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Abstract—This work is performed within the framework of the algebraic approach to the recognition
problem. To construct a basic set of algorithmic operators, an iterative process is proposed such that the
problem of joint optimization of the recurrent operator and a correction operation is solved at each step
of this process. In this case, the basis appears to be task-oriented; i.e., it is adjusted to the given prece-
dental information. The case of monotone correction operations is considered in detail, and the conver-
gence of the method is proved for it. It is shown that the choice of the basis operator is reduced to the
standard problem of finding a subsystem of inequalities of maximal weight. An efficient numerical pro-
cedure for constructing a monotone correction operation is described.

1. INTRODUCTION

Let the sets §; and f:“sf, called, respectively, the spaces of admissible initial and final information, be
given. Computable mappings from J; into %f are called information-transforming algorithms, or, simply,
algorithms. The set of all algorithms is denoted by JJt*.

The problem of the synthesis of an algorithm consists in constructing an algorithm that satisfies a set of
constraints and is defined by the predicate Z: ¢* — {0, 1}. We will denote by the symbol Z both the pred-
icate and the problem itself. Any algorithm such that Z(A) = 1 is called a solution to the problem Z, or an
algorithm correct for the problem Z. A problem is called solvable if there exists a correct algorithm for it.

The mapping F from (Jt*) into ¢+ is called a correction operation. We denote by §*,

F* = ULFIF: (Io*)” — M=,
p=0
the set of all correction operations.
If 5% < §%* is a family of correction operations, then the set

F(M) = {F(A,, ..., A)|Fe F (4, ... 4,)e M}

is called the {§-extension of the set of algorithms ¢ < 0+,

Definition 1. A finite set of algorithms {A,, ..., A,} is called a basis of the problem Z with respect to the
family of correction operations 3% if there exists an algorithm correct for Z in (A, ..., AL

Below, we will consider only recognition problems, rather than all problems of the algorithm synthesis.

Let Pt be a subset of Pe*, {x,}7., be a sequence of different elements of the set ;, and {y,}{ -, be
a sequence of elements of ‘5,—, The recognition problem is defined by the predicate

Z(A) = A (AGx) =y A (de T, (1.1)
k=1

The sequence of pairs {(x, v;) }{ . is called precedental, or local, information. The subset I« is called the
universal information. Following [1, 2], we will assume that the universal information is taken into account

at the stage of constructing the families 3¢ and ¥, so that ¢ < ¢ and FE) < Vi« In this paper, these
families are assumed to be fixed. Therefore, the main attention is paid to the local information.

There exist several approaches to solving this problem.
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1. The optimization approach. First, we choose a model of algorithms JJ¢ < 9T* on the basis of certain
a priori considerations. Then, by means of optimization in JJ¢, we seek an algorithm A that satisfies the
predicate Z. In practice, it may appear that either the model chosen does not contain an algorithm that is
correct for Z or the method of optimization applied does not find this algorithm. Then, we have to content
oixrseilves with an algorithm that is approximate in a certain sense or we have to change the model com-
pletely.

2. The algebraic approach. Along with the model ), we choose a family of correction operations 7§
such that JJ¢ contains the basis of the given problem with respect to 7%. Then, the solution is reduced to the
construction of the basis {A,, ..., A,} and to the choice of the correction operation F € 7§ for which the algo-
rithm F(A, ..., A,) is correct.

In fundamental papers on the algebraic approach {3, 4], it is shown that this construction is possible for
a broad class of problems, called regular problems, under the condition that J){ and 3§ are complete. The
methods used in the above papers in the constructive proofs of the existence theorems are not designed for
direct application in practice. For applied problems, the synthesis of solutions by the methods of the alge-
braic approach is reduced to the solution of a sequence of optimization problems. The goal of the present
paper is an introductory study of these problems.

2. OPTIMIZATION PROBLEMS OF CONSTRUCTING A BASIS

The mapping Q: P¢* —= [0, o) that depends on {(x;, ) }+ -, and JIt* as parameters is the quality func-
tional of the recognition problem Z. The quality functional is chosen on the basis of a priori considerations,
including the ease of solving optimization problems. As usual, in this case, the condition Q(4) = 0 <
Z(A) = 1 is fulfilled.

To obtain a solution of the problem Z in the form A = F(A,, ..., A,), we pose the following optimization
problem: find minimal p and A, ..., A, € N, F € F, such that Q(A) <& for a given € 2 0. For € = 0, we seek
a correct algorithm, while, for € > 0, we seek an approximate solution.

