

Московский государственный университет имени М. В. Ломоносова Факультет Вычислительной математики и Кибернетики Кафедра Математических Методов Прогнозирования

Таскынов Ануар Гульденбекович

Оптимизация параметров решающих деревьев с линейными разделяющими правилами в алгоритме бустинга

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель: к.ф.-м.н. В. В. Китов

Москва, 2017

Содержание

1	Введение				
	1.1 Определения и обозначения	2			
	1.2 Градиентный бустинг	3			
2	Методы, находящие коэффициенты для линейного разбиения	4			
	2.1 RidgeCART	4			
	2.2 Continuously Optimized Oblique Tree (CO2)	5			
3	Методы, использующие переход в новое признаковое пространство	8			
	3.1 Householder CART (HHCART)	9			
	3.2 Random CART (RandCART)	11			
4	Эксперименты на данных	12			
	4.1 Условия экспериментов.	12			
	4.2 Результаты экспериментов	13			
5	Заключение	14			

1 Введение

На сегодняшний день редко используются одиночные методы классификации и регрессии и всё большую популярность получают методы, объединяющие несколько алгоритмов. Объединение алгоритмов в так называемый ансамбль даёт большую точность, чем его составляющие, так как ошибки различных базовых алгоритмов будут взаимно компенсироваться.

Одним из популярнейших методов составления ансамблей является бустинг. В бустинге базовые модели строятся последовательно, причём каждая следующая модель пытается исправить ошибки предыдущих моделей. Прогноз бустинга строится с помощью суммы базовых моделей. В качестве базовых моделей обычно используют неглубокие решающие деревья.

Недостатком стандартных решающих деревьев является то, что они рассматривают разбиения параллельно одной из осей координат, так как в каждом узле происходит проверка условия: больше или меньше заданный признак определенного порогового значения. Например (на Рис. 1), если реальная граница между классами линейная, то придется сделать достаточно большое количество разбиений, чтобы построить хорошую модель. В этом случае помогают деревья с линейными разбиениями общего вида, то есть в каждом узле проверяется условие $\langle \mathbf{w}, \mathbf{x} \rangle < w_0$. С одной стороны, это снизит количество разбиений и глубину дерева и позволит более гибко описывать классы объектов. С другой стороны, гибкость вносит большой вклад в переобучение.

В данной работе будет изучено, какое влияние окажет такой вид деревьев в контексте бустинга, а именно улучшится ли прогноз по сравнению с обычными деревьями. Будет предложено четыре вида построения деревьев с линейными разбиениями:

- RidgeCART в узле дерева решается задача Ridge-регрессии.
- Continuously Optimized Oblique Tree (CO2) недифференцируемая функция потерь, которая оптимизируется в обычных деревьях, заменяется на дифференцируемую верхнюю оценку.
- Householder CART (HHCART) CART с преобразованием Хаусхолдера.
- Random CART CART со случайными поворотами.

Также будет рассмотрено их применение к градиентному бустингу и будут проведены эксперименты, которые покажут улучшится ли качество прогноза.

1.1 Определения и обозначения

Пусть интересующий объект **x** описывается d признаками, тогда его можно представить в виде $\mathbf{x} = (x_1, \ldots, x_d)^T$. Пусть $\{\mathbf{x}_1, \ldots, \mathbf{x}_l\}$ - выборка из l объектов, где $\mathbf{x}_i \in \mathbb{R}^d$, тогда эту выборку можно представить в виде матрицы «объект-признак» $\mathbf{X} \in \mathbb{R}^{l \times d}$. Пусть $\mathbf{y} = (y_1, \ldots, y_l)^T$ - вектор ответов на данной выборке.

 а) Обычное решающее дерево, глубина дерева – 3.

б) Дерево с линейным разбиением: глубина дерева – 1.

Рис. 1: Разделяющая кривая для разных видов деревьев.

Базовые алгоритмы будут обозначаться как $b(\mathbf{x})$, а алгоритм ансамбля, состоящего из N базовых алгоритмов, $a_N(\mathbf{x})$. В дальнейшем будут рассматриваться задачи бинарной классификации для бустинга, то есть $y_i \in \{-1, 1\}$ и задача регрессии $y_i \in \mathbb{R}$ для базовых алгоритмов.

Также будет применяться следующая запись $\hat{\mathbf{x}}$, которое означает, что исходному объекту был добавлен константный признак. Вектор весов $\hat{\mathbf{w}}$ будет содержать не только веса для признаков, но и сдвиг w_0 .

