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Definitions

An algorithm A has performance bounds εA(n), δA(n) if

Pr
{

FA >
(
1 + εA(n)

)
OPT

}
≤ δA(n)

n is the problem size
εA(n) is the relative error of the algorithm
δA(n) is the failure probability of the algorithm, i.e. the
proportion of cases when algorithm A doesn’t hold the
relative error εA(n).

An algorithm A is called asymptotically optimal (exact)

on a class of instances, if there exist performance bounds s.t.

εA(n) −−−→
n→∞

0, δA(n) −−−→
n→∞

0.
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Introduction

Discrete optimization problems on graphs often consist in
finding a subgraph of extreme total weight: e.g. a spanning
tree, a perfect matching, a hamiltonian cycle, etc.

Some of this problems are polynomially solvable, like
the Assignment Problem (E.A. Dinic, M.A. Kronord)
the Minimum Spanning Tree Problem (Prim).

But most of this problems are NP-hard, like the well-known
Travelling Salesman Problem.
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m-Peripatetic Salesman Problem (m-PSP)[Krarup 1974]

The problem is to find
m edge-disjoint Hamiltonian cycles H1, . . . , Hm
in a given complete graph G = (V , E )
with given weight functions wi : E → R+, i = 1, . . . , m,

such that

W1(H1) + . . . + Wm(Hm) =
m∑

i=1

∑
e∈Hi

wi(e) → min(max).

The problem is NP-hard
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Applications of the m-PSP include

Design of patrol tours

in order to avoid constantly repeating the same tour and thus enhance
the security.

Network design applications with high level of data transmission
reliability:

in order to protect the network from link failure, several edge-disjoint
cycles need to be determined.

Scheduling the machine processing:

e.g. scheduling application where each job must be processed twice by
the same machine but technological constraints prevent the repetition of
identical job sequences.

Optimization of delivery routes.
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The m-PSP is studied in the cases of

deterministic and random instances,

arbitrary, Euclidean and metric weight functions of edges,

common and different weight functions of m Hamiltonian
cycles

special classes of graphs where the weights of the edges
belong to a given finite and infinite set of numbers.
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Known results for the m-PSP

Some previous results for m-PSP
NP-hardness [De Kort 1991].

Polyn. solvable cases of 2-PSP [De Brey&Volgenant 1997].
LB and UB for 2-PSP in B&B [De Kort,1991-93].
Polyhedral approach for m-PSP [Duch&Lapor&Sem 2005].

Some Novosibirsk group results for m-PSP

Polynomial approximation algorithms with performance
guarantees for 2-PSP (2004-2012, Ageev, Baburin,
Gimadi, Glazkov, Glebov, Korkishko, Pyatkin,
Zambalaeva).
Polynomial asymptotically exact algorithms for m-PSPmax
in Euclidean space (Baburin&Gimadi- 2008-2010),
Polyhedral space with a bounded number of facets
(Shenmaier - 2010)
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m-PSP

The results given in this presentation:

We offer an approximation polynomial algorithm for the
minimum-weight m-PSP.

We have obtained the performance guarantees of this
algorithm for certain classes of random inputs of the
problem.

We have justified the conditions for the algorithm to be
asymptotically exact on the considered classes of inputs.
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Algorithm Ã for minimum-weight m-PSP

Input:
A complete n-vertex graph G = (V , E ) with weight functions
wi : E → R+, i = 1, . . . , m, where m < n/4

Output:
m edge disjoint Hamiltonian cycles H1, . . . , Hm

Time complexity:

O(mn2)

Main idea:
modification of the greedy algorithm; finding each Hamiltonian
cycle by turns.
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The description of Algorithm Ã for minimum-weight m-PSP

Stage i = 1, . . . ,m.

In Stage i we consider given graph G with weight function wi and
construct Hamiltonian cycle Hi in 3 steps.

Step i0

Choose the first vertex to start with, let it be vertex 1. Among all
neighbors of 1 randomly choose a vertex v .

Step i1

Build a partial path applying the principle "go to the nearest not visited
vertex" n − 4i times, but do not use the vertex v in this Step.

Step i2

This partial path is converted to a Hamiltonian cycle Hi via procedure P.

For the formation of all further Hamiltonian cycles i + 1, . . . ,m forbid all
edges in Hi and the corresponding reverse edges.
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The auxiliary procedure P

Input:

1 given undirected n̂-vertex graph H(VH , EH) such that
∀v ∈ VH deg(v) > n̂/2,

2 given vertices u, v ∈ VH .

