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Abstract

This study investigates the performance of binary quadratic programming relaxations

in the side-chain prediction and feature selection problems. These problems are formu-

lated initially as binary quadratic optimization problems which are NP-hard. To find their

approximate solutions we use convex relaxations. The first relaxation changes binary vari-

ables for continuous using convex hull of the initial feasible set. The second relaxation

treats non-convexity of the objective function. Semidefinite programming relaxation, shift

spectrum relaxation and spectral relaxation give the convex approximations of the objec-

tive function. Also we consider linear programming relaxation to show the influence of the

quadratic term.

In side-chain prediction experiments we use the subset of proteins from the PDB. We

compare different approach to approximate the non-convex objective function for side-

chain prediction problem and conclude what approach is the best. Also we use the specific

learning procedure to get the appropriate energy function, which is the crucial one for

high quality of side-chain prediction. This procedure requires the set of incorrect side-

chain structures for every protein with correct side-chain structure. The shift spectrum

relaxation shows the best quality for the reasonable time. The integer linear programming

relaxation demonstrates slightly worse quality, but requires much less time.

In feature selection experiments we use synthetic data sets with extremely high cor-

related features and target vector and real data set. We illustrate the performance of

the proposed approach in the feature selection problem on these datasets. In addition we

compare proposed approach with other feature selection methods according to different

evaluation criteria.
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1. INTRODUCTION

This investigation consider the side-chain prediction problem and feature selection problem

from the quadratic programming perspective. The feature selection problem aims to reduce

the dimensionality of the data fitting problem and remove noisy, irrelevant and multicollinear

features. To take into account the features similarity and features relevance we propose to

formulate feature selection problem in the form of the quadratic programming, which has the

single global optimum due to convexity. This approach does not require parameter vector

estimation and considers only relations between features and target vector. Previously this kind

of feature selection methods were called filter methods [1]. To evaluate the features similarity and

relevance, authors use correlation coefficients [2], mutual information [3] or statistical tests [4].

The proposed method is applicable for any chosen similarity measure between features and target

vector even if this similarity measure does not imply the convexity of the optimization problem.

In this case convex relaxations can be used [5]. The quality of the selected feature subset

is evaluated according to external criteria: variance inflation factor [6], Akaike information

criterion [7] and adjusted coefficient of determination [8].

The protein folding problem is one of the most important problem in biochemistry. The

goal of the protein folding problem is to recover the 3D coordinates of the protein atoms from

the protein amino acid sequence. The solution of this problem gives a powerful tool to design

new drugs and proteins with specific properties, which significantly affects the parmaceutical

industry [9]. Protein folding problem usually is broken down into two steps: backbone modeling

and side-chain prediction. To solve backbone modeling part one can use homology modeling [10]

or protein threading [11], which give relatively good backbone structure prediction. This study

is devoted to the side-chain prediction problem and quadratic programming approach to solve

it. The aim of the prediction protein side-chain is to predict the dihedral angles of the chemical

bonds between atoms from the side-chain. Experiments show that every amino acid has the set

of the most probable dihedral angles. These most probable angles correspond to some side-chain

states which are called rotamers. To use this experimental fact in prediction procedure, biologists

compose rotamer libraries of such states [12, 13, 14]. These libraries allow formalizing initial side-

chain prediction problem as binary optimization problem, which is proved to be NP-hard [15].

To solve binary optimization problem, grid search methods, Monte-Carlo methods, genetic
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algorithm and graph-based technique are widely used. The paper [16] studies the mutation

stability and uses grid search to search optimum parameters. It proposes FoldX algorithm

which shows poor results in side-chain prediction because it is not originally designed for this

problem. The paper [17] proposes Rosetta algorithm, which uses Monte-Carlo simulation to

find solution of the corresponding optimization problem. Also, this paper represents energy

function as a linear combination of the specific evergy terms taken from other papers. In [18]

the Sccomp algorithm is introduced. Sccomp uses the genetic algorithm to solve the optimization

problem. This paper proposes its own version of energy function which is represented as linear

combination of different interaction energies. More details see in the original paper. The

graph-based approach to solve optimization problem is preseneted in the paper [19], where the

SCWRL4 algorithm is introduced. This algorithm is based on the construction graph from

the protein, elimination some edges and apply tree decomposition technique. The authors use

its own defined energy function. More details see in the original paper. The main drawback

of the considered approaches is that they find only local optimum not global one. Therefore,

they do not guarantee that obtained side-chain structure is the best. Below we describe our

approach to solve sise-chain prediction problem which is based on the convex relaxation of

the initial binary optimization problem. The convexity guarantees the global optimum of the

relaxaed optimization problem. Also we use a learning procedure to define energy function

such that proteins with correct side-chains have the smaller energy than proteins with incorrect

side-chains.

We model the protein energy by the quadratic function dependent on rotamer states of

side-chains. This function takes into account both the side-chain interactions energy in the

quadratic term and self-energy of every rotamer in the linear term. Therefore, based on the

minimum energy principle this function should be appropriate to predict the optimum protein

side-chain structure. We relax binary quadratic optimization problem to continues convex one.

To make this relaxation, we use semidefinite programming relaxation, shift spectrum relaxation

and spectral relaxation of the objective function and use convex hull of the non-convex feasible

set from the initial problem. After that, we have to optimize convex function over the convex

feasible set. Below we review algorithms which solve this problem efficiently.

Previously, quadratic programming was widely used in different domain applications such

as control [20], portfolio optimization [21], signal and image processing [22] and sequential pro-
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gramming approach [23]. The quadratic programming framework is widely used in various fields,

because of there exists fast, memory-efficient and scalable algorithms to solve these problems.