In practice, the joint optimization with respect to p elements of the set J)¢ and an element of the set ¥
can face considerable technical difficulties. Therefore, it is proposed to use one of the iterative processes
that, in the general case, do not guarantee the minimality of p.

1. At the pth step, p = 1, 2. ..., a submodel Em,, < I is fixed, and, by the minimization of the functional
O(A) over the set Emp, an algorithm A, € 9)%,, is found. Then, a correction operation F, and the algorithm
AP =F(A,,...,A,) for which the initial quality functional is estimated are constructed. The iterative process
terminates as soon as Q(A®) < ¢ for a given € > 0. This process is frequently applied in combination with
the correction operations based on the voting principle or on the selection of the competence domains.

2. In this paper, we consider another iterative process, for which the algorithms A, beginning with p = 2,
are adjusted not only to the initial problem, but to diminishing the defect of the preceding algorithms:

A, = argmin Q(A), 2.1)
Ae
(A, F,) = argmin Q(F(Ay,...,A,_,A)), p =23 ... (2.2)
(AL FeMxF
The algorithm A®’ = E (A, ..., A,) is a solution at the pth step. The iterative process terminates as soon as

Q(AP) < g for a given € 2 0.

When analyzing this process, the following questions connected with its convergence are of particular
interest:

(a) Under what conditions is the inequality Q(A? + V) < Q(A?)) guaranteed?
(b) How many algorithms are required to obtain a correct A¥»?

The answers to these questions and the practical implementation of the given process depend on the
choice of particular sets 53, Y, I, and ¥. As the first step of this specific definition, we assume that algo-
rithms from ¢ and the correction operations from g§ have the structure that admits the application of the
algebraic approach.
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Followmg {1, 31, along with the sets {§; and me defined by the initial problem statement, we choose
another set {3, called the space of admissible estimates. We take the model J)¢ as a family of superpositions

M =MW M’ = {CoB|Ce M, Be M},

where ¢ is a given set of mappings from ; into {3, that are called algorithmic operators and J)! is a given
set of mappings from <, into l3, that are called decision rules. We define a family of correction operations
¢§ by the family of mappings 7:

Fe UL 30— 3.
p=0

To each mapping f from f, we assign the correction operation Fy (D0 —= IO over the algorithmic oper-
ators by setting

Fy(B,, ... B)(x) = f(B(x),...,B,(x)) VB, ..B,eI’ xeg,.

To each pair of mappings (f, C) from f x JJ¢!, we assign the correction operation Fyc over algorithms by
setting

Fe(Cyo By, ..., C
forall By, ...,B,e Mand C,, ..., C, e M.
Thus, the family f and the set /! induce a family of correction operations ¥ = {Fclfe f, Ce !}

o B{)) = CO Ff(Bl’ ceey Bp)

14

The choice of an “intermediate” space <3,, and, as a consequence, the representation of algorithms as
superpositions is a classical method of the algebraic approach. In essence, this method allows us to construct
a solution in the space 53,, which, in contrast to {3; and 3y, is chosen for the sake of convenience.

Further specification of the problem statement is connected with imposing additional constraints on the
sets 38, 3 Se» WO, WY, and T, as well as with the choice of the quality functional Q.

3. MONOTONE CORRECTION OPERATIONS
Consider the case where ,and <3, are linearly ordered sets, f is a family of all monotone mappings from
¢ into .. and IR is a nonempty family of all monotone surjective mappings from 3, into ;.

These constraints formally realize the following heuristic principle. If algorithms A, ..., A, are adjusted
to the extrapolation of the same function, then a simultaneous increase in their output values does not lead
to a decrease in the output of the algorithm F(4,, ..., A)).

Introduce on ¥ an order relation by setting (uy, ..., w) S(vy, ..., V) if ;< v Vi= 1,2, .., p. If vectors
u and v are not comparable, we will denote it by uf|v. If U and V are arbitrary ordered sets, then the mapping
g: U — Vs called monotone if, for any u,, u, € 7, u, < u, implies g(u,) < g(u,). If mappings fe f and
C e IN! are monotone, then the correction operations Fyand F, ¢ are also called monotone.

Below, we assume that g > 2. We denote by N the set of indices {1, 2, ..., g}.

Consider the recognition problem defined by predicate (1.1).

