Combinatorial Theory of Overfitting How Connectivity and Splitting Reduces the Local Complexity

Konstantin Vorontsov1,2,3voron@forecsys.ruAlexander Frey1sashafrey@gmail.comEvgeny Sokolov2sokolov.evg@gmail.com

¹Moscow Institute of Physics and Technology ²Moscow State University ³Computing Center RAS

9th IFIP International Conference Artificial Intelligence Applications and Innovations (AIAI 2013) Measures of Complexity Symposium Paphos, Cyprus • September 30 – October 2, 2013

Combinatorial framework for generalization bounds

- Overfitting
- Links to other approaches
- Overfitting and complexity measures

2 Combinatorial theory of overfitting

- Splitting-Connectivity bounds
- Model sets (overview)
- Bound computation and usage

3 Applications to learning algorithms design

- Ensembles of Conjunction Rules
- Ensembles of low-dimensional Linear Classifiers
- Comparing with state-of-art PAC-Bayesian bounds

Overfitting Links to other approaches Overfitting and complexity measures

The central problem of Statistical Learning

$$X = \{x_1, \dots, x_\ell\}$$
 — a finite training set of objects,
A — a set of classifiers,

 $a = \arg \min_{a \in A} \frac{Err(a, X)}{m}$ — the empirical risk minimization, or, more commonly,

 $a = \mu(X)$ — a *learning algorithm* μ trains a classifier a on a set X.

The Generalization Problem:

- How to bound a testing error $Err(a, \bar{X})$, where $\bar{X} = \{x'_1, \dots, x'_k\}$ is an independent testing set?
- How to design learning algorithms that generalize well, i.e. have a small testing error Err(a, X̄) almost always?

Overfitting Links to other approaches Overfitting and complexity measures

The classical approach to Generalization Bounds

In classical approach one find the uniform convergence conditions:

$$\mathsf{P}_{X}\Big(\sup_{a\in\mathcal{A}}\big|P(a)-\operatorname{Err}(a,X)\big|\geq\varepsilon\Big)\leq\mathsf{GenBound}(\ell,k,A,\varepsilon)$$

where $P(a) = E_X Err(a, X)$ [Vapnik, Chervonenkis, 1971].

The Problem:

 $\bullet\,$ GenBound may be very loose: $\,\sim 10^5..10^{11}$ in realistic cases

To tackle the problem we

- modify the functional at the left-side of the inequality
- propose a combinatorial approach to get the right-side bound

Overfitting Links to other approaches Overfitting and complexity measures

Modifying the functional (step 1 from 4)

In classical approach one find the uniform convergence conditions:

$$\mathsf{P}_{X}\Big(\sup_{a\in A} |P(a) - Err(a, X)| \ge \varepsilon\Big) \le \mathsf{GenBound}(\ell, k, A, \varepsilon)$$

In combinatorial approach instead of a probability of error P(a) we bound a testing error:

$$\mathsf{P}_{\boldsymbol{X},\boldsymbol{\bar{X}}}\Big(\sup_{a\in A}\left|\frac{\mathsf{Err}(a,\boldsymbol{\bar{X}})-\mathsf{Err}(a,\boldsymbol{X})\right|\geq\varepsilon\Big)\leq\mathsf{GenBound}(\ell,k,A,\varepsilon)$$

Motivation:

• we bound an empirically measurable quantity of overfitting:

$$\delta(a, X, \bar{X}) = Err(a, \bar{X}) - Err(a, X)$$

• we remove a redundant technical step of *symmetrization* that weakens the bound without adding a sense to the result

Overfitting Links to other approaches Overfitting and complexity measures

Modifying the functional (step 2 from 4)

In classical approach one find the uniform convergence conditions:

$$\mathsf{P}_{X}\Big(\sup_{a\in A} |P(a) - Err(a, X)| \ge \varepsilon\Big) \le \mathsf{GenBound}(\ell, k, A, \varepsilon)$$

In combinatorial approach instead of supremum over A we use a learning algorithm μ : $\mathsf{P}_{X,\bar{X}}\Big(\Big|\mathit{Err}(\mu(X),\bar{X}) - \mathit{Err}(\mu(X),X)\Big| \ge \varepsilon\Big) \le \mathsf{GenBound}(\ell,k,\mu,\varepsilon)$

Motivation:

- we remove the most restrictive condition from the functional
- we discard classifiers irrelevant to a given learning task
- ullet we take into account the learning algorithm μ

Overfitting Links to other approaches Overfitting and complexity measures

Modifying the functional (step 3 from 4)

