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We consider a signal segmentation problem within the hidden Markov model (HMM) approach and try to take
into account label frequency constraints. Following the dual decomposition approach we maximize an energy
lower bound via subgradient ascent method, where subgradient is found on each iteration by solving two sub-
problems. The first subproblem can be effectively solved by Viterbi algorithm and the other one can be reduced
to an easy-to-solve transportation problem. We show the efficiency of our approach on toy signals and on the task
of automated segmentation of mouse behavior.

Signal segmentation using
hidden Markov models

Hidden Markov model (HMM) is a probabilistic
model of a sequence that consists of a set of observed
variables X = {x1, . . . , xN} (in arbitrary space) and
discrete hidden variables T = {t1, . . . , tN}, where tn

can take K different values. The joint distribution
of all variables (see fig. 1) is given by

p(X, T ) = p(t1)

N
∏

n=1

p(xn | tn)

N
∏

n=2

p(tn | tn−1). (1)

Using 1-of-K coding scheme a discrete vari-
able with K possible values can be represented as
tn = (tn1, . . . , tnK), where

tnj =











1, if at the moment n the model is

in the jth state;

0, otherwise.

Hereinafter we suppose a homogeneous HMM,
i. e. the probability p(tn | tn−1) and emission probabil-
ity p(xn | tn) do not depend on n. Hence, p(tn | tn−1)
can be fully characterized by a transition matrix A

of size K × K, where Aij = p(tnj = 1 | tn−1,i = 1),
∑K

j=1 Aij = 1. Equivalently,

p(tn | tn−1) =

K
∏

i=1

K
∏

j=1

A
tn−1,i tnj

ij .

The prior probability p(t1) at the first moment is given

by π : p(t1j = 1) = πj ,
∑K

j=1 πj = 1 and p(t1) =

=
∏K

j=1 π
t1j

j .

We assume that emission probability p(xn | tn)
for state j is given by parametric distribution
p(xn |ϕj), where ϕj is a set of parameters. Hence,

p(xn | tn) =
K
∏

j=1

(

p(xn |ϕj)
)tnj

.
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Fig. 1. Chain dependency of variables in HMM joint
distribution (1). Variables in one factor are connected
by edges.

Denote all HMM parameters as Θ = {π, A, ϕ}.
The maximum a posteriori (MAP) approach [5] is
a standard way to find the hidden variables T :

T ∗ = argmax
T

p(T |X, Θ) = argmax
T

p(X, T |Θ) =

arg max
T

log p(X, T |Θ). (2)

Taking negative log and changing maximum
to minimum the problem (2) can be equivalently
rewritten as a min-energy problem with binary vari-
ables:

Elocal(T ) = − log p(X, T |Θ) = −

(

K
∑

j=1

t1j log πj

)

−

(

N
∑

n=2

K
∑

i=1

K
∑

j=1

tn−1,itnj log Aij

)

−

(

N
∑

n=1

K
∑

k=1

tnk log p(xn |ϕk)

)

→ min
T

. (3)

This energy function is pairwise separable [1] and thus
can be effectively minimized by Viterbi algorithm [6]
in linear time w. r. t. signal length N .

Label frequency constraints

In this paper we consider the problem of sig-
nal segmentation with label frequency constraints.
Denote mk =

∑N

n=1 tnk — the total occurrence
of label k in segmented signal. Suppose we have
a function fk(mk) that penalizes the deviation of fre-
quency mk from the desired one. Then signal segmen-
tation problem with label frequency constraints can

Международная конференция «Интеллектуализация обработки информации» (ИОИ-8), Кипр, г.Пафос, 17–24 октября 2010 г.
International conference “Intelligent Information Processing” IIP-8, Cyprus, Paphos, October 17–24, 2010.



2 (ИОИ-8) Kropotov D., Laptev D., Osokin A., Vetrov D.

be written as

E(T ) = Elocal(T ) + Eglobal(T ) =

Elocal(T ) +

K
∑

k=1

fk(mk) → min
T

. (4)

This corresponds to adding a global prior over T

of the form p(T ) = exp
(

−
∑K

k=1 fk(mk)
)

into the joint
distribution (1).

In general case the problem (4) is NP-hard. From
perspectives of graphical models of kind from Fig. 1
the problem (4) corresponds to the graph where all
variables tn are connected with each other (the full
graph). Thus, the graph contains a lot of cycles, and
therefore effective precise algorithms like Viterbi can
not be applied. In this paper we consider three types
of penalty functions fk(mk) and for them derive ap-
proximate schemes for solving the problem (4):

Hard
constraints:

fk(mk) =

{

0, if mk = bk;

+∞, otherwise.
(5)

Interval
constraints:

fk(mk) =

{

0, if mk ∈ [b′k, b′′k];

+∞, otherwise.
(6)

Soft
constraints: fk(mk) = αk|mk − bk|, αk > 0. (7)

Dual Decomposition Approach

The energy (4) cannot be minimized effectively,
but both summands Elocal(T ) and Eglobal(T ) can
be minimized separately in efficient manner. This
leads to the idea of using the dual decomposition ap-
proach [2].