Therefore, we propose to formulate feature selection problem and side-chain prediction problem

in the quadratic programming form and use efficient algorithms to solve them. If the objec-

tive function is the indefinite quadratic form, then we consider some convex relaxations which

give approximate solutions of the initial non-convex problem. We consider the semidefinite

programming relaxation [24], Lagrange relaxation [25], shift spectrum relaxation and spectral

relaxation. The authors show that Lagrange relaxation is dual to the semidefinite programming

relaxation [26], so we use only semidefinite programming relaxation in this study. Moreover,

we need to get constraints to the quadratic optimization problem that provide the convex fea-

sible set. These constraints should be defined according to the domain in which the quadratic

programming solution is interpreted.
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2. PROBLEM STATEMENT

Consider the general form of the binary quadratic programming problem:

x∗ = argmin
x∈Bn

xTQx, (1)

where Bn = {0, 1}n is a set of n dimensional binary vectors, Q ∈ Rn×n is a matrix. In general

case the problem (1) is NP-hard. To solve this problem efficiently, one needs to convert it to

the convex optimization problem:

x∗ = argmin
x∈C

f(x), (2)

where C ⊆ Rn is a convex set, f : C → R is a convex function. To solve the problem (2) and

get approximation of the initial problem (1) one has to define a convex set C and a convex

function f . The convex function f is the convex approximation of the objective function in

the problem (1). The convex set C is defined according to the domain in which solution of the

problem (2) is interpreted, see subsection 2.1 and 2.2, where we provide different definitions of

the set C. Below we discuss how function f can be defined.

Consider two approaches to define function f .

1. Shift spectrum:

f(x) = xTQ̂x = xTQx− λmin‖x‖22, (3)

where Q̂ = Q− λminIn � 0, In is an identity matrix n× n, λmin is a minimum eigenvalue

of the matrix Q and x ∈ Rn.

2. Semidefinite programming relaxation:

f(X) = Tr(QX), (4)

where X ∈ Sn+ is a symmetric, non-negative definite matrix such that

X− xxT � 0

or using Schur complement: X x

xT 1

 � 0. (5)

The semidefinite programming relaxation approach requires additional constraints (5) to the

problem (2).
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2.1. Feature selection problem

Let X = [χ1, . . . ,χn] ∈ Rm×n be the design matrix, where χi ∈ Rm is an i-th feature.

Let y ∈ Rm be the target vector. Denote by J = {1, . . . , n} a feature index set. Let A ⊆ J
be a feature index subset. The data fitting problem is to find a parameter vector w∗ ∈ Rn such

that:

w∗ = argmin
w∈Rn

S(w,A|X,y, f), (6)

where S is an error function, which validates the quality of any parameter vector w with given

target vector y and a function f . The function f is the parameter function, which gives target

vector y approximation.

In this study we use linear parameter function:

f(X,A,w) = XAw,

where XA is the design matrix which consists of the feature vectors with indices from the set

A, and quadratic error function

S(w,A|X,y, f) = ‖f(X,A,w)− y‖22.

The features χi, i ∈ J may be noisy, irrelevant or multicollinear that leads to additional

error in estimation of the optimum vector w∗ and unstability of this vector. One can use feature

selection methods to remove named features from the design matrix X. The feature selection

procedure reduces the dimensionality of the problem (6) and improves stability of the optimum

vector w∗.

The feature selection problem is

A∗ = argmin
A⊆J

Q(A|X,y), (7)

where Q : A → R is a quality criterion, which validates the quality of the considered feature

index subset A ⊆ J .

The problem (7) does not require any estimation of the optimum parameter vector w∗, but

uses only relations between the features χi, i = 1, . . . , n and the target vector y.

Let x ∈ Bn be an indicator vector such that xi = 1 if and only if i ∈ A. So the problem (7)

can be rewrite in the following form:

x∗ = argmin
x∈Bn

Q(x|X,y), (8)
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where Q : Bn → R is another form of the criterion Q with domain Bn instead of A.
The main idea of the proposed approach is to represent the criterion Q in the form of

quadratic function:

Q(x) = xTQx− bTx, (9)

where Q ∈ Rn is a matrix of pairwise feature similarity, b ∈ Rn is a vector of feature relevance

to the target vector.

The most frequently used pairwise feature similarities between features χi and χj are Pearson

correlation coefficient [27], mutual information [28] and hessian of the error function [29]. The

Pearson correlation coefficient is defined as:

ρij =
cov(χi,χj)√
Var(χi)Var(χj)

,

where cov(χi,χj) is a covariance between features χi and χj, Var(·) is a variance of every

feature. The sample correlation coefficient is calculated as

ρ̂ij =

m∑
k=1

(χik − χi)(χjk − χj)√
m∑
k=1

(χki − χi)
2
m∑
k=1

(χkj − χj)
2

. (10)

In this case the elements of the matrix Q = [qij] are equal to the absolute values of the corre-

sponding sample correlation coefficients:

qij = |ρ̂ij| (11)

and the elements of the vector b = [bi] are equal to absolute values of the sample correlation

coefficient between every feature and the target vector:

bi = |ρ̂iy|. (12)

It means that we want to minimize the number of correlated features and maximize the number

of features correlated to the target vector.

The mutual information between features χi and χj is defined as

I(χi,χj) =

∫ ∫
p(χi,χj) log

p(χi,χj)

p(χ)p(χj)
dχidχj. (13)

The sample mutual information is calculated based on estimation of the probability distribution

in the equation (13).
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In this case the elements of the matrix Q = [qij] are equal to the value of the corresponding

sample mutual information:

qij = I(χi,χj)

and the elements of the vector b = [bi] are equal the sample mutual information of every feature

and the target vector:

bi = I(χi,y).