1.2 Градиентный бустинг

Градиентный бустинг - это ансамблевый алгоритм, прогноз которого строится на основании взвешенного голосования базовых алгоритмов:

$$a_N(\mathbf{x}) = \sum_{n=1}^N \gamma_n b_n(\mathbf{x}).$$

Алгоритм построения композиции является жадным. Допустим, что построена композиция $a_{N-1}(\mathbf{x})$ из N-1 алгоритма, и далее выбирается следующий базовый алгоритм $b_N(\mathbf{x})$ таким образом, чтобы как можно сильнее уменьшить ошибку:

$$\sum_{i=1}^{l} L(y_i, a_{N-1}(\mathbf{x}_i) + \gamma_N b_N(\mathbf{x}_i)) \to \min_{\gamma_N, b_N(\mathbf{x})},$$

где L(y, z) - некоторая дифференцируемая функция потерь, которая выбирается в зависимости от типа задачи. Для решения этой задачи предлагается использовать один шаг градиентного спуска в l-мерном пространстве:

$$s_{i} = -\frac{\partial L(y, z)}{\partial z}\Big|_{z=a_{N-1}(\mathbf{x}_{i})},$$
$$\left(-\frac{\partial L(y, z)}{\partial z}\Big|_{z=a_{N-1}(\mathbf{x}_{i})}\right)_{i=1}^{l} = -\nabla_{s}\sum_{i=1}^{l} L(y_{i}, a_{N-1}(\mathbf{x}_{i}) + s_{i})$$

Дальше алгоритм $b_N(\mathbf{x})$ ищется в так называемом семействе базовых алгоритмов \mathcal{B} , с помощью метода наименьших квадратов:

$$b_N(\mathbf{x}) = \arg\min_{b(\mathbf{x})\in\mathcal{B}}\sum_{i=1}^l (s_i - b(\mathbf{x}_i))^2.$$

После того, как базовый алгоритм найден, можно подобрать коэффициент γ_N при нем по аналогии с наискорейшим градиентным спуском:

$$\gamma_N = \arg\min_{\gamma \in \mathbb{R}} \sum_{i=1}^l L(y_i, a_{N-1}(\mathbf{x}_i) + \gamma b_N(\mathbf{x}_i)).$$

На практике градиентный бустинг довольно быстро строит композицию и далее начинает переобучаться, настраиваясь на шум. Для того, чтобы избежать этого используют сокращение шага (shrinking):

$$a_N(\mathbf{x}) = a_{N-1}(\mathbf{x}) + \eta \gamma_N b_N(\mathbf{x}),$$

где $\eta \in (0, 1]$.

2 Методы, находящие коэффициенты для линейного разбиения

В этих методах вектор весов **w** будет найден сразу, в отличие от методов следующей главы, где используется линейное преобразование признаков.

2.1 RidgeCART

В основе этого метода стоит решение задачи линейной (а именно гребневой) регрессии. Модель линейной регрессии подразумевает, что ответ y может быть представлен в виде линейной комбинации признаков, то есть

$$y = \left\langle \hat{\mathbf{w}}, \hat{\mathbf{x}} \right\rangle^1$$

Решением задачи гребневой регрессии является такой $\hat{\mathbf{w}}^*$, что при $\hat{\mathbf{w}}^*$ достигается минимум следующего функционала при $\hat{\mathbf{w}} \in \mathbb{R}^{d+1}$:

$$\mathcal{Q}(\hat{\mathbf{w}}) = ||\hat{\mathbf{X}}\hat{\mathbf{w}} - \mathbf{y}||^2 + \alpha ||\hat{\mathbf{w}}||^2,$$

где $\alpha > 0$ - параметр регуляризации, штрафующий большие значения нормы вектора $||\hat{\mathbf{w}}||$. Функционал выпуклый, поэтому он имеет глобальную точку минимума. Продифференцировав по **w** и приравнивая градиент к 0, получаем:

$$\hat{\mathbf{w}}^* = (\hat{\mathbf{X}}^T \hat{\mathbf{X}} + \alpha \mathbf{I})^{-1} \hat{\mathbf{X}}^T \mathbf{y}.$$

В методе RidgeCART в каждом узле решается задача гребневой регрессии, то есть находится оптимальный вектор весов $\hat{\mathbf{w}}^*$. Отметим, что вектор $\mathbf{w}^* = (w_1^*, \ldots, w_d^*)$ указывает на рост функционала $J(\mathbf{x}) = \langle \mathbf{w}^*, \mathbf{x} \rangle$ и учитывая, что $\hat{\mathbf{w}}^*$ - это решение линейной регрессии, то чем больше $J(\mathbf{x})$, тем больше ответ y на этом объекте. Таким образом можно использовать $\langle \mathbf{w}^*, \mathbf{x} \rangle$, как новый признак который является линейной комбинацией других признаков и предикат в узле $\langle \mathbf{w}^*, \mathbf{x} \rangle > t$ будет означать линейное разбиение.

Дальше можно рассмотреть две вариации метода:

- Метод Ridge CART(c)². К исходным d признакам добавляется еще один $\langle \mathbf{w}^*, \mathbf{x} \rangle$. И в новых d + 1 признаках ищется наилучшее разбиение.
- Метод Ridge CART. Вместо всех d признаков используется только один признак $\langle \mathbf{w}^*, \mathbf{x} \rangle$.