Definition 2. A pair of indices (j, k) € N? is called a defective pair of the algorithm A = Ce B if y; <y,
and B(x;) 2 B(x;). We denote by [D(A) the set of all defective pairs of the algorithm A.

Note that an arbitrary defective pair of the algorithm C ¢ B is also a defective pair for all algorithms of
the form C' © B, C' € L. Therefore, the set [D(A) does not depend on the choice of the decision rule.

Introduce the functional Q(A) = |[D(A)|, and consider its certain properties.

If Z(A) = 1, then the algorithm cannot have defective pairs; consequently, Q(A) = 0. In general, the oppo-
site is not true. However, if Q(C © B) =0, then it is always possible to choose a decision rule C' € M such
that Z(C' © B) = 1. Indeed, since the algorithm C © B has no defective pairs, B(x,) < B(x,) implies y, < y, for
any pair (j, k) € N2, Therefore. there exists a monotone mapping C' € J)¢! such that C'(B(x.) =y, Vk e N.
Consequently, Z(C'° B) = 1.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 38 No.5 1998



o

THE TASK-ORIENTED OPTIMIZATION OF BASES IN RECOGNITION PROBLEMS 841

Thus, for an appropriate choice of the decision rule, the conditions Q(A) =0 and Z(A) = 1 are equivalent.
This means that the functional introduced can be considered as a quality functional. Below, we will assume
that it is this functional that 1s minimized while solving problem (2.2).

Introduce a set of g vectors a, = (B\(xy), ..., B,(xp) € Sf ,k=1,2, ..., q. Then, the condition of correct-
ness of the algorithm F,(A,, ..., A,) is rewritten as

C(f(a) =y, ke N. (3.D

A set of algorithms A, ..., A, is called admissible if, for any pair (j, k) € N2, y, # y, implies a, # a,. The

admissibility is a sufficient condition for the existence of a mapping (not necessarily monotone) C © f for
which (3.1) is valid.

Let {u,}{_, be an arbitrary sequence of elements of a certain ordered set. A sequence of pairs

{(ay, wp) }i - is called monotone if, for all (j, k) € N2, a, < a, implies u, < u,.

Lemma 1. If A, ..., A, is an admissible set of algorithms, then monotone p-ary mapping C © f that sat-

isfies (3.1) exists if and only if {(a,, y,) }{ .| is a monotone sequence.

Proof. The necessity is obvious. Let us prove the sufficiency. Let the sequence {(a,, y,) };-, be mono-
tone. Let us take an arbitrary mapping C € Ji!. Since it is surjective, for any k € N, there exists u, € 3,
such that C(i;) = y,. Let us choose elements u, such that y, = y, implies u, = u, for all (j, k) € N2,

The sequence {(a;, ) }1., is monotone. Indeed, for all (j, k) € N2, a,<a;implies y, <y,. If y, =y, then
u, = u, by the construction. If y, < y,, then u, < u, due to the monotonicity of the mapping C. Therefore, a, < a,
implies u, < uy.

Let us define, forany a 3}' , the set U(a) = {1 Jk € N, a, < a} and the mapping

max U(a), if U(a)#d,

f(@) = {min{ul, ou,}, i Ua) = @.

The mapping C © fis monotone and satisfies condition (3.1) due to the admissibility of the set of algorithms
Aj, ..., A, and the monotonicity of the sequence {(ay, uy) }¢-, . The lemma is proved.

The set D(A,, ..., A)) = DA N ... 0 (A),) is called an inherent defect of the set of algorithms A, ...,
A,. The introduction of this term is justified by the following lemma.

Lemma 2. For any p-ary monotone correction operation F, we have

D(F(A,, ..., A ) 2D, ..., A). (3.2)

Proof. Let (j, k) € D(A) foralli=1, 2, ..., p. Then, y, < y, and a, > a,. Consequently, C(f(a))) = C(f(a,))
for all monotone C and f, and, hence, for any monotone correction operation F, the pair (j, k) is defective for
the algorithm F(A, ..., A,). The lemma is proved.

To solve problem (2.2), it is necessary to find of what pairs the set D(F(A,, ..., A,)) consists and how its
cardinality (the quality functional) depends on F and A,. Taking into account the lemma proved, we reduce
this question to the following: under what conditions inclusion (3.2) turns into an equality and what pairs
generate the difference of sets D(F(4, ..., Ap))\[D(A 1» --+» A,) when the equality does not hold.