Output:
1 Hamiltonian path with endpoints u, v , or
2 Hamiltonian cycle if u = v .

Time complexity: O(n̂2)
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Description of the procedure P

While 1 ≤ k ≤ n̂

Let P = {u1, . . . , uk} be the constructed path.

If there is an edge {uk , w} ∈ H, where w /∈ P , and
w = v ↔ k = n̂ − 1, then
P := {u = u1, . . . , uk , uk+1 = w}
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Description of the procedure P

Otherwise:
Randomly choose a vertex w /∈ P (w = v ↔ k = n̂ − 1).

Find edges {uk , ui} and {w , ui+1}
P := {u = u1, . . . , ui , uk , . . . , ui+1, w}
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Correctness of the procedure P

Suppose, there is no edge {ui , ui+1} ∈ P such that
{uk , ui} and {w , ui+1} ∈ EH .

There are > n̂/2 vertices adjacent to w .
Vertices not adjacent to w : w , uk , and ui+1, where
i : {uk , ui} ∈ EH .
So there are > 1 + 1 + n̂/2− 2 = n̂/2 vertices that are
not adjacent to w .

Contradiction.
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Random inputs for the m-PSP

We represent an input for the m-PSP as a

m × n × n cost matrix C =
(
cijk

)
, where cijk is equal to the i-th weight

function wi (e) of edge e = (j , k), i = 1,m,j , k = 1, n.

Random input for the m-PSP is a

m × n × n cost matrix C =
(
cijk

)
, which elements cijk are independent

identically distributed random real numbers.
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Random inputs for the m-PSP

Definition of distribution functions of majorizing type

The distribution function F ′(x) is a function of F-majorizing type if

F ′(x) ≥ F(x) for every x

Distribution functions considered in the report

We will consider the random inputs for m-PSP with the following
distribution functions

of UNI[an, bn]-majorizing type,
where UNI[an, bn] is uniform distribution in the interval [an, bn],
0 < an < bn;

of Fβ-majorizing type,
where Fβ(x) is exponential distribution with parameter β = βn:

Fβ(x) = 1− exp
(x − an

β

)
, x ≥ an > 0.
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Definitions

An algorithm A has performance bounds εA(n), δA(n) if

Pr
{

FA >
(
1 + εA(n)

)
OPT

}
≤ δA(n)

n is the problem size
εA(n) is the relative error of the algorithm
δA(n) is the failure probability of the algorithm, i.e. the
proportion of cases when algorithm A doesn’t hold the
relative error εA(n).

An algorithm A is called asymptotically optimal (exact)

on a class of instances, if there exist performance bounds s.t.

εA(n) −−−→
n→∞

0, δA(n) −−−→
n→∞

0.
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Probabilistic analysis of Algorithm Ã

Let Hi = {e(i)
1 , . . . , e(i)

n } is i-th constructed Hamiltonian cycle

Performance guarantees for Algorithm Ã will be defined by the inequality:

Pr
{ m∑

i=1

n∑
s=1

wi (e(i)
s ) > (1 + εÃ)OPT

}
≤ δÃ.

Denote ξis = wi (e
(i)
s ). Then

Pr
{ m∑

i=1

n∑
s=1

ξis > (1 + εÃ)OPT
}
≤ δÃ.
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Let Hi = {e(i)
1 , . . . , e(i)

n } is i-th constructed Hamiltonian cycle

Performance guarantees for Algorithm Ã will be defined by the inequality:
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}
≤ δÃ.
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Probabilistic analysis of Algorithm Ã

Main ideas of the probabilistic analysis

All ξis are independent random variables.

Weight ξis of an edge chosen in Step 1(greedy algorithm) is
estimated from above as minimum of n − 2i − s + 2 elements of
random input.

Weight ξis of an edge chosen in Step 2(procedure P) has the same
distribution function as the elements of random input.

Use the inequality OPT ≥ anmn

Use Petrov’s Theorem
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Main ideas of the probabilistic analysis

All ξis are independent random variables.

Weight ξis of an edge chosen in Step 1(greedy algorithm) is
estimated from above as minimum of n − 2i − s + 2 elements of
random input.

Weight ξis of an edge chosen in Step 2(procedure P) has the same
distribution function as the elements of random input.