Параметром этого алгоритма является α – параметр регуляризации для гребневой регрессии. В данном методе параметр регуляризации будет единым для всего дерева и будет подбираться по кросс-валидации.

2.2 Continuously Optimized Oblique Tree (CO2)

Введём функционал, который будет оптимизироваться в узле дерева, следующим образом:

$$\mathcal{L}(\hat{\mathbf{w}}, \theta_{0,1}; (\hat{\mathbf{X}}, \mathbf{y})) = \sum_{i=1}^{l} \left(\left[\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i < 0 \right] l(\theta_0, y_i) + \left[\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i \ge 0 \right] l(\theta_1, y_i) \right), \tag{1}$$

¹Здесь предполагается, что в $\hat{\mathbf{x}}$ добавлен константный признак. То есть $\hat{\mathbf{x}} = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1}$, соответственно $\hat{\mathbf{w}} = (w_0, w_1, \dots, w_d)$.

 $^{^{2}}$ Здесь имеется (c) обозначает compared with CART.

где $\theta_{0,1}$ – среднее значение ответа на левом и правом поддереве соответственно, а $l(\theta, y) = (\theta - y)^2$. Для того чтобы разбиение было оптимально нужно проминимизировать функционал $\mathcal{L}(\hat{\mathbf{w}}, \theta_{0,1}; (\hat{\mathbf{X}}, \mathbf{y}))$ по $\theta_{0,1}$ и $\hat{\mathbf{w}}$. Заметим, что функционал является разрывной функцией относительно $\hat{\mathbf{w}}$, поэтому поиск оптимального значения затруднителен.

В статье [6] была предложена идея использовать верхнюю гладкую оценку на слагаемые (1):

$$\left[\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i} < 0\right]l(\theta_{0}, y_{i}) + \left[\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i} \ge 0\right]l(\theta_{1}, y_{i}) \le \max\left(-\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i} + l(\theta_{0}, y_{i}), \hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i} + l(\theta_{1}, y_{i})\right) - \left|\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}\right|$$

$$(2)$$

Верхняя оценка является непрерывной, поэтому ее легче оптимизировать. Для того чтобы доказать эту оценку достаточно рассмотреть два случая:

1. Если $\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i < 0$, то:

$$l(\theta_0, y_i) \le \max\left(l(\theta_0, y_i), 2\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i + l(\theta_1, y)\right)$$

2. Если $\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i \ge 0$, то:

$$l(\theta_1, y_i) \le \max\left(-\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i + l(\theta_0, y_i), l(\theta_1, y_i)\right).$$

Заметим, что исходный функционал никак не зависел от нормировки $\hat{\mathbf{w}}$, то есть $\mathcal{L}(\hat{\mathbf{w}}, \theta_{0,1}) = \mathcal{L}(a\hat{\mathbf{w}}, \theta_{0,1})$. Верхняя оценка, напротив, при уменьшении нормы вектора весов становиться всё больше. Докажем это в следующем неравенстве:

$$\max\left(\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}+l(\theta_{0},y_{i}),\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}+l(\theta_{1},y_{i})\right)-|\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}|\geq \\ \geq \max\left(-a\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}+l(\theta_{0},y),a\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}+l(\theta_{1},y)\right)-a|\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}|, \tag{3}$$

при *a* > 1. Для доказательства этого неравенства также можно рассмотреть два случая:

1. Когда $\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i < 0$, то неравенство можно переписать в следующем виде:

$$\max\left(l(\theta_0, y_i), 2\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i + l(\theta_1, y_i)\right) \ge \max\left(l(\theta_0, y_i), 2a\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i + l(\theta_1, y_i)\right),$$

что является очевидным.

2. Когда $\hat{\mathbf{w}}^T \hat{\mathbf{x}}_i \geq 0$, то:

$$\max\left(-2\hat{\mathbf{w}}^T\hat{\mathbf{x}}_i + l(\theta_0, y_i), l(\theta_1, y_i)\right) \ge \max\left(-2a\hat{\mathbf{w}}^T\hat{\mathbf{x}}_i + l(\theta_0, y_i), l(\theta_1, y_i)\right),$$

что также очевидно.

Это можно проинтерпретировать следующим образом: чем больше норма весов, тем верхняя оценка становится ближе к исходному функционалу и тем сложнее его оптимизировать. В статье предлагается ввести ограничения на $\hat{\mathbf{w}}$, чтобы верхняя оценка не слишком сильно отличалась от $\mathcal{L}(\hat{\mathbf{w}}, \theta_{0,1})$. Тем самым предлагается решить следующую задачу условной оптимизации:

$$\begin{cases} \mathcal{L}'(\hat{\mathbf{w}}, \theta_{0,1}) \to \min_{\hat{\mathbf{w}}, \theta_{0,1}} \\ ||\hat{\mathbf{w}}||^2 \le \nu \end{cases}, \tag{4}$$

где $\nu \in \mathbb{R}^+$, а $\mathcal{L}'(\hat{\mathbf{w}}, \theta_{0,1})$ это верхняя оценка, то есть:

$$\mathcal{L}'(\hat{\mathbf{w}},\theta_{0,1};(\hat{\mathbf{X}},\mathbf{y})) = \sum_{i=1}^{l} \max\left(-\hat{\mathbf{w}}^T \hat{\mathbf{x}} + l(\theta_0,y), \hat{\mathbf{w}}^T \hat{\mathbf{x}} + l(\theta_1,y)\right) - |\hat{\mathbf{w}}^T \hat{\mathbf{x}}|.$$
(5)

Algorithm 1 Построение узла СО2.