The third way to define the feature similarity is the hessian matrix

H = [hij] =
∂S(w,X|y, f)

∂wi∂wj
,

where S(w,A|X,y, f) is the considered error function. It raises from the Taylor series expansion

of the error function and shows how much hij corresponding to the χi and χj affects to the

total approximation error. If the effect to the total error is small, then the corresponding pair of

features χi and χj can be excluded from the active set A∗ without significant error increasing.
Thus, we can write the problem (7) in the form (1):

x∗ = argmin
x∈Bn

xTQx− bTx, (14)

or

x̃∗ = argmin
x̃∈Bn+1

x̃TQ̃x̃T, (15)

where Q̃ =

 0 −1
2
bT

−1
2
b Q

 and x̃ =

1
x

. We define the weight of the i-th feature χi as the

i-th element of the vector x∗.

When the matrix Q is defined through correlation coefficient or mutual information, then

it is symmetric and non-negative definite. Therefore, the main problem is to define the convex

set C to reduce the problem (15) to the problem (2). In the formulation (14), the meaningful

definition of the convex set C is the following:

C = {x ∈ Rn|‖x‖∗ ≤ 1, xi ≥ 0, i = 1, . . . , n},

where we can use any norm which induces convex unit ball, i.e l1, l2 or l∞ norms or others. In

the formulation (15) the convex set C can be defined as:

C = {x̃ ∈ Rn+1|‖x̃‖∗ ≤ 2;xi ≥ 0, i = 1, . . . , n; cTx̃ = 1},

10



where we can use any norm which induces convex unit ball, i.e l1, l2 or l∞ norms or others,

c ∈ Bn+1 is a constant vector such that

c = [ci] =

1 if i = 0

0 if i = 1, . . . , n.

With the linear equality constraint

cTx̃ = 1

we make the zero element of the vector x̃∗ equal to 1. This constraint allows to extract solution

of the problem (14) from the solution of the problem (15) by taken the elements of x̂ indexing

from 1 to n.

In these definitions of the convex set C the solution x∗ represents probability (may be non-

normalized) of the belongings every feature to the set A∗. The set A∗ is formed by the thresh-

olding the solution x∗ in the following way. We choose the threshold τ and for every element

x∗ check if x∗i > τ, i ∈ J then i ∈ A∗.

2.2. Side-chain prediction problem

The side-chain prediction problem is to define the correct dihedral angles in the residues

for every amino acid in the protein. To formalize this problem we use two facts from the

biology: the stable conformation of the protein corresponds to the minimum energy, and every

amino acid in protein has the most probable set of dihedral angles which is called rotamer

states. So, the formal statement of the side-chain prediction problem is the following. Let N

be a number of amino acids in protein, which have more than one rotamer state. Denote by

ni, i = 1, . . . , N a number of rotamer states for the i-th amino acid. Let x ∈ Bn, n =
N∑
i=1

ni be a

binary vector, which represents the correspondence between the amino acids and their rotamer

states. Particularly, the vector x ∈ Bn consists of N subvectors xi ∈ Bni , i = 1, . . . , N such that

every subvector xi has the single non-zero element equal to one:

x =


x1

...

xN

 , ‖xi‖1 = 1, i = 1, . . . , N

From the biology point of view, it means that every amino acid has to have the single rotamer

state. Therefore, we have to add the constraint that guarantees this requirement.
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Now we formulate binary side-chain prediction problem which is based on the minimum

energy principle. The most stable state of the amino acid has the smallest energy:

x∗ = argmin
x∈Bn

E(x),

s.t. Ax = 1N ,

(16)

where E : Bn → R is an energy function, which maps the protein state represented by rotamer

states of the corresponding amino acids to the real number, and 1N is an N × 1 vector of ones.

The constraint guarantees that every amino acid has the single rotamer state. To provide this

requirement, the matrix A ∈ BN×n has the following structure:

A =


1 · · · 1 0 · · · 0 · · · · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · · · · 0 · · · 0
... . . . ...

... . . . ... · · · · · · ... . . . ...

︸ ︷︷ ︸
n1

0 · · · 0 ︸ ︷︷ ︸
n2

0 · · · 0 · · · · · · ︸ ︷︷ ︸
nN

1 · · · 1


The paper [15] proved that the problem (16) is NP-hard. Therefore, to find approximate

solution we need to relax the initial problem (16) and consider the approximate side-chain

prediction problem. The first obvious relaxation uses continuous variables instead of binary

ones. The continuous side-chain prediction problem is formulated as:

y∗ = argmin
y∈[0,1]n

Ê(y)

s.t. Ay = 1N

(17)

The energy function Ê : [0, 1]n → R is a convex hull of the energy function E. The solution y∗

can be interpreted as the probability of every rotamer state to be an optimum for corresponding

amino acid. Also, consider the subvectors y∗i such that

y∗ =


y∗1
...

y∗N

 , y∗i ∈ Rni , i = 1, . . . , N.

To restore the binary approximation x̂∗ from the y∗, one should consider every subvector y∗i

and replace the maximum element of every subvector y∗i by 1 and the other elements by 0:

x̂∗ =


x̂∗1
...

x̂∗N

 , x̂∗i ∈ Bni , i = 1, . . . , N, x̂∗ij =


1, j = argmax

k=1,...,ni

y∗ik,

0, otherwise.
(18)
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We represent the optimized energy function in the quadratic form with a matrix Q ∈ Rn×n

and a linear term b ∈ Rn:

Ê(y) = yTQy + bTy. (19)

The choice of such energy function is based on the idea that the optimal rotamer state for

every amino acid has to have minimum side-chain interaction energy and minimum self-energy.