Use the inequality OPT ≥ anmn

Use Petrov’s Theorem

Edward Gimadi, Alexey Istomin, Ivan Rykov, Oxana Tsidulko 19 / 35



Probabilistic analysis of Algorithm Ã
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Petrov V.V. ’Limit theorems for sums of independent
random variables’, 1987

Petrov’s Theorem
Consider independent random variables η1, . . . , ηn and S = Σn

k=1ηk .
Let there be positive constants g1, . . . , gn and T , such that

Eetηk ≤ e
gk t2

2 , 0 ≤ t ≤ T , k = 1, . . . , n

Denote G = Σn
k=1gk . Then

Pr{S ≥ x} ≤

{
e
−x2
2G , 0 ≤ x ≤ GT ,

e
−Tx

2 , x ≥ GT

Where EX is the expected value of random variable X .

Edward Gimadi, Alexey Istomin, Ivan Rykov, Oxana Tsidulko 20 / 35



Probabilistic analysis of Algorithm Ã

To apply Petrov’s theorem we used the previous results from the
following papers to obtain constants gis for the random variables ξis

For uniform distribution function:
E. Kh. Gimadi,Yu. V. Glazkov An asymptotically exact algorithm for one
modification of planar three-index assignment problem// Journal of
Applied and Industrial Mathematics December 2007, Volume 1, Issue 4,
pp 442-452

For exponential distribution function:

E. Kh. Gimadi, A. Le Gallou, A. V. Shakhshneyder, Probabilistic analysis
of an approximation algorithm for the traveling salesman problem on
unbounded above instances// Journal of Applied and Industrial
Mathematics April 2009, Volume 3, Issue 2, pp 207-221.
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Distribution functions of majorizing type

The performance bounds of the algorithm obtained for random inputs of
m-PSP with some distribution function F (x) will also be true for random
inputs with any distribution function of F (x)-majorizing type.

Statement 1
Let ξ1, ..., ξk be the independent random variables with distribution
function F (x),
Let F̂ (x) be the distribution function of ξ = min(ξ1, ..., ξk),
Let η1, ..., ηk be the independent random variables with distribution
function G (x),
Let Ĝ (x) be the distribution function of η = min(η1, ..., ηk).

Then for any x
F (x) ≤ G (x) ⇒ F̂ (x) ≤ Ĝ (x).

The statement follows directly from the equations

F̂ (x) = 1− (1− F (x))k and Ĝ (x) = 1− (1− G (x))k .
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Distribution functions of majorizing type

Statement 2
Let Pξ,Pη,Pζ ,Pχ be the distribution functions of random variables
ξ, η, ζ, χ, respectively. And let ξ and ζ be independent, η and χ be
independent. Then

(∀x Pξ(x) ≤ Pη(x)) ∧ (∀y Pζ(y) ≤ Pχ(y)) ⇒ (∀z Pξ+ζ(z) ≤ Pη+χ(z)).

Proof

Pξ+ζ(x) =

∞∫
−∞

Pξ(x − y)dPζ(y) ≤
∞∫

−∞

Pη(x − y)dPζ(y)

= Pη+ζ(x) =

∞∫
−∞

Pζ(x − y)dPη(y) ≤
∞∫

−∞

Pχ(x − y)dPη(y) = Pη+χ(x).
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Distribution functions of majorizing type

Theorem

Let the distribution function F (x) of random inputs of m-PSP be s.t.

F (x) ≥ P(x).

Then Algorithm Ã has the same performance guarantees (εÃ, δÃ) on
these random inputs, as it would have on random inputs with distribution
function P(x).

The proof follows from Statements 1-2, and the fact that all the weights
of all edges that belong to the constructed solution of m-PSP are
independent random variables.

Corollary (for example)

The performance guarantees of Algorithm Ã obtained in the case of
random inputs with exponential distribution with a parameter β will also
hold in case of random inputs with truncated normal distribution
function with a certain parameter σn.
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The conditions of the asymptotic optimality of Algorithm Ã

For the random inputs of m-PSP with the distribution function of
UNI[an, bn]-majorizing type, 0 < an < bn, Algorithm Ã is
asymptotically exact with the following performance guarantees

for 2 ≤ m ≤ ln n

εÃ = O
(

bn/an

n/ ln n

)
, δÃ = n−9,

if
bn

an
= o

( n
ln n

)
;

for ln n < m ≤ n1−θ < n/4

εÃ = O
(bn/an

nθ

)
, δÃ = n−9,

if
bn

an
= o(nθ).