Following this approach we rewrite the problem (4)
in the following way:

min
T1,T2 :
T1=T2

Elocal(T1) + Eglobal(T2) =

min
T1,T2 :
T1=T2

Elocal(T1) + Eglobal(T2) + λT(T1 − T2).

Here T1, T2 are supposed to be vectors of length NK

of the form T = [t11, . . . , t1K , t21, . . . , tNK ]. Denoting

F1(λ) = min
T1

(

Elocal(T1) + λTT1

)

, (8)

F2(λ) = min
T2

(

Eglobal(T2) − λTT2

)

, (9)

we get the dual problem:

max
λ

(

F1(λ) + F2(λ)
)

. (10)

From (8), (9) it can be seen that F1(λ)+ F2(λ) is the
lower bound for Elocal(T1)+Eglobal(T2)+λT(T1−T2),

and taking T1 = T2 = T we get that F1(λ) + F2(λ)
is the lower bound for Elocal(T ) + Eglobal(T ). Solving
the problem (10) we would approximately fit the min-
energy in the original problem (4).

The similar approach was used in [3] for image
segmentation problem, but there it was assumed that
Elocal can be minimized only approximately by al-
gorithms providing a lower bound for local energy,
e. g. by tree-reweighted message passing [7]. In this
paper we consider the case when local energy can be
minimized in an exact way by Viterbi algorithm.

It’s easy to see that F (λ) = F1(λ)+F2(λ) is a con-
cave piecewise-linear function and thus it can be ef-
fectively maximized by subgradient ascent method.
A particular subgradient of F1(λ) + F2(λ) can be
found analytically and is equal to T1(λ)−T2(λ), where
T1(λ) and T2(λ) are argmins of the problems (8)
and (9) respectively. Hence, iteration i of the subgra-
dient ascent method is the following:

λi+1 = λi + δi(T1 − T2), (11)

where δi is a step value.
Note that if T1(λ) = T2(λ) for some λ, than we

obtain the global optimum of (4). However, in general
case, since energy function (4) is not convex, the max-
imum of (10) doesn’t have to coincide with the min-
imum of (4). Besides, T1(λ) and T2(λ) do not coin-
cide during subgradient ascent iterations and hence we
need a special procedure for solution harmonization.
Here we simply keep track of energy value (4) for both
T1(λ) and T2(λ) for all iterations and return the one
with the minimum value of (4).

Next we show how to solve the problems (8)
and (9) on each step of the subgradient ascent method.

Viterbi algorithm

The criterion function in the optimization prob-
lem (8) can be written as

Elocal(T1) + λT T1 = −

(

K
∑

j=1

t1j log πj

)

−

(

N
∑

n=2

K
∑

i=1

K
∑

j=1

tn−1,i tnj log Aij

)

−

(

N
∑

n=1

K
∑

k=1

tnk

(

log p(xn |ϕk) − λnk

)

)

.

Note that this function coincides with the pairwise-
separable local energy (3) with a simple modification
of unary terms. Hence, this energy can be minimized
efficiently by Viterbi algorithm.

Reduction to transportation problem

The problem (9) for penalty functions (5), (6)
and (7) can be reduced to a transportation problem
which is a particular case of linear programming prob-
lem that can be solved efficiently.
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Fig. 2. Transportation problems for the hard constraints (a), the interval constraints (b) and the soft constraints (c).

First consider the case of hard constraints (5).
Then the problem (9) transforms to the following one:



























−
N
∑

n=1

K
∑

k=1

λnktnk → min
T

;

K
∑

k=1

tnk = 1;
N
∑

n=1

tnk = bk;

tnk ∈ {0, 1}.

(12)

Note that the problem (12) is the binary transporta-
tion problem with N sources and K targets. Source
nodes have capacity 1 and correspond to time mo-
ments. Target nodes correspond to labels and their ca-
pacities equal the corresponding values bk (see fig. 2a).
Now consider LP-relaxation of (12) by allowing tnk

to be continuous: tnk ∈ [0, 1]. It is a well-known fact [4]
that in case of integer bk the optimal values of tnk are
also integer. Hence the optimal solutions of (12) and
its LP-relaxation are the same and we may use effi-
cient continuous methods, e. g. simplex-method, in or-
der to find the best labeling.

Now consider the case of interval constraints (6).
The corresponding problem (9) can be solved
by a straightforward generalization of the transporta-
tion problem (12). We add an extra source node (see
fig. 2b) to the graph with capacity

aN+1 =
∑

k

b′′k − N

and K extra target nodes with capacities

bK+k = b′′k − b′k, k = 1, . . . , K.

Also we define the capacity of the remaining target
nodes as

bk = b′k, k = 1, . . . , K.