The linear term bTy represents the self-energy, and the quadratic term yTQy — side-chain

interaction energy. The matrix Q is the matrix of pairwise energy between different rotamer

states of the protein:

Q = [qij], qij = E(ri, rj), (20)

where E is an energy function, which maps protein in rotamer states ri and rj to the corre-

sponding energy. More details how define this function see in Section 2.2.1.

The linear term b is a self-energy of every rotamer states. The self-energy includes the

entropy of every rotamer state ei extracted from the rotamer library and interaction energy

between side-chain in rotamer state and protein backbone E(ri). The entropy of rotamer state

is computed as:

ei = min

(
50,− log

p0
pi

)
,

where p0 is a maximum probability among rotamers for considered residue, and pi is a proba-

bility of the i-th rotamer state for considered residue. The entropy and side-chain — backbone

interaction energy can be used simultaneously or separately. In section 3.2 we discuss the

performance of every approach to define the linear term.

So, now we have the following optimization problem:

y∗ = argmin
y∈[0,1]n

yTQy + bTy

s.t. Ay = 1N .

(21)

Because of the matrix Q indefiniteness, the problem (21) is not convex, and it can not be solved

efficiently with global minimum guarantee. To treat this issue, we use the convex relaxations

of the objective function described in the section 2 to find some approximation of the initial

problem solution. Thus, we consider the following optimization problems:
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• semidefinite programming relaxation (SDP):

y∗ = argmin
y∈[0,1]n,Y∈S+

Tr(QY) + bTy

s.t. Ay = 1NY y

yT 1

 � 0

(22)

• shift spectrum relaxation (SS):

y∗ = argmin
y∈[0,1]n

yTQ̂y + bTy

s.t. Ay = 1N ,

(23)

where Q̂ = Q− λminIn � 0, In is an identity matrix n× n, λmin is a minimum eigenvalue

of the matrix Q.

• spectral relaxation (SR):

ỹ∗ = argmin
ỹ∈[0,1]n+1

ỹTQ̃ỹ

s.t. ‖ỹ‖22 = N + 1,

(24)

where Q̃ =

 0 1
2
bT

1
2
b Q

 and ỹ =

1
y

. In this problem statement we relax the constraint

on the single rotamer per amino acid. Therefore, we expect that this relaxation gives the

worst quality but be the fastest one among the quadratic problems. The reason of high

speed of this relaxation is that it has analytical solution, which is the scaled eigenvector

of the matrix Q̃ corresponding to the smallest eigenvalue.

• linear programming (LP):

y∗ = argmin
y∈[0,1]n

bTy

s.t. Ay = 1N ,

(25)

where b ∈ Rn is a self-energy vector. This statement is the simplest model for side-chain

prediction, where interactions between rotamers are not considered.
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The relevance vector can be defined as entropy, backbone energy interaction or their sum. These

approaches to define linear term are compared in the computational experiment for both linear

and quadratic programming problem statements.

Also in addition to the constraint Ay = 1N one can use other constraints, which improve

guarantee that every amino acid has the single rotamer state, but not violate the convexity of

the feasible set, for example:

diag(Y) = y. (26)

2.2.1. Energy function

In this section we describe the way to define the energy function E of the protein which is

expected to be the most appropriate to predict side-chain. The correct energy function E is

crucial for high quality of side-chain prediction procedure.

The main property of the correct energy function is that the true protein structure has the

smallest energy:

E(x∗) < E(x),

where x∗ represents the protein with a correct side-chain structure and x represents any incorrect

side-chain structure of the considered protein. The paper [30] proposes the approach to learn

energy function which is based on the data collected from the correct and incorrect protein

structures. Below we shortly describe this approach.

The energy function E is represented in the form:

E(x) =
M∑
k=1

M∑
l=k

rmax∫
0

nkl(r)Ukl(r)dr, (27)

where M is the number of atom types, which are prior known, and every atom has one of these

M types, rmax is the maximum interaction radius, nkl(r) is the number density of atom pairs

at a distance r between all pairs of atoms of types k and l, and Ukl is a scoring potential. The

indices of k-type atoms we denote by Ak. The number density nkl(r) is computed as follows:

nkl(r) =
1√
2πσ2

∑
i∈Ak,j∈Al

e−(r−rij)
2/2σ2

, (28)

where σ is the standard deviation, which takes into account possible inaccuracies in protein

structure, rij is the distance between i-th and j-th atoms, which is computed from the given

protein.
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To find the unknown scoring potential Ukl(r) we decompose it and number density nkl(r) in

a orthonormal polynomial basis:

Ukl(r) =
∑
q

wklq ψq(r)

nkl(r) =
∑
q

xklq ψq(r),
(29)

where r ∈ [0, rmax], ψq(r) are orthonormal basis functions, particularly shifted rectangular

functions. The coefficients wklq and xklq are the expansion coefficients of Ukl(r) and nkl(r).

Substitution expansions (29) to the equation (27) gives the following linear approximation:

E(x) ≈
M∑
k=1

M∑
l=1

Q∑
q

wklq x
kl
q = 〈w,x〉, (30)

wherew ∈ RQ×M×(M+1)/2+Ne is unknown scoring vector and x ∈ RQ×M×(M+1)/2+Ne is a structure

vector which is computed directly from the given protein, Ne is a number of amino acids types,

which are in the considered proteins. The last Ne elements of the vector x correspond to the

cumulative entropy for every amino acid type.

Assume we haveNp proteins with the correct side-chain structure, which is represented by the

structure vector xj0, j = 1, . . . , Np and for every j-th protein we can generate Dj proteins with

incorrect side-chain structure, which are represented by the structure vectors xji , i = 1, . . . , D.

