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Popular energy in vision
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Image restoration
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(restored intensities)
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Image segmentation
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Geometric model fitting
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Sampled points I Points clustering  f
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More geometric model fitting

Motion estimation Plane fitting
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Optimization

 C l i ti Convex regularization
• gradient descent works
• exact polynomial algorithms

 TV regularization TV regularization
• a bit harder (non-differentiable)
• global minima algorithms (Ishikawa, etc.)

 Robust regularizationg
• NP-hard, many local minima

d i ti ( i i /b )• good approximations (message passing, a-expansion, a/b-swap)



Potts model ( , )
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(piece-wise constant labeling)

 Robust regularization
( , ) [ ]V       

obus egu o
• NP-hard, many local minima

bl d i ti ( i )• provably good approximations (a-expansion)
maxflow/mincut

combinatorial algorithms



Addi l b lAdding label costs
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M d l fi iModel fitting
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M liMany outliers
quadratic errors fail

use more robustuse more robust 
error measures, e.g.

|| , || | |y xp f p ap b  

gives “MEDIAN” line

- more expensive 
computationscomputations

(non-differentiable)

- still fails if 
outliers exceedoutliers exceed 

50%

RANSAC



M liMany outliers

1. sample randomly
two points, get a line

RANSAC



M liMany outliers

1. sample randomly
two points, get a line

2.  count inliers for 
threshold T

10 inliers

RANSAC



M liMany outliers

1. sample randomly
two points, get a line

30 inliers
2.  count inliers for 

threshold T

3.  repeat N times and 
select model with 

most inliers

RANSAC



M l i l d l d liMultiple models and many outliers

Why not 
RANSACRANSAC

again? sequential RANSAC (Torr 98)



M l i l d l d liMultiple models and many outliers

HigherHigher 
noise

In general maximization of inliers

Why not 
RANSAC In general, maximization of inliers

does not work for 
outliers + multiple models

RANSAC
again?



E b d hEnergy-based approach
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energy-based interpretation 
of  RANSAC criteria for
single model fitting:

- find optimal label f- find optimal label f
for one very specific

error measure
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E b d hEnergy-based approach
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If multiple models

- assign different models 
(labels fp) to every point p

Need regularization!

-find optimal labeling
f = { f f f }f = { f1, f2 , ... , fn }



S i l l i iSpatial regularization
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If multiple models

- assign different models 
(labels fp) to every point p

-find optimal labeling
f = { f f f }f = { f1, f2 , ... , fn }



S i l l i iSpatial regularization
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N t h!!!Not enough!!!



E b d hEnergy-based approach
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If multiple models  - set of labels
allowed at each point p

- assign different models 
(labels fp) to every point p
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- find optimal labeling
f = { f f f }

0, otherwise

f = { f1, f2 , ... , fn }



E b d hEnergy-based approach
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If multiple models

- assign different models 
(labels fp) to every point p

-find optimal labeling
f = { f f f }f = { f1, f2 , ... , fn }

Practical problem:  number of potential labels (models) is huge,
how are we going to use a-expansion?



PEARLPEARL

Propose
Expandp
And
Reestimate
Labels

data points



PEARLPEARL

Propose
Expandp
And
Reestimate
Labels sample data

to generate
a finite set 
of initial 

labels



data points + randomly sampled models
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PEARL pf 

Propose
Expandp
And
Reestimate

a-expansion:
minimize  E(f)
over a fixed

Labels

set of labels
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gy

iteration 1: optimize labeling  f

iteration #



PEARL fi d
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PEARL fixed

Propose
Expandp
And
Reestimate

reestimating
Labels

reestimating
labels in

for given inliers


minimizing 
the first term 
of energy E(l)

en
er

gy

iteration 1: reestimate models

iteration #
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PEARL pf 

Propose
Expandp
And
Reestimate
Labels a-expansion:

minimize  E(f)
over a fixed
set of labels



en
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gy

iteration 2: optimize labeling  f

iteration #



PEARL fi d

( ) || , || [ ]p pq p q
p pq N

E f p f f f


    

PEARL fixed

Propose
Expandp
And
Reestimate

reestimating
Labels

reestimating
labels in

for given inliers

minimizing
the first term 

en
er

gy

of energy E(f)

iteration 2: reestimate models

iteration #
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PEARL

Propose
Expandp
And
Reestimate
Labels

en
er

gy

iteration 3: optimize labeling  f

iteration #
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PEARL

Propose
Expandp
And
Reestimate
Labels

en
er

gy

iteration 3: reestimate models

iteration #
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iteration 7...

iteration #
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iteration 10...

iteration #
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iteration 15... converged.

iteration #



Fi i i lFitting circles

regularization with label costs only

Here spatial regularization does not work well



(unsupervised image segmentation) 
Fi i l d lFitting color models



(unsupervised image segmentation) 
Fi i l d lFitting color models

Zhu and Yuille 96
used continuous

(c) Spatial regularity + label costs

used continuous
variational formulation

(gradient discent)