The following theorem concerns the simplest but important case when relation (3.2) turns into an equal-
ity.

Theorem 1. If (A, ..., A)) = O, then there exists a monotone correction operation F such that
DFA,, ..., AN =2.

Proof. The hypothesis of the theorem is equivalent to the fact that, for any pair (7, k) € N?, a, < a, implies

yr £ y,. Consequently, the sequence {(ay, y,) }{_, is monotone, and, by Lemma 1, there exists a mapping
C o fthat satisfies (3.1). We set F' = Fj- and assume that there exists a pair of numbers (j, k) € DA, ...,
Ap). Then, y, <y, anq C(f(a)) 2 C(flay)), which contradicts (3.1). Consequently, the set D(FA,, .... A,) is
empty. The theorem is proved.
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When D(4,, ..., A)# @, relation (3.2) can be both an equality and a strict inclusion. Below, we show
that it is possible to find of what elements the difference DD(F(A,, ..., A)ND(A,, ..., A,) consists without
constructing the correction operation F.

Definition 3. The triple of indices (j, s, k) € N3 is called a defective triple for the set of algorithms
Ay, ..., A, if the following holds:

(a) the pair (j, k) is defective for all A;,i=1,2, ..., p;
(b) the vector a, is not comparable with a; and a,;
(c) the chain of inequalities y; <y, < y, holds.

A defective triple (j, s, k) is said to be strongly defective if y; <y, < y,. A pair (j, k) is called the base of
the defective triple (J, s, k), and pairs (j, s) and (s, k) are called the edges of this triple. It is obvious that the
base of any defective triple belongs to the inherent defect.

Example 1. Letp=2,9=3,a2;,=(3,2),a,=(1,3),a;=(2,1),and y, =k for k=1, 2, 3. Then, the triple
(1, 2, 3) is strongly defective. If we replace y, by 1 or 3, it becomes weakly defective.

Introduce on N a binary relation < by setting j < k if and only if either g; < g, or a;lla, and y; < y,.
The relation < is an order relation, since the cycle k < j, j < s, s < k is generated on any defective triple

U, s, k).

The following lemma states that there are no other sequences of indices that prevent the relation < from
being a preorder.

Lemma 3. [f there are no defective triples in N3, then the relation < is a linear preorder on N.

Proof. The absence of incomparable elements and the reflexivity of the relation < are obvious. Let us
show that, in the absence of defective triples, it is transitive, i.e., for any j, &, s from N, j < s provided that
j < kand k < s. Each of the relations j < k and & < s is valid in one of two cases; therefore, four cases are
possible altogether.

Case 1. a;< a and a, < a,. Then, a, < a,, and we obtain the required j < s.

Case 2. a; < a; and akllas, Ve LY,

Consider the possible relations between a; and a,. If a; < a,, then we obtain the required j < s. The case
a, < a; is impossible, since, otherwise, we have a, < a;, which contradicts the fact that these vectors are
incomparable. Now, let a;||a,. Consider the possible relations between y; and y,. If y; < y,, then y; < y,, and
we obtain the required j < s. If y; >y, then the assumption y, < y; leads to the defective triple (%, s, j): there-
fore, j < s.

Case 3. ajlla;, y; <y, and a, < a,.

Consider the possible relations between a; and a,. If a; < a, then we obtain the required j < s. The case
a; < a;is impossible, since, otherwise, we have a, < a;, which contradicts the fact that they are incomparable.
Now, let a;||a,. Consider the possible relations between y, and y,. If y, <y,, then y; < y,, and we obtain the
required j < s. If y, > y,, then the assumption y, <y; leads to the defective triple (s, j, k); therefore, y; < y,,
and, consequently, j < s.

Case 4. ajlla,, y; < y, and a;la;, y, < yq.

Consider the possible relations between a; and a,. If a; < a,, then we obtain the required j < s. The case
a; < a;is impossible, since, otherwise, the triple (j, k, 5) would be defective. If a;||a,, then, by y; < y,, we have
the required j < s. The lemma is proved.

Introduce on N another binary relation 8 by setting jOk if and only if j < k and k < j. It is easy to verify
that, if < is a preorder, then 6 is an equivalence relation on N. Thus, for any j and k from the same class of
equivalence, the conditions a,||a, and y; = y, hold.

The following theorem states that inclusion (3.2) can be transformed into an equality if and only if there
are no defective triples.