In classical approach one find the uniform convergence conditions:

$$\mathsf{P}_{X}\Big(\sup_{a\in A} |P(a) - Err(a, X)| \ge \varepsilon\Big) \le \mathsf{GenBound}(\ell, k, A, \varepsilon)$$

In combinatorial approach instead of usual i.i.d. assumption we use a uniform distribution over all partitions $\mathbb{X}^{L} = X \sqcup \overline{X}$: $\frac{1}{C_{L}^{\ell}} \sum_{\substack{X \subset \mathbb{X}^{L} \\ |X| = \ell}} \left[\left| Err(\mu(X), \overline{X}) - Err(\mu(X), X) \right| \ge \varepsilon \right] \le \text{GenBound}(\mathbb{X}^{L}, \mu, \varepsilon)$

Motivation:

- we make both sides of the inequality data-dependent and empirically measurable
- we remove a redundant step of integration over object space

Overfitting Links to other approaches Overfitting and complexity measures

Modifying the functional (step 4 from 4)

In classical approach one find the uniform convergence conditions:

$$\mathsf{P}_{X}\Big(\sup_{a\in A} |P(a) - Err(a, X)| \geq \varepsilon\Big) \leq \mathsf{GenBound}(\ell, k, A, \varepsilon)$$

In combinatorial approach instead of two-side deviation we remove $|\cdot|$ and estimate one-side deviation: $\mathsf{P}_{X \sim \mathbb{X}^L} \Big[Err(\mu(X), \bar{X}) - Err(\mu(X), X) \ge \varepsilon \Big] \le \mathsf{GenBound}(\mathbb{X}^L, \mu, \varepsilon)$

Motivation:

• we discard a non-interesting case of negative overfitting

Finished: we defined the probability of large overfitting

Overfitting Links to other approaches Overfitting and complexity measures

Learning with binary loss

$$\mathbb{X}^{L} = \{x_{1}, \dots, x_{L}\} - a \text{ finite universe set of objects}$$
$$A = \{a_{1}, \dots, a_{D}\} - a \text{ finite set of classifiers}$$
$$I(a, x) = [\text{classifier } a \text{ makes an error on object } x] - binary loss$$

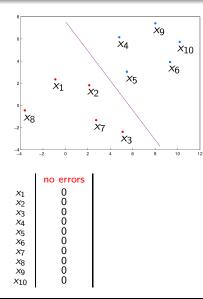
	a_1	a_2	a 3	a 4	a_5	a_6	•••	a_D	
x_1	1	1	0	0	0	1		1	X "— observable
	0	0	0	0	1	1		1	training sample
x_ℓ	0	0	1	0	0	0	•••	0	of size ℓ
$x_{\ell+1}$	0	0	0	1	1	1		0	$ar{X}$ "— hidden
	0	0	0	1	0	0		1	testing sample
XL	0	1	1	1	1	1	•••	0	od size $k = L - \ell$

Error matrix of size $L \times D$, all columns are distinct:

 $a \mapsto (I(a, x_1), \dots, I(a, x_L)) - \text{binary error vector of classifier } a$ $\nu(a, X) = \frac{1}{|X|} \sum_{x \in X} I(a, x) - \text{error rate of } a \text{ on a sample } X \subset \mathbb{X}^L$

Overfitting Links to other approaches Overfitting and complexity measures

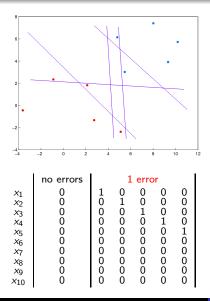
Example. The error matrix for a set of linear classifiers



1 vector having no errors

Overfitting Links to other approaches Overfitting and complexity measures

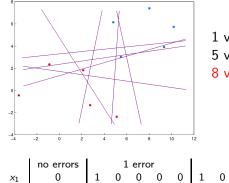
Example. The error matrix for a set of linear classifiers



1 vector having no errors 5 vectors having 1 error

Overfitting Links to other approaches Overfitting and complexity measures

Example. The error matrix for a set of linear classifiers



1 vector having no errors 5 vectors having 1 error 8 vectors having 2 errors

	no errors	1 error			2 errors										
x_1	0	1	0	0	0	0	1	0	0	0	0	1	1	0	
x_2	0	0	1	0	0	0	1	1	0	0	0	0	0	0	
<i>x</i> 3	0	0	0	1	0	0	0	1	1	0	0	0	0	1	
X4	0	0	0	0	1	0	0	0	1	1	0	0	0	0	
x_5	0	0	0	0	0	1	0	0	0	1	1	1	0	0	
<i>x</i> ₆	0	0	0	0	0	0	0	0	0	0	1	0	1	0	
x7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
<i>x</i> 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
X9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
x ₁₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Overfitting Links to other approaches Overfitting and complexity measures