(unsupervised image segmentation) 
Fi i l d lFitting color models

(b) Spatial regularity only [Zabih&Kolmogorov CVPR 04]



(unsupervised image segmentation) 
Fi i l d lFitting color models

(a) Label costs only [Li, CVPR 2007]



(unsupervised image segmentation) 
Fi i l d lFitting color models

Spatial regularity + label costs



(unsupervised image segmentation) 
Fi i l d lFitting color models

Spatial regularity + label costs



(unsupervised image segmentation) 
Fi i l d lFitting color models

Spatial regularity + label costs



(unsupervised image segmentation) 
Fi i l d lFitting color models

Spatial regularity + label costs



Fi i l (h hi )Fitting planes (homographies)

Original image (one of 2 views)



Fi i l (h hi )Fitting planes (homographies)

(a) Label costs only



Fi i l (h hi )Fitting planes (homographies)

(b) Spatial regularity only



Fi i l (h hi )Fitting planes (homographies)

(c) Spatial regularity + label costs



(rigid)
M i E i iMotion Estimation

33 
motions

Original image [Rene Vidal]



(rigid)
M i E i iMotion Estimation

33 
motions

(a) Label costs only



(rigid)
M i E i iMotion Estimation

77 
motions

(b) Spatial regularity only



(rigid)
M i E i iMotion Estimation

33 
motions

(c) Spatial regularity + label costs



(rigid)
M i E i iMotion Estimation



M l i L b l E F l iMulti-Label Energy Formulation
pixels, features,pixels, features, 
matches,...
objects, motions, 

Input: Set of data points P
Set of candidate labels   j , ,

homographies,...

Goal: Labeling f that minimizes energy E

smooth costs label costs+data costs +
Goal:  Labeling f that minimizes energy E

( ) ( ) ( ) ( : )E f D f V f f h p f l      
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i-expansion 
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 NP-hard in general when 
 e pansion is standard algorithm

| | 3 

 -expansion is standard algorithm
• finds local optimum w.r.t. “expansions”


• optimality guarantees
• fast & effective in practicefast & effective in practice

Boykov, Veksler, Zabih. PAMI 2001



i-expansion 
 -expansion main idea:

 -expansion main idea:
• convert multi-label problem into sequence of binary

bl



problems
• choose label      , and only let it “expand”

current labeling f expanding ... new labeling foptimal expansion



D i i h G h C iDeriving the Graph Construction
Let be current labelingLet be current labeling

be labeling of binary subproblem

be the labeling induced bybe the labeling induced by 

keep current p
label

switch to



D i i h G h C i
 How to add cost to binary problem?

Deriving the Graph Construction
h How to add cost    to binary problem?

( ) ( ) (1 )E x E x h x x x  

h

1 5 6( ) ( ) (1 )hE x E x h x x x  

indicator function

Modified energy   

1? ? ? ? ?

Modified energy     
pays       iff contains 
l b l

   


h

1 2 3 4 5 6
1? ? ? ? ? label 



D i i h G h C iDeriving the Graph Construction

Add ili i bl

 1 5 6 1 5 6(1 ) minh x x x h y x y x y x y    
Add one auxiliary variable:

 1 5 6 1 5 6{0,1}
(1 ) min

y
h x x x h y x y x y x y


  

Same in terms of graph: 



FMMFMM

EM elliptical K-means Our approach

5 initial models 5 initial models 15 initial models



FMMFMM

EM Our approachelliptical K-means

3 initial models 3 initial models 15 initial models

works well forworks well for 
overlapping models

due to soft assignments
hard assignments fail if models overlap spatially



FMMFMM

EM Our approachelliptical K-means

4 initial models 4 initial models 15 initial models

soft assignments 
is not a panacea



FMMFMM

EM Our approachelliptical K-means

7 initial models 7 initial models 15 initial models

standard techniques  must know the exact number of models



observation:

our labeling approach makes hard assignmentsour labeling approach makes hard assignments  
which may cause problems if 
models have spatial overlapmodels have spatial overlap

Does not happen in vision



K PEARLK-means vs. PEARL

 onconstrainthard( ) || , ||p
p

E f p f  models ofnumber 
onconstrainthard



K-means

5 random initial lines + outlier model

gets stuck in local minima



K PEARLK-means vs. PEARL
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K-means Our approach 1000fh 

5 random initial lines + outlier model 1000 initial lines + outlier model

gets stuck in local minima better explores label space
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K-means Our approach 500fh 

5 random initial lines + outlier model 1000 initial lines + outlier model

gets stuck in local minima better explores label space



K PEARLK-means vs. PEARL
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K-means Our approach 2000fh 

5 random initial lines + outlier model 1000 initial lines + outlier model

gets stuck in local minima better explores label space