Вход: $(\mathbf{X}^t, \mathbf{y}^t)$ – объекты, попавшие в данный узел t, ν – параметр регуляризации, τ – количество итераций в методе субградиентного стохастического спуска, η – шаг градиентного спуска.

Выход: Узел дерева СО2.

поддеревьев.

- 1: Инициализировать $\hat{\mathbf{w}}$ обычным разбиением дерева;
- 2: Инициализировать θ_0 , θ_1 на основе разбиения $\hat{\mathbf{w}}$ и ($\mathbf{X}^t, \mathbf{y}^t$);
- 3: пока не сошелся функционал 5

4:
$$\mathbf{w}^{ota} := \mathbf{w};$$

5: $\mathbf{для} t = 1, \dots, \tau:$
6: Сэмплировать $(\hat{\mathbf{x}}, y)$ из $(\hat{\mathbf{X}}^t, \mathbf{y}^t);$
7: $s := \operatorname{sgn}(\langle \hat{\mathbf{w}}^{old}, \hat{\mathbf{x}} \rangle);$
8: $\mathbf{ecли} - \hat{\mathbf{w}}^T \hat{\mathbf{x}} + l(\theta_0, y) \ge \hat{\mathbf{w}}^T \hat{\mathbf{x}} + l(\theta_1, y)$ то
9: $\hat{\mathbf{w}} := \hat{\mathbf{w}} + \eta(1 + s)\hat{\mathbf{x}};$
10: $\theta_0 := \theta_0 - \eta \frac{\partial l(\theta_0, y)}{\partial \theta};$
11: иначе
12: $\hat{\mathbf{w}} := \hat{\mathbf{w}} - \eta(1 - s)\hat{\mathbf{x}};$
13: $\theta_1 := \theta_1 - \eta \frac{\partial l(\theta_1, y)}{\partial \theta};$
14: $\mathbf{ecли} ||\hat{\mathbf{w}}||^2 > \nu$ то
15: $\hat{\mathbf{w}} := \sqrt{\nu} \frac{\hat{\mathbf{w}}}{||\hat{\mathbf{w}}||}$
16: В соответствии с вектором весов $\hat{\mathbf{w}}$ вызвать этот метод для левого и правого

Отметим, что (5) является выпукло-вогнутой функцией относительно $\hat{\mathbf{w}}$ (первое слагаемое является выпуклой частью, второе - вогнутой) и выпуклая относительно θ_0 и θ_1 . Оптимизация такой задачи также затруднительна, однако функционал

уже можно дифференцировать (точнее, находить субдифференциал). Авторы статьи предложили следующую идею оптимизации (сам алгоритм приведен 1):

- 1. Фиксация субградиента вогнутого слагаемого, то есть $-|\hat{\mathbf{w}}^T \hat{\mathbf{x}}|$ при текущей оценке $\hat{\mathbf{w}}$. Пусть $\hat{\mathbf{w}}^{olf}$ это приближение вектора весов с предыдущей итерации.
- 2. Субрадиентный спуск относительно выпуклой задачи оптимизации (в целях оптимизации времени использовался стохастический вариант):

$$\sum_{i=1}^{l} \max\left(-\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}+l(\theta_{0},y_{i}),\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}+l(\theta_{1},y_{i})\right)-sgn\left(\hat{\mathbf{w}}^{old}\hat{\mathbf{x}}_{i}\right)\hat{\mathbf{w}}^{T}\hat{\mathbf{x}}_{i}\rightarrow\min_{\hat{\mathbf{w}},\theta_{0,1}}$$

3. Если норма весов превысила ν , то перенормируем $\hat{\mathbf{w}}$.

Авторы статьи использовали метод CO2 в качестве базовых алгоритмов в случайном лесе. При этом $l(\theta, y)$ – это логарифмическая функция потерь. CO2 Forest сравнивался с Random Forest и показал значительно лучшее качество и для достижения этого качества требовалось меньшее количество деревьев и деревья были менее глубокими. В данной работе будет изучено влияние CO2 дерева на точность бустинга.