Theorem 2. Let Ay, ..., A, be an admissible set of algorithms. Then, the following assertions hold:

(a) If there exists at least one strongly defective triple in N3, then the following strict inclusion holds for
any monotone correction operation F:

D(F(A;, ..., A) DDA, ..., A,). (3.3)
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(b) If there are no defective triples in N?, then there exists a monotone correction operation F such that
D(F(A,, .., A)) = DAy, ..., A)). 3.4)

Proof. Consider an arbitrary strongly defective triple (j, s, k) and an arbitrary p-ary monotone correction
operation Fy.. Let f, f,, and f, be the values of the mapping fat the points a,, a,, and a,, respectively. Since
a; < a,, it follows from the monotonicity that f, < f. If we suppose that none of the pairs (j, s) and (s, k) is
defective, then we obtain f, < f;, which contradicts the monotonicity. Therefore, at least one of these two
pairs is defective. Since aj[la, and a, |[a,, none of them can belong to the intersection D(4,) N ... N D(A)),
and the strict concluston (3.3) is valid.

Assuming that there are no defective triples in N3, we construct a monotone correction operation £ that
satisfies (3.4).

We can arrange the set N with respect to the preorder relation <. This means that there exists a rearrange-

ment o of elements of the set N such that s < ¢ implies 6(s) < o(¢). Let us form a sequence {¥,}/_, by
setting

Vo = Max(Yoqy - Vo), 1€ N (3.5

Let us show that the sequence of pairs {(a,, ¥;)}/., is monotone. Consider an arbitrary pair (j, k) € N2,
J# k. Itis obvious that (j, k) = (0(s), o(2)) for certain s and ¢. By the definition of the relation <, a,< a, implies
o(s) < o(2). The following two cases are possible: either s < ¢, and (3.5) directly implies the required y, <
Yi»ort<sand o(#) < 6(s), then elements () and o(s) belong to the same class of equivalence with respect
to the relation 6. Consequently, Yo = Yy, OF, analogously, y, = ¥, . The monotonicity of the sequence of

pairs {(a;, ¥x)}; ., is proved.

By Lemma 1, there exists a monotone mapping of the form C ° f such that C(Ra,)) = y, forall k € N.
We set F = Fpe.

Let us take an arbitrary element (j, k) = (6(s), 6(2)) of the set D(F(4,, ..., A,)) and show that it also
belongs to the set [)(A,, ..., A,). By Definition 2, y, < y, and f{a)) 2 f{a,) hold. The first inequality implies
that j and k cannot belong to the same class of equivalence with respect 8. The second inequality leads to
Yy Z Y-

Assume that the condition a, < a, does not hold. Then, either a, < a, or a,||a,. Taking y, < y, into account,
we conclude that j < k in both cases. The opposite relation & < j cannot be true, since j and k are not equiv-
alent. This implies that s < r and y, < y,, and, consequently, Y4, = Yo, Formula (3.5) implies that
Yots) 2 Yo but this contradicts the condition y, < y,.

Thus, a, < a, and, consequently, the pair (j, k) is defective for all algorithms A, ..., A,; L.e., it belongs to
D(A,, ..., A,). The theorem is proved.
Thus, the set D(F(A,, ..., A,)) consists of defective pairs of the following three kinds: the elements of an

inherent defect, the edges of defective triples, and all remaining pairs. It follows from the theorem proved
that we can choose a correction operation so that the absence of pairs of the second kind automatically leads
to the absence of pairs of the third kind and the absence of pairs of the first kind leads to the absence of any
defective pairs. On this basis, we propose the following heuristic principle for the minimization of the qual-
ity functional Q(F(A, ..., A))): consecutively eliminate the defective pairs of the first kind while trying to
eliminate simultaneously the maximum number of pairs of the second kind and completely ignore the pairs
of the third kind.

In accordance with this principle, we choose the algorithm A, = C, ° B, so that we eliminate as many
pairs from the set [D(4,, ..., A,_}) as possible. First of all, we will eliminate the pairs that lie at the base of
the maximum number of defective triples. To eliminate the pair (j, k), it is sufficient to require that the algo-
rithmic operator B, satisfy the condition B,(x,) < B,(x).