Edward Gimadi, Alexey Istomin, Ivan Rykov, Oxana Tsidulko 25 / 35



The conditions of the asymptotic optimality of Algorithm Ã
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For the random inputs of m-PSP with the distribution function of
UNI[an, bn]-majorizing type, 0 < an < bn, Algorithm Ã is
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εÃ = O
(

β/an

n/ ln n

)
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, δÃ = n−3m/4,

if
bn

an
= o(nθ).

Edward Gimadi, Alexey Istomin, Ivan Rykov, Oxana Tsidulko 26 / 35



The conditions of the asymptotic optimality of Algorithm Ã
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Вероятностный анализ приближённого алгоритма для решения
задачи нескольких коммивояжеров на случайных входных данных,
неограниченных сверху // Труды ИММ УрО РАН. 2014. Т. 20, № 2,
С. 88-98.
Probabilistic analysis of an approximation algorithm for the m-peripatetic
salesman problem on random instances unbounded from above.
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Thank you!

Thank you for your attention!
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Algorithm Ã solving the m-PSP

Input: A complete n-vertex graph G = (V , E ) with weight
functions wi : E → R+, i = 1, . . . , m, where m < n/4

Output: m edge disjoint Hamiltonian cycles H1, . . . , Hm

Time complexity: O(mn2)

Main idea: modification of the greedy algorithm; finding
each Hamiltonian cycle by turns.
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Step 0
i – number of current Hamiltonian cycle.
F – set of forbidden edges (at first F = ∅).

1 Consider the traveling salesman problem for graph G \ F with weight
function wi .

2 Randomly choose the first vertex to start with. Let it be vertex 1.
3 Among all neighbors of 1 randomly choose a vertex v .
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Step 1
i – number of current Hamiltonian cycle.
s – number of processed vertices.

1 While s < n − 4i

i = 1, s = 1.

2 "go to the nearest unvisited vertex, except vertex v .
3 s := s + 1.
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Step 1
i – number of current Hamiltonian cycle.
s – number of processed vertices.

1 While s < n − 4i

i = 1, s = 3.

2 "go to the nearest unvisited vertex, except vertex v .
3 s := s + 1.
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Step 1
i – number of current Hamiltonian cycle.
s – number of processed vertices.

1 While s < n − 4i

i = 1, s = 4.

2 "go to the nearest unvisited vertex, except vertex v .
3 s := s + 1.
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Step 1
i – number of current Hamiltonian cycle.
s – number of processed vertices.

1 While s < n − 4i

i = 1, s = 5.

2 "go to the nearest unvisited vertex, except vertex v .
3 s := s + 1.

Edward Gimadi, Alexey Istomin, Ivan Rykov, Oxana Tsidulko 31 / 35



Step 2

Consider a subgraph H induced by all unprocessed vertices, and the
last processed vertex:

Using procedure P build a path with endpoints un−4i , v ,
Complete the Hamiltonian cycle Hi .
For further stages forbid all edges ∈ Hi and the corresponding
reverse edges.
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Relevance of Algorithm Ã

In Step 1.

the degree of each vertex at the beginning of Step 1:
deg(v) = n − 2− 2(i − 1) = n − 2i
the greedy algorithm makes n − 4i steps, so it is always possible to
make the next step.
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Relevance of Algorithm Ã

Consider subgraph H constructed in Step 2.

Since s = n − 4i , |VH | = n − s + 1 = 4i + 1.
∀v ∈ VH deg(v) ≥ (4i + 1− 1)− 2(i − 1) = 2i + 2
Thus we can use procedure P for this graph.
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Consider subgraph H constructed in Step 2.

Since s = n − 4i , |VH | = n − s + 1 = 4i + 1.
∀v ∈ VH deg(v) ≥ (4i + 1− 1)− 2(i − 1) = 2i + 2

Thus we can use procedure P for this graph.

Edward Gimadi, Alexey Istomin, Ivan Rykov, Oxana Tsidulko 34 / 35



Relevance of Algorithm Ã
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Time complexity of Algorithm Ã

For each Hamiltonian cycle H1, . . . , Hm we have:

Step 1 (greedy algorithm) – O(n2)

Step 2 (procedure PH) – O(n2)

Total time complexity: O(mn2).
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For each Hamiltonian cycle H1, . . . , Hm we have:

Step 1 (greedy algorithm) – O(n2)

Step 2 (procedure PH) – O(n2)

Total time complexity: O(mn2).

Edward Gimadi, Alexey Istomin, Ivan Rykov, Oxana Tsidulko 35 / 35



Time complexity of Algorithm Ã
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