The cost terms are defined in the following way

cnk = cn,K+k = −λnk, n = 1, . . . , N, k = 1, . . . , K,

cN+1,k = +∞, k = 1, . . . , K,

cN+1,K+k = 0, k = 1, . . . , K.

The final transportation problem has the form



























































N+1
∑

n=1

2K
∑

k=1

cnktnk → min
T

;

K
∑

k=1

tnk = 1, n = 1, . . . , N ;

K
∑

k=1

tN+1,k =
K
∑

k

b′′k − N ;

N+1
∑

n=1

tnk = bk, k = 1, . . . , 2K;

tnk > 0.

(13)

Hence we want to distribute
∑K

k=1 b′k units from
the first N sources among the first K targets. The re-
maining units from all sources are distributed among
the last K targets. The extra source node is required
to deal with surplus of

∑K

k=1 b′′k − N units.
Consider the soft constraints (7). This case corre-

sponds to the following optimization problem:















−
N
∑

n=1

K
∑

k=1

λnktnk +
K
∑

k=1

αk

∣

∣

∣

∣

N
∑

n=1

tnk − bk

∣

∣

∣

∣

→ min
T

;

K
∑

k=1

tnk = 1; tnk ∈ {0, 1}.

This problem can be reduced to the transportation
problem with 2K target nodes and N+1 source nodes.
The first K target nodes have capacities bk while the
remaining ones have capacities N−bk. The transporta-
tion costs are defined in the following way (see fig. 2c):

cnk = −λnk, n = 1, . . . , N, k = 1, . . . , K,

cN+1,k = αk, k = 1, . . . , K,

cn,K+k = −λnk + αk, n = 1, . . . , N, k = 1, . . . , K,

cN+1,K+k = 0, k = 1, . . . , K.

The capacity of the source node N + 1 (virtual units)
is defined so that the transportation problem is bal-
anced, i. e. aN+1 = (K − 1)N . Note that with such
transportation costs the situation when some real
units are transported to the target K + k while some
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Fig. 3. Segmentation results for a toy signal. a: true seg-
mentation, b: Viterbi segmentation, c: DD HMM segmen-
tation.

virtual units are transported to the target k is impos-
sible since it is always better to assign those real units
to the target k and virtual ones to the target K + k.

Experimental results

First consider a toy signal generated from HMM
with 3 hardly distinguishable states and the following
parameters:

π = [0.2, 0.2, 0.6]T, A =





0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98



 .

The observed values xn ∈ R
2, n = 1, . . . , 500

were generated from Gaussian emission probabilities
N (x |µk, Σk) with parameters:

µ1 = [−1, 0]T, µ2 = [0, 1]T, µ3 = [0, 0]T,

Σ1 =

[

0.3 0.1
0.1 0.3

]

, Σ2 =

[

0.6 0.2
0.2 0.6

]

, Σ3 =

[

1.2 0.4
0.4 1.2

]

.

We compared the true segmentation (see Fig. 3a)
with the segmentation of Viterbi algorithm without
constraints (see Fig. 3b) and DD HMM with hard
constraints obtained from the true segmentation (see
Fig. 3c). As can be seen, Viterbi failed to distinguish
different states while DD HMM gave the result similar
to the true one due to considering of label frequency
constraints. The behavior of energy function (4) and
its lower bound (10) during DD HMM iterations are
shown in Fig. 4.

The next experiment is mouse video tracking seg-
mentation into four behavior acts: sitting in one place,
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Fig. 4. Behavior of energy function (black) and its lower
bound (grey) during DD HMM iterations for a toy signal
segmentation problem. The energy value for the true seg-
mentation is shown by dotted line. Case b is an enlarged
part of a.

Table 1. Confusion matrix for DD HMM with hard con-
straints.

sitting grooming walking running
sitting 4223 126 93 48

grooming 126 237 0 0
walking 83 0 807 67
running 58 0 57 75

Table 2. Confusion matrix for standard HMM.

sitting grooming walking running
sitting 4226 0 47 217

grooming 363 0 0 0
walking 24 0 685 248
running 16 0 10 164

grooming, walking and running. The video tracking
system measures a set of characteristics for each time
moment: mouse contour and three points – gravity
centre, nose point and tail point. Using these char-
acteristics we calculate for each time moment a set
of features like speed, acceleration, different angles,
etc. Then using these features and a set of manu-
ally segmented mouse trajectories we learn emission
probabilities p(xn | tn) for each state (behavior act)
by means of mixture of Gaussians as well as transi-
tion matrix A and prior probabilities π. Finally we
make segmentation using HMM without constraints
(Viterbi algorithm) and DD HMM with hard con-
straints obtained from the true segmentation. Tables 1
and 2 show confusion matrices for both cases. As can
be seen DD HMM shows much better performance
resulting in accuracy 89.03% comparing to accuracy
84.58% for standard HMM.
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