We denote these proteins with incorrect side-chain as decoys. After that, we can state the

following optimization problem to find the optimum scoring vector w∗ which gives the smallest

energy for every of Np correct protein side-chain structures compared to incorrect structures

for every protein and guarantees the positiveness of the last Ne elements corresponding to the

entropy terms:

w∗ = argmin
w∈RQ×M×(M+1)/2+Ne

1

2
‖w‖22 +

Np∑
j=0

Dj∑
i=0

Cijξij

s.t. yij(〈w,xji 〉 − bj)− 1 + ξij ≥ 0, j = 0, . . . , Np, i = 0, . . . , Dj

ξij ≥ 0, j = 0, . . . , Np, i = 0, . . . , Dj,

(31)

where class labels yij are defined as

yij =

−1, i = 0, j = 1, . . . , Np

+1, i 6= 0, j = 1, . . . , Np.
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and Cij are parameters which penalize the violation of the first inequality constraint and com-

puted as:

Cij =

C ·
Dj+1

2
, yij = −1

C · Dj+1

2·Dj
, yij = +1,

where C is defined according to cross-validation step.

The positiveness of the last Ne elements of the scoring vectorw∗ is provided by the additional

set of structure vectors which is defined as:

x0
0 = 0

x0
i = [x0ik] =

1, k = Q ·M · M+1
2

+ i

0, otherwise
i = 1, . . . , Ne;

and corresponding class labels:

yi0 =

−1, i = 0

+1, i 6= 0.

The parameters Cij for this set of structure vectors are scaled in 1000 times to improve the

importance of the positiveness the last Ne elements of the scoring vector w∗.

The main assumption lies in the base of the problem statement (31) is that the single

optimum scoring vector w∗ gives the smallest energy for correct side-chain structure for every

considered protein. Visualization of this idea is provided in Fig. 1.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
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−0.5
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0.5
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Figure 1: Illustration of the main assumption about energy function
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2.2.2. Decoys generation

In this section we describe our approach to generate the incorrect side-chain structure of

the protein. This step is very important to get appropriate energy function for the side-chain

prediction problem. We tried different approaches and chose the most reasonable, which we

provide below. The native rotamer state is the state from the rotamer library such that dihedral

angles of the original side-chain equal to the dihedral angles of this rotamer state. If the library

has not such state then the native state is the rotamer state, which has the smallest RMSD

between original side-chain. The definition of the RMSD is provided in the equation (32).

The structure vector generation is the computation of the density numbers nkl(r) and its basis

decomposition xklq according to the equations (28), (29).

Algorithm 1: Decoys generation procedure
Data: Protein from PDB

Result: Structured vectors xi

1 i = 0;

2 State every amino acid in the native rotamer state and generate structure vector xi;

3 i = i+ 1;

4 for every amino acid, which has more than one rotamer states do

5 if there are no rotamer states, which differ from the native ones in dihedral angles

then

6 Set rotamer state, which has the maximum RMSD;

7 if there is the single rotamer state, which differs from the native one then

8 Set this rotamer state;

9 if there are more than one rotamer states, which differ from the native one in

dihedral angles then

10 Set the most probable rotamer state;

11 Generate structure vector xi;

12 i = i+ 1;

This procedure seems to be the most appropriate, because we want to find energy function,

which guarantees the minimum for the correct side-chain and increases if any side-chain is

incorrect.
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3. COMPUTATIONAL EXPERIMENT

In this section we describe experiments to show the performance of our method in feature

selection problem and side-chain prediction problem. We compare our approach with previously

published approaches for feature selection problem as well as for side-chain prediction problem.

Also, in experiments about side-chain prediction we investigate different approaches to define

linear term and study their performance.

3.1. Feature selection

In this section we provide the experiments on the synthetic and real data sets to show the

performance of the considered approach in feature selection problem.

Data. We use the synthetic data sets generated according to procedure proposed in [31] to

investigate performance of the considered methods from the multicollinearity problem point of

view. The following types of data sets are considered:

• inadequate correlated — Fig. 2(a);

• adequate random — Fig. 2(b);

• adequate redundant — Fig. 2(c);

• adequate correlated — Fig. 2(d).

Also we use the real dataset of diesel fuels NIR spectra [32].

Evaluation criteria. To validate the selected feature subset we use the following criteria

widely used in papers.

Variance inflation factor. To diagnose multicollinearity, the paper [33] uses the variance

inflation factor VIFj. The VIFj shows a linear dependence between the j-th feature and the

other features. To compute VIFj estimate the parameter vector w∗ according to the problem (6)

assuming y = χj and extracting j-th feature from the index setA = A\j. The VIFj is computed

with the following equation:

VIFj =
1

1−R2
j

,
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Figure 2: Synthetic test data sets configuration: (a) inadequate correlated, (b) adequate random,

(c) adequate redundant, (d) adequate correlated.

where R2
j = 1− RSS

TSS
is the coefficient of determination and RSS =

m∑
i=1

‖χj −XAw
∗‖22,

TSS =
m∑
i=1

(χji − χj), χj =
1
m

m∑
i=1

χji.

The paper [33] states that if VIFj & 5 then the associated element of the vector w∗ is poorly

estimated because of multicollinearity. Denote by VIF the maximum value of VIFj for all j ∈ A:

VIF = max
j∈A

VIFj.
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Stability. To estimate the stability R of the parameter w estimation based on the selected

feature subset A, we use the logarithm of the the matrix XTX condition number:

R = ln
λmin

λmax

,

where the λmax and λmin are the maximum and minimum non-zero eigenvalues of the ma-

trix XTX.

The larger R is, the more stable parameter estimation.

Complexity. To measure complexity C of the selected feature subset A we use the cardi-

nality of this subset, i.e.

C = |A|.

The less complexity is, the better selected subset.

