsieHMe nponyckos (missing values)
unbTpayms seibpocos (outlier detection)

@ Obyuenne ¢ yuntenem (supervised learning)

¢

o
o
o

knaccucprkaums (classification)
perpeccusi (regression)
patbxkuposatue (learning to rank)
nporHo3uposatue (forecasting)

© Ob6yuenne be3 yuntens (unsupervised learning)

]

o
o
o

knacrepusauumsa (clustering)

BOCCTaHoBseHMe naoTHocTu (density estimation)

nomck accoumaTmeHbix npasun (association rule learning)
opHoknaccosas knaccudpukaums (anomaly detection)

Q Yacrtuunoe obyuenme (semi-supervised learning)

o
o

TpaHcaykTusHoe obyderme (transductive learning)
obyuerune ¢ nonoxutenshibimu npumepamu (PU-learning)



Optimization criteria induce a typology of ML tasks

o

6666666660000

Oby4yeHmne npepcraenennii (representation learning)

@ 0byueHue npusnakos (feature learning)
@ MaTpuuHble pa3noxenus (matrix factorization)
o obyuenue mHoroobpasuii (manifold learning)

[nybokoe oby4qerune (deep learning)

Obyuenne bansoctu/cesizeii (similarity/relational learning)
Mepenoc oby4yenus (transfer learning)

MuorosagauHoe obyuenmne (multitask learning)
MpusunernposanHoe obyuenue (privileged learning, distilling)
CocrtsizatenbHoe obyqenue (adversarial learning)

ObyueHune cTpykTypbl Mmogenu (structure learning)
Ounnamunueckoe obyuerue (online/incremental learning)
AxTnsroe obyuyenue (active learning)

Obyuenne c nogkpennennem (reinforcement learning)

Meta-obyuenue (meta-learning, AutoML)
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