3 Методы, использующие переход в новое признаковое пространство

Рассмотрим теперь методы, которые будут «косвенно» находить линейные разбиения. Будем линейными преобразованиями изменять базис исходного пространства на другой. Для этого будут перебираться ортогональные матрицы: $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}$, $\mathbf{Q} \in \mathbb{R}^{d \times d}$.

Пусть в новом признаковом пространстве найдено оптимальное разбиение (i, t), где i – это номер признака, а t – порог. При выполненных условиях на матрицу **Q**, найдем коэффициенты весов **w** в исходном пространстве. В новом пространстве признаков $\tilde{\mathbf{w}} = (0, ..., \underbrace{1}_{i}, ..., 0)^{T} \in \mathbb{R}^{d}, \tilde{\mathbf{x}} = \mathbf{Q}^{T}\mathbf{x}$, а решающее правило выгля-

дит так: $\langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}} \rangle \geq t$. Напомним, что уравнение гиперплоскости выглядит следующим образом: $\langle \mathbf{w}, \mathbf{x} \rangle = \langle \mathbf{w}, \mathbf{x}_0 \rangle$, где \mathbf{x}_0 принадлежит гиперплоскости. В нашем случае $\tilde{\mathbf{x}}_0 = (0, \dots, \underbrace{t}_i, \dots, 0)^T$. Таким образом гиперплоскость в новом признаковом про-

странстве можно записать, как: $\langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}} \rangle = \langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}}_0 \rangle$. Далее, $\mathbf{w} = \mathbf{Q}^{-1} \tilde{\mathbf{w}} = \mathbf{Q}^T \tilde{\mathbf{w}} = \mathbf{Q}_i$, также $\mathbf{x}_0 = t \mathbf{Q}_i$ где $\mathbf{Q}_i - i$ -я строка матрицы \mathbf{Q} . Уравнение гиперплоскости в исходном пространстве: $\langle \mathbf{w}, \mathbf{x} \rangle = \langle \mathbf{w}, \mathbf{x}_0 \rangle = \langle \mathbf{Q}_i, t \mathbf{Q}_i \rangle = t$. Итого, исходное решающее правило с симметричной, ортогональной матрицей поворота \mathbf{Q} выглядит следующим образом:

$$\langle \mathbf{w}, \mathbf{x} \rangle \ge t,$$

где $\mathbf{w} = \mathbf{Q}_i$. Такая оптимизация уменьшает затраты по памяти для хранения дерева: вместо матрицы размера $d \times d$ нужно хранить только *i*-ю строку матрицы.

3.1 Householder CART (HHCART)

Построение данного вида решающего дерева основано на преобразовании Хаусхолдера [2]. Относительно нормированного вектора $\mathbf{u} \in \mathbb{R}^d$ преобразование Хаусхолдера выглядит следующим образом:

$$\mathcal{H}(\mathbf{x}) = \mathbf{x} - 2\langle \mathbf{u}, \mathbf{x} \rangle \mathbf{u}$$

Или в эквивалентной матричной формулировке: матрица Хаусхолдера имеет вид:

$$\mathcal{H}(\mathbf{x}) = \mathbf{H}\mathbf{x}$$

где $\mathbf{H} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^T$, $\mathbf{I} \in \mathbb{R}^{d \times d}$ – единичная матрица. Одними из замечательных свойств матрицы является ее ортогональность и симметричность: $\mathbf{H}^T \mathbf{H} = \mathbf{I}$, $\mathbf{H} = \mathbf{H}^T$.

Рис. 2: Результат преобразования Хаусхолдера.

Преобразование Хаусхолдера имеет следующий геометрический смысл: это отражение точки **x** относительно гиперплоскости, заданной вектором **u**.

Пусть \mathbf{X}^{c} – это объекты класса $c, \Sigma^{c} = \frac{1}{l^{c}-1} (\mathbf{X} - \boldsymbol{\mu}^{c})^{T} (\mathbf{X} - \boldsymbol{\mu}^{c}), \Sigma^{c} \in \mathbb{R}^{d \times d}$ – матрица ковариации для объектов класса c, l^{c} – количество объектов класса $c, \boldsymbol{\mu}_{c} \in \mathbb{R}^{d}$ – вектор среднего значения класса c.

Рассмотрим, как происходит разбиение в узле. В алгоритме за основу берется лучшее разбиение, которое параллельно осям признакового пространства. Далее авторы предложили два варианта:

• Метод HHCART(D). Для матрицы ковариации Σ^c ищется собственный вектор $\boldsymbol{\xi}_c$, отвечающий наибольшему собственному значению λ_c . Если одновременно

для всех $i = 1, \ldots, d$: $||\mathbf{e}_i - \boldsymbol{\xi}_c|| > \tau$, где $\mathbf{e}_i = (0, \ldots, \underbrace{1}_i, \ldots, 0)^T \in \mathbb{R}^d$, то

строится матрица Хаусхолдера с $\mathbf{u} = \frac{\mathbf{e}_i - \boldsymbol{\xi}_c}{\|\mathbf{e}_i - \boldsymbol{\xi}_c\|}$. Все объекты переводятся в новое признаковое пространство $\mathcal{X}^c = \mathbf{X}^c \mathbf{H}$. Затем из всех классов *c* находится преобразование Хаусхолдера, которое наилучшим образом разделяет выборку, попавшую в узел. Это разбиение сравнивается с обычным разбиением и из них выбирается наилучшее.