In the following section, using these considerations, we introduce a weight function on the set of defec-
tive pairs and formulate an optimization problem to find the algorithm A,.
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4. PROBLEM OF THE JOINT OPTIMIZATION OF AN ALGORITHM
AND A CORRECTION OPERATION

The results obtained allow us to reduce problem (2.2) to the successive determination of the algorithm
A, € W and the correction operation F, & . The first subproblem consists in finding the algorithm A, such
that the cardinality of the set D(F(A,, ..., Ap)) is minimal for the best choice of F. The second subproblem
consists in constructing a correction operation F), for the known A,,.

First, we consider the first subproblem.

For brevity, we denote by D(A,, ..., A,_)), T, and T, the set A, the set of all defective triples of the set
of algorithms A, ..., A, _,, and the set of all strongly defective triples, respectively.

Let w(j, k) be an estimate of the number of defective pairs that are automatically eliminated from
D(A,, ..., A,) when eliminating the pair (j, k) € A and choosing the best correction operation. For example,
we can set

w(j, k) = [{s: (s, k) e Ti +1
for all (j, k) € A. It is possible to assign different weights to strongly defective and weakly defective triples,
taking into account the fact that only the first ones generate no less than two defective pairs:
w(j, k) = Wol{s: (j, s, k) & Toll + Wil{s: (s, k) e T\To} + 1,
where W, and W, are a priori constants, for example, W, = 5/2 and W, = 3/2.
The function introduced generates a weight function on the subsets of the set A in a natural way:

w(A') = Z w(j, k), A'CA.
(L ken

Let B € J)° be an arbitrary algorithmic operator. We denote by A(B) the set of all pairs (j, k) € A such
that B(x,) < B(x,). We pose the problem of finding the algorithm A,, p 2 2, in the following way.

Problem 1. Let a quality functional Q'(4), A € IR, and a nonnegative number & be given. It is required
to find an algorithm A, = C,, ° B, such that its weight w(A(B,)) is maximal and the condition Q'(A,) < d holds.

For the given method for choosing the algorithm A,, it is easy to prove that process (2.1), (2.2) converges
in a finite number of steps.

Theorem 3. Let py=|D(A))| + 1 and, for any pair (j, k) € [D(A)), there exists an algorithmic operator B
in the model J° such that B(x) < B(xy). Then, for any p,p =2, 3, ..., py, it is possible to choose a number
8 such that an algorithm A* satisfying the equation Q(A*) = 0 will be found in no more than p, steps.

Proof. By the hypothesis of the theorem, for any p, p =2, 3, ..., py, there exists an algorithm A, = C,, ©

B, in the model 0 such that A(B,)#D. Letusset d = Q'(A, ). Then, there exists an algorithm A, = C, °

B, for which the weight w(A(B,)) is maximal and the condition Q'(A,) < & holds. By virtue of the chain of
inequalities w(A(B,)) 2 w(A(BI', )) > 0, the set A(B,) cannot be empty.

Any pair (j, k) from the set A(B,) belongs to the set [D(4,, ..., A,_) and does not belong to DA, ...,
A,). This implies that, at each step of the iteration process, beginning with p = 2, the cardinality of the set
(A, ..., A,_) decreases by at least one. For a certain p < |[D(A4,)| + 1, the set (4, ..., A)) will be empty.
By Theorem 1, this implies that Q(A®) = 0. The theorem is proved.

If we use the number of defective pairs of the algorithm as the functional Q', then the problem can be
formulated in a slightly different manner.

Introduce the set J = {(j, ¥) € N?|y, < y,}. The minimization of the functional Q(C, © B,) is reduced to
finding an algorithmic operator B, such that the maximum number of constraints of the form

B,(x)<B,(x), (jkeld (4.1)

hold.

In our case, this system is divided into two parts. On the subset of constraints A, A < J, we must find a
consistent subsystem with the maximum weight, and, on the subset J\A, a maximal (i.e., consisting of the
maximum number of constraints) consistent subsystem.
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Let us introduce the following weight function on the set J:

A+w(j, k), if (j k) e A,

) =
w2 ) {x, if (j,k)e J\A.

Similar to the function w(j, k), it induces the weight function w,(J") on the set of all subsets of J. We denote
by J(B) the set of all pairs (j, k) € J such that B(x) < B(x,). The set J(B) defines a subsystem of the system

of constraints (4.1) that is consistent for a given algorithmic operator B. Let us formulate the problem of
finding the algorithm A,,, p = 2, as follows.

Problem 1'. Let A be a given nonnegative number. Find an algorithm A, = C,° B, such that its weight
wi(J(B,)) is maximal.