Mallow’s Cp. The Mallow’s Cp criterion [34] trades off the residual norm r = ‖y−XAw∗‖22
and the number of features p. The Mallow’s Cp defined as

Cp =
rp
r
−m+ 2p,

where rp is similar to r, but computed with p features only. In terms of this criterion the smaller

Cp is, the better feature subset.

BIC. Information criterion BIC [35] defined as

BIC = r + p logm.

The smaller value of BIC is, the better model fits the target vector.

Considered criteria are summarized in the table 1.

Performance analysis. This paragraph is devoted to performance analysis and comparisons

quadratic programming approach with other feature selection methods. We use the synthetic

datasets dataset of diesel fuel NIR spectra.

In figures below we choose the correlation coefficient (11) to generate matrix Q and correla-

tion between features and target vector (12) to generate linear term b. Fig. 3 shows the number

of selected features versus the chosen threshold τ for every kind of synthetic test data sets.
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Table 1: A list of the criteria to evaluate the selected feature subset

Name Formula Meaning

VIF VIF = max
j∈A

1
1−R2

j
Indicator of the the multicollinear

features existence

Stability R = ln λmin

λmax
An indicator of the model stabil-

ity

Complexity C = |A∗| The number of the selected fea-

tures

Mallow’s Cp Cp =
rp
r
−m+ 2p A trade-off between accuracy and

number of features

BIC BIC = r + p logm A trade-off between residues

norm and number of features

Fig. 3(a) shows that all features have the same and very small weights, which means that these

features are irrelevant. Fig. 3(c) shows that all features have the same weights, but opposite

to fig. 3(a) these weights are much bigger, which means that all features are relevant and any

feature can be selected. Fig. 3(d) shows that subsets of features have the same weights ans

are excluded simultaneously. Every that subset corresponds to orthogonal feature and features,

which are correlated to it.

Fig. 4 show the dependence of the error function S on the threshold τ . These figures also

clearly represents the structure of the test data sets, which means that quadratic programming

feature selection extracts such patterns from the dataset. The main reason of good representa-

tion is the choice of the correlation coefficient as the function to generate matrix Q and linear

term b.

Tables 2, 3, 4 show that the proposed approach is appropriate for every test except adequate

correlated set in contrast with other feature selection methods. In this case we use a correlation

coefficient as a similarity measure between features and target vector. Therefore, we can not

take into account the feature significance in estimation parameter vector w. Because of that the

proposed approach does not show good quality for the adequate correlated datatset. To treat

this problem, we can fix the linear term b definition and add the significance of every feature

in estimation parameter vector w to the correlation with the target vector.

22



10−7 10−6 10−5

Threshold, τ
0

10

20

30

40

50

N
um

be
ro

fs
el

ec
te

d
fe

at
ur

es
,|
A

∗ |

(a)

10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Threshold, τ
0

10

20

30

40

50

N
um

be
ro

fs
el

ec
te

d
fe

at
ur

es
,|
A

∗ |

(b)

0.000 0.005 0.010 0.015 0.020

Threshold, τ
0

10

20

30

40

50

N
um

be
ro

fs
el

ec
te

d
fe

at
ur

es
,|
A

∗ |

(c)

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Threshold, τ
0

10

20

30

40

50

N
um

be
ro

fs
el

ec
te

d
fe

at
ur

es
,|
A

∗ |

(d)

Figure 3: Dependence the cardinality of the active index set A on the threshold τ for: (a)

inadequate correlated data set, (b) adequate random data set, (c) adequate redundant data set,

(d) adequate correlated data set.

Now we provide the similar analysis for NIR spectra of diesel fuel dataset in Fig. 5, where we

compare dependence of residual norm on the number of the selected features based on correla-

tion coefficient and mutual information similarity measures. These plots show that correlation

coefficient similarity measure is better to identify the minimum number of features which give

appropriate quality.

Table 5 compares the considered approach with other feature selection methods on the NIR

spectra of diesel fuel. This table shows that quadratic programming approach is comparable

with other feature selection methods, which estimate the parameter vector w and select features
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Figure 4: Dependence error function S on the threshold τ for considered types of test data sets:

(a) inadequate correlated data set, (b) adequate random data set, (c) adequate redundant data

set, (d) adequate and correlated data set.

simultaneously.

3.2. Side-chain prediction

In this subsection we present the learning energy function procedure and the performance

analysis of the proposed approach to the side-chain prediction problem.
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Table 2: Evaluation criteria on the inadequate correlated data set — Fig. 2(a)

Method Cp RSS R VIF BIC

QP(ρ) −997 — — — —

LARS −997 — — — —

Genetic −997 — — — —

Lasso −997 1 −6.57 16.6 310.48

Ridge −997 1 −6.69 16.6 346.39

Stepwise −997 1.68 −6.69 16.6 347.01

Elastic Net −997 1 −6.58 16.6 310.48

Table 3: Evaluation criteria for the adequate and random data sets — Fig. 2(b)

Method Cp RSS R VIF BIC

QP(ρ) −997 1.2 · 10−9 0 0.24 6.9

Lasso 7 · 106 8.50 · 10−4 0 0.25 6.9

Elastic Net 8.76 · 10−4 8.76 · 10−4 0 0.25 6.9

Ridge 7.97 · 109 0.97 0 0.25 7.88

LARS −997 1.3 · 10−10 −0.78 0.32 8.29

Genetic −997 1.36 · 10−10 −3.31 0.9 52.5

Stepwise −997 1.33 · 10−10 −3.36 0.89 53.88

Table 4: Evaluation criteria for the adequate and redundant data set — Fig. 2(c)