• Метод HHCART(A). Для матрицы ковариации Σ^c ищутся все собственные вектора $((\boldsymbol{\xi}^{1c}, \lambda^{1c}), \dots, (\boldsymbol{\xi}^{dc}, \lambda^{dc}))$. Затем для каждого из собственных векторов $\boldsymbol{\xi}^{jc}$, где $j : \lambda^{jc} \neq 0$, строится преобразование способом, описанным выше и из всех таких j и классов c ищется наилучшее разбиение в преобразованном пространстве признаков, результат сохраняется и сравнивается с обычным разбиением и из них выбирается лучшее.

Преобразование в методе HHCART имеет геометрическую интерпретацию: это отражение собственного вектора $\boldsymbol{\xi}^c$ в вектор \mathbf{e}_i . Можно доказать этот факт геометрически: так как два вектора $\boldsymbol{\xi}^c$ и \mathbf{e}_i нормированы, то в проекции на плоскость, задаваемой этими двумя векторами начало координат и концы этих векторов будут задавать равнобедренный треугольник. Проекция гиперплоскости, задаваемой вектором $\frac{|\mathbf{e}_i - \boldsymbol{\xi}^c|}{||\mathbf{e}_i - \boldsymbol{\xi}^c||}$ будет являться перпендикуляром к основанию треугольника. Таким образом данные два вектора будут отражаться друг в друга. На Рис. 2 показан результат действия матрицы Хаусхолдера (изображение взято со статьи [1]).

По результатам экспериментов статьи [1], HHCART(A) и HHCART(D) работают примерно одинаково. В статье был описан метод для классификации и его никак нельзя применить для задач регрессии.

Рассмотрим, как можно применить данный алгоритм для регрессии. Для этого необходимо решить задачу гребневой регрессии:

$$||\hat{\mathbf{X}}\hat{\boldsymbol{\beta}} - \mathbf{y}||^2 + \alpha ||\hat{\boldsymbol{\beta}}||^2 \to \min_{\hat{\boldsymbol{\beta}} \in \mathbb{R}^{d+1}}.$$

Как было показано ранее решением является $\hat{\boldsymbol{\beta}}^* = (\hat{\mathbf{X}}^T \hat{\mathbf{X}} + \alpha \mathbf{I})^{-1} \hat{\mathbf{X}}^T \mathbf{y}$. Далее применить преобразование Хаусхолдера с $\mathbf{u} = \frac{\mathbf{e}_i - \boldsymbol{\beta}^*}{||\mathbf{e}_i - \boldsymbol{\beta}^*||}$, после чего находим оптимальное *i* как в методе HHCART(D). Отметим, что $\boldsymbol{\beta}^*$ – направление роста функции $J(\mathbf{x}) = \langle \boldsymbol{\beta}^*, \mathbf{x} \rangle$, так как кроме этого $\boldsymbol{\beta}^*$ – является решением задачи регрессии, то он показывает на рост ответов \mathbf{y} .

Отметим, что при этом появляется параметр регуляризации α , который будет встречаться на всех узлах при построении дерева. Для того чтобы не усложнять модель принимаем, что α будет единым для всего дерева и этот параметр будет настраиваться кросс-валидацией.

Algorithm 2 Построение узла ННСАКТ для задачи регрессии.

Вход: $(\mathbf{X}_t, \mathbf{y}_t)$ – объекты, попавшие в данный узел $t; \tau > 0$ – положительная константа; $\alpha > 0$ – коэффициент регуляризации для гребневой регрессии. Выход: Внутренний узел HHCART.

1: impurity := 0;2: $h_t := \emptyset;$ 3: $h_t^{best} :=$ обычное разбиение дерева; 4: $h_t := h_t^{best};$ 5: *impurity* := критерий информативности для h_t^{best} ; 6: Решить задачу гребневой регрессии: $\hat{\boldsymbol{\beta}}^* := (\hat{\mathbf{X}}_t^T \hat{\mathbf{X}}_t + \alpha \mathbf{I})^{-1} \hat{\mathbf{X}}_t^T \mathbf{y}_t$ 7: если $||\mathbf{e}_1 - \boldsymbol{\beta}^*|| \leq au$ или $||\mathbf{e}_2 - \boldsymbol{\beta}^*|| \leq au$ или ... или $||\mathbf{e}_d - \boldsymbol{\beta}^*|| \leq au$ то $\mathbf{H}_{t}^{jc} := \mathbf{I};$ 8: 9: **иначе** Хаусхолдера \mathbf{H}_t Построить матрицу используя β^* 10: И \mathbf{e}_i , где $i = \arg \max_{j} ||\mathbf{e}_{j} - \boldsymbol{\beta}^{*}||;$ 11: $\mathcal{X}_{t} := \mathbf{X}_{t} \mathbf{H}_{t}^{j};$ 12: Найти наилучшее разбиение в новом пространстве, h'_{t} ; 13: если $impurity(h'_t) > impurity$ то $h_t := h'_t;$ 14: $impurity := impurity(h'_t);$ 15:16: В соответствии с разбиением h^t вызвать этот метод для правого и левого поддеревьев;