Thus, in the case Q' = Q, the problem is reduced to the well-known problem of finding a consistent sub-
system with the maximal weight.

Note that parameters § and A have a similar sense in the statements presented. By means of these param-
eters, the relation between the adjustment to the precedental source information and the correction of the
preceding algorithms is regulated. The maximum decrease in & or the indefinite increase in A lead to the
solution of completely independent problems of finding the algorithms A;, ..., A,. As 0 indefinitely
increases, or when A = 0, the opposite situation is observed——only the algorithm A, is adjusted to the pre-
cedental information, whereas all the subsequent algorithms are aimed exclusively at the compensation of
the errors made by A;. The choice of optimal values of the parameters 6 and A is a separate problem. In prac-
tice, they are either given a priori or are chosen on the basis of a number of test solutions.

5. CONSTRUCTION OF A CORRECTION OPERATION
Consider the problem of constructing a monotone correction operation F), for a known algorithm A,,.
Problem 2. Find a correction operation F), that minimizes the quality functional Q(F) = |D(F(A,, ...,
AN, D(FA,, ..., A)) = {(, k) € N?|fla)) > f(a,) and y, < y,}, where F = F¢, fe f,and Ce N
The solution of this problem is divided into two stages. First, we choose f, k € N, in order to minimize
the quality functional under the condition of the monotonicity of the sequence of pairs {(a;, f,) }; - ;- Then,

we construct a monotone mapping f that satisfies the condition f{a,) = f, for all k € N and, possibly, has
certain additional properties; for instance, it may be continuous or smooth. The value of the quality func-
tional becomes known after the first stage. Therefore, it is sufficient to construct the monotone approximat-
ing function only once at the last step of iterative process (2.2).

Generally, the method proposed for generating the sequence {f,}{_ consists in the following. First, we
eliminate from the set N the least possible number of indices so that the sequence of the remaining pairs
(ag, f) should be monotone. The remaining g indices are arranged with respect to the linear preorder < to
generate a sequence i; < ... < i;. Then, we consecutively insert into this sequence the indices that were
eliminated previously; the place of insertion is found by minimizing the number of defective pairs. As a

result, we obtain a sequence {i,};., that defines an optimal order on the set N, according to which the
sequence {f; }{. is generated. Below, we describe the steps of this method in detail.

Step 1. We will consecutively eliminate from N the indices that belong to the maximum number of pairs
from [D(A,, ..., A,). Let r run through the values ¢, (g — 1), ..., (g + 1). Weset N, = N,

ﬂDr(k) = {]E erD(Ab v Ap)m{(_b k)’ (k9 ])}:’t@}’ ke N,,
k, = argma§|Dr(k)|, N,_; = N\{k,}.
ke N,

We find the number g from the condition D; (k) = & for all k € N;. By this condition, the sequence
L@, ¥e) hee N, is monotone and does not have any defective pairs or triples on the set N . Consequently,
the relation < is a preorder relation on N . Arranging the set N; with respect to this relation. we obtain the

sequence of indices i) < ... < ij.
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Letl, = {i}, ..., i,} be a set of pairwise different elements of the set N. A pair (i, i,) € 12, ¢ <, is called
an order violation and a strong order violation if y; <y, and a; < a, , respectively. We denote by D([) the

set of order violations in the sequence [. It is obvious that D(1) = N2.
Step 2. Thus, it is necessary to add the previously eliminated indices k;, ,, ..., k, into the sequence I;
so that the number of order violations is minimal and there are no strong order violations at all.

We will add these indices consecutively. Let r run through the values from g + 1 to g, and, for every r,
let the index k, be inserted into the sequence [, _, before the element with the ordinal number ¢,, 1 < ¢, < r.
If z, = r, then the element . is added to the end of the sequence. As a result, we obtain the sequence [,.

Define penalty functions Z,(¢), n,(¢), and @ (2):
t-1 r-1

(1) = Y I, <wi) + My(a, <a)], (1) = Y [X(y, <yi) + Mx(a, <a)l,

s=1 s=t

9.(1) = &,(2) + (1),

where t =1, 2, ..., r; the sum of the zero number of terms is assumed to be equal to zero; M is a given non-
negative number; and 7 is the characteristic function of the predicate, which is equal to unity if the predicate
is true and is equal to zero if the predicate is false. We set ¢, equal to the number that minimizes the function

P.(0).