Method Cp RSS R VIF BIC

QP(ρ) −997 8.5 · 10−11 0 0.25 6.9

Lasso 5.16 · 108 8.5 · 10−4 0 0.24 6.9

Ridge 5.9 · 1011 0.97 −27.13 2.9 · 109 346.36

Elastic Net 5.16 · 108 8.5 · 10−4 −25.01 2.5 · 109 41.45

Genetic −997 1.67 · 10−12 −27.11 2.87 · 109 345.39

Stepwise −997 1.73 · 10−12 −27.13 2.9 · 109 345.39

LARS −997 1.65 · 10−12 −27.13 2.9 · 109 345.39
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Figure 5: Dependence of resudual norm on the number of selected features for (a) correlation

coefficient and (b) mutual information similarity measures

Table 5: Evaluation criteria for the diesel NIR spectra dataset

Method Cp r R VIF BIC

QP (ρ) −110 1.37 · 10−18 −25.7 6.43 · 106 548.38

Genetic −110.88 7.68 · 10−30 −24 8.13 · 105 534.19

LARS 3.22 · 1021 2.07 · 10−7 −28.3 7.94 · 107 529.47

Lasso 2.5 · 1028 1.61 −27.72 1.03 · 1021 1712.92

ElasticNet 2.51 · 1028 1.61 −27.72 1.03 · 1021 1712.92

Stepwise 3.66 · 1029 23.56 −36.78 1.94 · 1022 1919.23

Ridge 1.59 · 1028 1.02 −36.22 1.07 · 1022 1.79 · 103

3.2.1. Learning energy function

Here we describe the used data, learning energy function procedure and validate the obtained

scoring vector w∗.

Data. To learn energy function we use the set of non-homologous proteins. The size of train

set is 2500 proteins and the size of test set is 865 proteins. To get the structure vectors xji we

use the following parameters in the equations (27), (28) and (29): maximum interaction radius

rmax = 10, standard deviation σ = 2, number of atom types M = 20, expansion order Q = 5.
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Therefore, according to equation (30) the dimension of the optimization problem (31) is equal

to 1072. These parameters are chosen according to biological sense and carried out experiments.

Scoring vector training and validation. We train the scoring vector on the training set

with different parameters C and validate the obtained scoring vector on the test set. The

problem (31) is very similar to the classical SVM optimization problem. Therefore, to solve it

we modify the procedure SMO proposed in the paper [36] for the SVM problem. Unfortunately,

this method requires a lot of time to converge (a few days for C = 500) and the convergence

time increases with increasing parameter C. Because of that, we can not try more parameters

C in experiments. This procedure solves the dual problem and then restore the solution of the

primal problem from the dual solution. The obtained learning curve is shown in Fig. 6. The

optimum parameter C = 500. Also Fig. 7 shows the typical convergence process. Due to the

requirements that the last Ne elements of the scoring vector w∗ have to be non-negative, the

convergence process starts from the sharp quality increasing and after that the process makes

the last Ne elements of the scoring vector w∗ non-negative with slight quality decreasing.
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Figure 6: Accuracy for the different parameter C

3.2.2. Side-chain structure optimization

Data. To compare different approaches to solve side-chain prediction problem, we use the

dataset SCWRL4 from the paper [19]. This dataset consists of 379 proteins. The histogram

of dimension distribution is shown in Fig. 8(a). To make a preliminary test, we select 32

proteins from the SCWRL4 dataset and denote this subset as subSCWRL4. The histogram of
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Figure 7: Typical convergence scheme of the learning procedure (here C = 500)

the dimension distribution for the subSCWRL4 dataset is shown in Fig. 8(b).

Also, we use the rotamer library [37] to generate possible protein conformations. We use

the rotamer states from this library, which has probability greater that 0.01. This threshold

probability has a significant influence on the dimensions of optimization problems discussed

later. The less threshold probability is, the larger dimension.
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Figure 8: Distributions of the dimension for considered datasets

Evaluation criteria. To compare the predicted protein with the original one we use the

following criteria, which are given by biology community:

• ratio of the correct predicted χ1 angles with tolerance 40◦:

χ1 =
1

N

N∑
i=1

[|χ̂1 − χ1| < 40◦ ∨ ||χ̂1 − χ1| − 360◦| < 40◦],
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where χ1 is a dihedral angle in the original protein, χ̂1 is a dihedral angle in the predicted

protein and [a] =

1 if a is True

0 if a is False.

• ratio of the correct predicted χ1 and χ2 angles with tolerance 40◦:

χ12 =
1

N

N∑
i=1

[|χ̂1−χ1| < 40◦∨||χ̂1−χ1|−360◦| < 40◦]·[|χ̂2−χ2| < 40◦∨||χ̂2−χ2|−360◦| < 40◦],

where χ2 is a dihedral angle in the original protein, χ̂2 is a dihedral angle in the predicted

protein and χ1, χ̂1 are the same as in χ1.

• root mean square deviation (RMSD)

RMSD =

√√√√ 1

NA

NA∑
i=1

(ri − r̂i)2, (32)

where ri is a position of the i-th atom in the original protein, r̂i is a position of the i-th

atom in the predicted protein and NA is a number of atoms in the considered protein.

Performance analysis. In this paragraph we present the performance of the proposed ap-

proach in side-chain prediction problem. We compare different approaches to solve side-chain

prediction problem from the simplest one to more complicated approaches.

1. Linear programming based on the entropy term

2. Linear programming based on side-chain —back-bone interaction energy

3. Linear programming based on entropy term and side-chain —back-bone energy

4. Quadratic programming based on side-chain — side-chain interaction energy

5. Quadratic programming based on side-chain — side-chain interaction energy and linear

term based on 1 or 2 or 3.