3.2 Random CART (RandCART)

В работах [3], [4] было показано применение случайных поворотов в ансамблях, где базовые алгоритмы обучались на $\mathcal{X} = \mathbf{XQ}$, где \mathbf{Q} - случайная, ортогональная, симметричная матрица. Можно применить ту же идею для построения деревьев, где в каждом узле будет производится случайный поворот.

Генерация матрицы случайного поворота:

- 1. Генерируется матрица $\mathbf{A} \in \mathbb{R}^{d \times d}$ из нормального многомерного распределения $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ с нулевым средним $\boldsymbol{\mu}$ и единичной матрицей ковариации $\boldsymbol{\Sigma}$, то есть каждый столбец независимо сэмплируется из нормального распределения.

Можно рассмотреть две вариации метода:

1. Метод RandCART. Генерируется матрица поворота, происходит поворот посредством этой матрицы в новое признаковое пространство и на нем ищется наилучшее разбиение. 2. Метод RandCART(c). Ищется наилучшее разбиение в исходном признаковом пространстве, затем оно сравнивается с наилучшим разбиением, полученным матрицей поворота.

Ниже описано построение узла дерева RandCART(c).

Algorithm 3 Построение узла RandCART(c).

Вход: X_t – объекты, попавшие в данный узел; y_t – ответы на этих объектах. Выход: Обученное дерево с линейными разбиениями на узлах.

- 1: если листовая вершина то
- 2: вернуть листовую вершину;
- 3: $h_{best} :=$ наилучшее разбиение, параллельное осям признакового пространства;
- 4: $I^{best} :=$ критерий информативности, отвечающий разбиению h_{best} ;
- 5: Генерация матрицы поворота \mathbf{Q} ;
- 6: $\mathcal{X}_t := \mathbf{X}\mathbf{Q};$
- 7: $h_t^{rand} :=$ наилучшее разбиение в новом признаковом пространстве;
- 8: $I^{rand} :=$ критерий информативности, отвечающий разбиению h_{rand}

9: если
$$I^{rand} < I^{best}$$
 то

10:
$$I^t := I^{ran}$$

- 11: $h^t := h^{rand};$
- 12: иначе

13:
$$I^t := I^{best};$$

- 14: $h^t := h^{best};$
- 15: В соответствии с разбиением h^t вызвать этот метод для правого и левого поддеревьев;

4 Эксперименты на данных

4.1 Условия экспериментов.

Данные были загружены с репозитория UCI [5]. Собрано 12 задач бинарной классификации. Все категориальные признаки были преобразованы согласно one-hotencoding, вещественные признаки отмасштабированы так, что они имеют нулевое среднее и единичное стандартное отклонение. Объекты, имеющие хотя бы один пропуск были удалены из выборки. Подробное описание в таблице 1. В таблице указано итоговое количество признаков.

Каждая выборка было поделена следующим образом: 75% - обучающая выборка, 25% - тестовая. На обучающей выборке была проведена кросс-валидация по глубине дерева в каждом алгоритме и по количеству самих деревьев. В кросс-валидации глубина дерева варьировалась от 1 до 7. Валидация по количеству деревьев проводилась следующим образом: если через k добавленных базовых алгоритмов $b_n(\mathbf{x})$ не изменяется качество на валидационном множестве, то выбирается количество алгоритмов,

П	Названио патасота:	Количество	Количество
	Пазвание датасста.	объектов	признаков
1	ionosphere	351	33
2	throat surgery	470	37
3	wisconsin breast cancer	569	30
4	Indian liver	579	11
5	credit approval	653	46
6	Australian credit approval	690	38
7	blood transfusion	748	4
8	Pima Indians diabetes	768	8
9	mammographic mass	831	14
10	banknote authentication	1372	4
11	EEG Eye State	14980	14
12	adult	30162	102

Таблица	1:	Датасеты	•
---------	----	----------	---

которое было оптимально. В экспериментах k = 900, максимальное количество деревьев равно 3000, в датасетах EEG Eye State, adult количество деревьев было равно 5000. В методах HHCART, CO2, RidgeCART также проводилась кросс-валидация по параметрам регуляризации по сетке [0.001, 0.1, 1.0, 10.0, 100.0]. Темп обучения (shrinkage) во всех экспериментах жестко равен 0.1. Метрика качества – ассигасу (доля правильных ответов прогноза). Ваseline-решением является обычный градиентный бустинг.