The functions introduced have the following meaning. Suppose that the element %, is inserted into the
sequence [, _ | before i,. Then. the functions & (¢) and 1,(¢) determine the penalty for all order violations gen-
erated by this element pairwise with elements i, ..., i,_, and i,, ..., i,_, respectively. The values of the pen-
alty for every order violation and strong order violation are equal to 1 and M, respectively. The function
©,(¢) determines the total penalty for order violations in [, that are associated with the addition of the ele-
ment k,.

Theorem 4. Let Ay, ..., A, be an admissible set of algorithms and M > q. Then, the number of order vio-
lations in the sequence 1, is calculated by the formula

q
DA = Y 9.1,
r=g+l
and there are no strong order violations in this sequence.

Proof. We prove the theorem by induction on 7. The sequence [; does not contain strong order viola-
tions. Otherwise, for a certain pair (i, i,) € | : , we would have i, < i;and a; < a, ; hence, a; = a,, which
contradicts the admissibility of the set of algorithms Ay, ..., A,.

The sequence [|;1 does not contain order violations. Otherwise, for a certain pair (i, ;,) € [ 2 , we would
have i, < i; and y; < y,; hence, a; < a, , which is impossible due to the monotonicity of the sequence
{(ar, yo tie N, - Thus, D(ﬂ,—l) =0.

Let the assertion of the theorem be valid for the sequence [,_;. We find in [,_, an element i, with the
maximum ordinal number u such that a; < a, . We set u = 0 if there are no such elements at all. Similarly,
we find the element [, with the minimum ordinal number v such that a, <a; ; if there are no such elements,
we set v = r. By the inductive hypothesis, there are no strong order violations in [, _}; therefore, a; < a, <
a;, implies u < v. If we assume that u = v; then we obtain the equality a, = a, . This equality (provided
thavlt k. # 1,) contradicts the admissibility of the set of algorithms A,, ..., A,,." Consequently, u < v.

Let us estimate the function @,(¢) in the following three cases:

(a) for ¢ < u, the estimates @,(f) 2 1,(f) 2, (u) =M > g hold;

(b) for t > v, the estimates @,(t) 2 & (r) 2 E(v) 2 M > q hold;
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(¢) for u <t < v; we find the upper estimate. Since u < ¢, the relation a, < a; does not hold for all 5. 7 <

s < r. Consequently, n(2) < r — 1. Similarly, by ¢ < v, the relation a, < a, does not hold for all s such that
1 <5 <t. Consequently, &,(¢) < r. Summing over all s, we obtain @,(r) < r< g.

Thus, the number ¢, that minimizes the function ¢,(¢) satisfies the condition u < ¢, < v. This leads to two
conclusions. First, the index &, is not involved in strong order violations in the sequence [,. Taking into
account the inductive hypothesis, we find that there are no strong order violations in [. Second, the value
of @(z,) is exactly equal to the mumber of order violations in which the element £, is involved. Consequently,
DA =D, _ ) + .¢,). The theorem is proved.

Step 3. By means of the sequence {i,}; ., obtained, we construct the sequence {f, };_ that satisfies the
conditions

foS. 51, (5.1
forall (s,) e N°, s<randy, <y, imply f, < f,. (5.2)

The sequence of pairs {(a,.f,) }f., is monotone, since, by Theorem 4, there are no strong order viola-

tions in [,. Consequently, there exists a monotone mapping f such that fa,) = f; forall k € N, and a
monotone correction operation F, = Fyc corresponds to this mapping.

Let us show that the equality D(F,(4,, ..., A,)) = D(l,) holds.

Let us take an arbitrary element (i, i,) of the set [)(l,). Then, r < s and ¥, <¥,,- The first inequality and
(5.1) imply that f, < f,; hence, (i;, i) € [D(FP(AI, . Ap). If (i, i) is an arbitrary element of the set
D(F, A, ..., A)), then y, <y, and f, < f, . Taking (5.2) into account, we find that 7 < s, and, conse-
quently, (i, i) € D).

Thus, the quality functional can be calculated by the formula

q
O(F (A s A)) = D @(t,).

r=g+1
Note that the presented method of generating the sequence {f; } ., can be slightly simplified if we elim-
inate the first step and immediately pass to the construction of the sequence [, beginning with g =2 and an

arbitrary I; = {i,, i,}, where i, < i,. However, the numerical experiments demonstrate that this modification

leads to a certain deterioration of the quality of the results and does not provide any advantages compared
with the method described.
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