To solve the problem (22) we use the splitting conic solver [38, 39]. To solve the problem (23)

with different linear term definitions we use CVX, a package for specifying and solving convex

programs [40, 41] with MOSEK solver [42]. The problem (24) has analytical solution, which

is the scaled eigenvector corresponding to the minimum eigenvalue, so to find these eigenvalue
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and eigenvector we use the algorithm from the paper [43]. The problem (25) is solved with

MATLAB Optimization Toolbox [44].

Tab. 6 shows performance of the considered approaches on the subSCWRL4 dataset. It

shows that quadratic objective function with linear term as a sum of entropy and backbone

interaction energy and shift spectrum relaxation gives the best quality of prediction for the not

the smallest but reasonable time. At the same time, experiments demonstrate that quadratic

term improves the prediction quality for shift spectrum relaxation on more than 3 % but requires

more time. In addition, the most important part of the linear term is the entropy which

significantly improves the quality of every considered approach. The next observation is that

spectral relaxation, as it was expected, gives the poorest quality but is the fastest among the

quadratic problem relaxations. SDP relaxation is poorly scalable, so we test it only on proteins,

which corresponding problem dimension is less than 1800. The quality of this relaxation is not

so good to require so much time. Thus, the main conclusion is that the best approach is shift

spectrum relaxation with linear term as sum entropy and backbone interaction energy. Also

the linear programming approach gives worse quality but is much faster. In both cases entropy

plays important role in high quality.

Table 6: Performance of different approaches for subSCWRL4 dataset, energies computed for

parameters learned with C = 500

Algorithm χ1 χ12 RMSD, Å Time, s

QP + entropy (24) 52.42% 32.77% 1.74 2.57

QP + backbone (24) 54.29% 39.94% 1.83 2.16

QP + entropy and backbone (24) 63.69% 49.30% 1.67 2.25

LP backbone (25) 68.33% 54.31% 1.37 1.57

SDP (n < 1800) (22) 71.28% 60.56% 1.43 ∼ 104

QP + backbone (23) 74.93% 60.48% 1.30 164.89

LP entropy (25) 77.40% 66.84% 1.42 1.61

LP entropy and backbone (25) 78.33% 66.92% 1.37 1.61

QP + entropy (23) 80.06% 68.68% 1.29 176.87

QP + entropy and backbone (23) 81.91% 70.78% 1.20 181.98
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Tab. 7 shows the performance of the considered approaches on the SCWRL4 dataset. The

ranking of the considered approaches on subSCWRL4 and SCWRL4 datasets is the same.

Also the values of evaluation criteria for the SCWRL4 dataset are slightly bigger than for

subSCWRL4 dataset in case of every considered approach.

Table 7: Performance of different approaches for SCWRL4 dataset, energies computed for

parameters learned with C = 500

Algorithm χ1 χ12 RMSD, Å Time, s

QP + backbone (24) 53.91% 38.61% 1.89 30.49

QP + entropy (24) 56.59% 37.67% 1.73 32.36

QP + entropy and backbone (24) 65.54% 51.1% 1.64 27.26

LP backbone (25) 69.36% 54.89% 1.53 17.77

SDP (n < 1800) (22) 72.43% 60.56% 1.41 ∼ 106

QP + backbone (23) 75.13% 59.94% 1.33 3.41 · 103

LP entropy (25) 78.14% 67.24% 1.40 17.22

LP entropy and backbone (25) 78.7% 67.4% 1.35 18.34

QP + entropy (23) 80.29% 68.31% 1.30 3.24 · 103

QP + entropy and backbone (23) 82.58% 70.97% 1.19 3.29 · 103

To compare our best approach (23) with other methods proposed previously, we use the re-

sults and dataset from the paper [45]. The dataset consists of 240 proteins and the corresponding

dimensional distribution is shown in Fig. 9.

Table 8 presents the results of different algorithms on the considered data set. The time

is mentioned in the paper [45] only in the order of magnitude. The algorithms are sorted in

descending order according to the time and dehidral angles accuracy measures. This table shows

that our approach is not the best, but in the top of the algorithm list. The possible explanation

of this ordering is that our energy function is not so good as we expect. Therefore, we will try

to use other energy functions or improve the current energy finction learning procedure. One

more possible explanation is that shift spectrum changes the problem too much to get better

quality.
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Figure 9: Dimension distribution of the protein data set from the paper [45]

Table 8: Comparison our best algorithms with other methods from papers

Algorithm χ1 χ12 Time per protein, s

SCWRL4 [19] 85.2% 72.0% ∼ 1− 10

QP + entropy and backbone (23) 82.6% 70.6% 4.6

Rosetta [17] 83.3% 68.2% ∼ 1− 10

Sccomp-S [18] 82.3% 59.6% ∼ 100− 1000

Sccomp-I [18] 81.3% 57.7% ∼ 1− 10

FoldX [16] 70.4% 49.7% ∼ 100− 1000
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4. CONCLUSION

This study investigates the side-chain prediction and feature selection problems from the

quadratic programming point of view. The feature selection and side-chain prediction problems

are stated in the form of the binary quadratic programming problems. Then we relax binary

problems to continuous ones and in the case of non-convexity of the objective function we pro-

pose some types of convex relaxations like spectral relaxation, shift spectrum relaxation and

semidefinite programming relaxation. The shift spectrum relaxation shows the best quality in

the side-chain prediction problem among proposed in this study. It means that the quadratic

term improves the prediction quality. The linear programming approaches gives slightly worse

quality but for less time. Also the entropy is significantly improves both linear and quadratic ap-

proaches. The potential improvement of the considered approach is fine-tuning energy function,

decreasing relaxation influence and speed up optimization step.

In the feature selection problem experiments, the quadratic programming approach demon-

strates the high performance in the feature dependence detection and solving multicollinearity

problem. We compare quadratic programming approach with other feature selection methods

and show that our approach is better to identify multicollinear and redundant features.
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