4.2 Результаты экспериментов

По кросс-валидации находились параметры методов, которые предоставляют максимальную точность, а затем данный метод применялся на тестовой выборке. В таблице 2 показана точность алгоритмов на тестовой выборке. Видно, что применение линейных разбиений в узлах деревьев значительно улучшает качество прогноза. Все модификации бустинга оказались лучше baseline-решения, что доказывает целесообразность использования линейных решающих правил в узлах. Минусом предложенных методов является их долгий этап обучения.

Приведем график зависимости ошибки на тестовой и обучающей выборках в зависимости от глубины дерева на датасете mammographic mass. Результат на Рис. 3. Как видно из экспериментов, при увеличении глубины дерева увеличивается ошибка как и на валидации так и на тестовой выборке. Это означает, что в бустинге над деревьями с линейными решающими правилами целесообразно выбирать неглубокие деревья.

Как видно из 3 лучше всего на всех датасетах показали себя методы HHCART Boosting, Random CART(c) Boosting, Ridge CART(c) Boosting. Это показывает, что

	Boosting	HHCART	Random CABT	$\begin{array}{c} \text{Random} \\ \text{CABT}(c) \end{array}$	Ridge CABT	$\operatorname{Ridge}_{\operatorname{CABT}(c)}$	CO2
ID	Doosting	Boosting	Boosting	Boosting	Boosting	Boosting	Boosting
1	90.91	89.77	92.05	86.36	85.23	82.95	88.64
2	80.51	83.9	83.05	83.9	83.9	83.9	83.9
3	90.91	96.5	96.5	96.5	97.2	95.8	93.71
4	66.21	72.41	70.34	73.1	68.28	72.41	73.79
5	82.32	84.76	86.59	84.15	87.8	85.37	85.37
6	80.35	85.55	86.13	83.82	82.66	84.97	85.55
7	76.47	79.14	74.33	78.07	74.33	77.01	74.87
8	75.52	78.12	79.69	79.17	76.56	79.69	78.12
9	78.85	80.77	80.77	81.25	81.73	79.33	80.29
10	99.13	100.0	99.71	100.0	99.71	100.0	98.83
11	88.79	95.19	84.62	93.54	96.56	94.15	91.98
12	86.12	86.8	84.76	87.09	86.96	86.72	85.69

Таблица 2: Сравнение методов градиентного бустинга между собой. Жирным выделены методы, которые оказались лучше baseline-решения.

HHCART Boosting	Random CART Boosting	Random CART(c) Boosting	Ridge CART Boosting	Ridge CART(c) Boosting	CO2 Boosting
11	9	11	10	11	8

Таблица 3: Количество датасетов, на которых предложенные алгоритмы сработали лучше, чем градиентный бустинг. Жирным выделены методы, которые оказались лучше всего на всех датасетах.

нужно не избавляться от старых признаков и искать оптимальное разбиение на основе них.

5 Заключение

Главным результатом исследований стало то, что применение линейных разбиений в узлах дерева в контексте бустинга улучшает качество прогноза.

Были достигнуты также следующие результаты:

1. предложено обобщить методы HHCART(A), HHCART(D) на случай задачи регрессии, с заменой собственного вектора на веса, полученные из гребневой регрессии.

Рис. 3: Зависимость ошибки классификации от глубины дерева.

- 2. реализованы методы RidgeCART, RidgeCART(c), RandCART, RandCART(c), CO2, HHCART на языке python и код выложен в открытый доступ. Ссылка: https://github.com/Apogentus/advanced_decision_trees.
- 3. указанные методы применены в алгоритме градиентного бустинга и показали более высокую точность на большинстве задач, чем градиентный бустинг над обычными деревьями. Лучше всего показали себя градиентные бустинги над HHCART, Random CART(c), Ridge CART(c).

В качестве продолжения работы можно рассмотреть применение данных решающих деревьев в контексте XGBoost.

Список литературы

- Wickramarachchi D.C.; Robertson B.L.; Reale, M.; Price, C.J.; Brown, J. (2015) HHCART: An oblique decision tree. Computational Statistics and Data Analysis, p. 12-23.
- [2] Householder, A. S. (1958) Unitary Triangularization of a Nonsymmetric Matrix. Journal ACM, p. 339-342.
- [3] Blaser, R.; Fryzlewicz, P. (2015). Random Rotation Ensembles. // Journal of Machine Learning Research 2 (2015) 1-15
- [4] Китов В.В. (2016) Исследование точности метода градиентного бустинга со случайными поворотами.
- [5] UCI Machine Learning Repository [Электронный ресурс]. Режим доступа: https://archive.ics.uci.edu/ml/, свободный.
- [6] M. Norouzi, M. D. Collins, D. J. Fleet, and P. Kohli. (2015) CO2 forest: Improved random forest by continuous optimization of oblique splits.