Probability of large overfitting

$$\begin{array}{l} \mu \colon X \mapsto \mathbf{a} & - \text{ learning algorithm} \\ \nu(\mu X, X) & - \text{ training error rate} \\ \nu(\mu X, \bar{X}) & - \text{ testing error rate} \\ \delta(\mu, X) & \equiv \nu(\mu X, \bar{X}) - \nu(\mu X, X) & - \text{ overfitting of } \mu \text{ on } X \text{ and } \bar{X} \end{array}$$

Axiom (weaken i.i.d. assumption)

 \mathbb{X}^{L} is not random, all partitions $\mathbb{X}^{L} = X \sqcup \overline{X}$ are equiprobable, X — observable training sample of a fixed size ℓ ,

 \bar{X} — hidden testing sample of a fixed size k, $L = \ell + k$

Def. Probability of large overfitting

$$Q_{\varepsilon}(\mu, \mathbb{X}^{L}) = \mathsf{P}\big[\delta(\mu, X) \geq \varepsilon\big] = \frac{1}{C_{L}^{\ell}} \sum_{X \subset \mathbb{X}^{L}} \big[\delta(\mu, X) \geq \varepsilon\big]$$

Bounding problems

• Probability of large overfitting:

$$Q_{\varepsilon}(\mu, \mathbb{X}^{L}) = \mathsf{P}[\delta(\mu, X) \geq \varepsilon] \leq ?$$

Links to other approaches

• Probability of large testing error:

$$\mathbf{R}_{\varepsilon}(\mu, \mathbb{X}^{L}) = \mathsf{P}\big[\nu(\mu X, \bar{X}) \geq \varepsilon\big] \leq ?$$

• Expectation of OverFitting:

$$\mathsf{EOF}(\mu, \mathbb{X}^L) = \mathsf{E}\,\delta(\mu, X) \leq ?$$

• Expectation of testing error (Complete Cross-Validation):

$$\mathsf{CCV}(\mu, \mathbb{X}^L) = \mathsf{E}\,\nu(\mu X, \bar{X}) \leq ?$$

Overfitting Links to other approaches Overfitting and complexity measures

Links to Cross-Validation

Expected testing error also called Complete Cross-Validation (taking expectation is equivalent to averaging over all partitions):

$$\mathsf{CCV}(\mu, \mathbb{X}^L) = \mathsf{E}\,\nu\big(\mu X, \bar{X}\big) = \frac{1}{C_L^\ell} \sum_{X \subset \mathbb{X}^L} \nu\big(\mu X, \bar{X}\big)$$

Usual cross-validation techniques (e.g. hold-out, *t*-fold, $q \times t$ -fold, partition sampling, etc.) can be viewed as empirical measurements of CCV by averaging over a representative subset of partitions.

Leave-One-Out is equivalent to CCV for the case k = 1.

:) Combinatorial functionals Q_{ε} , R_{ε} , CCV, EOF can be easily measured empirically by generating $\sim 10^3$ random partitions.

Overfitting Links to other approaches Overfitting and complexity measures

Links to Local Rademacher Complexity

Def. Local Rademacher complexity of the set A on \mathbb{X}^{L}

$$\mathcal{R}(A, \mathbb{X}^{L}) = \mathsf{E}_{\sigma} \sup_{a \in A} \frac{2}{L} \sum_{i=1}^{L} \sigma_{i} I(a, x_{i}), \qquad \sigma_{i} = \begin{cases} +1, & \text{prob. } \frac{1}{2} \\ -1, & \text{prob. } \frac{1}{2} \end{cases}$$

 $\sigma_1, \ldots, \sigma_L$ — independent Rademacher random variables.

Expected overfitting is almost the same thing for the case $\ell = k$:

$$\mathsf{EOF}(\mu, \mathbb{X}^{L}) = \mathsf{E}\sup_{a \in \mathcal{A}} \frac{2}{L} \sum_{i=1}^{L} \sigma_{i} I(a, x_{i}), \qquad \sigma_{i} = \begin{cases} +1, & x_{i} \in \bar{X} \\ -1, & x_{i} \in X \end{cases}$$

if we set μ to *overfitting maximization* (very unnatural learning!):

$$\mu X = \arg \max_{\mathbf{a} \in A} \left(\nu \left(\mathbf{a}, \bar{X} \right) - \nu \left(\mathbf{a}, X \right) \right)$$

Overfitting Links to other approaches Overfitting and complexity measures

Links to usual SLT framework

Usual probabilistic assumptions:

 \mathbb{X}^{L} is i.i.d. from probability space $\langle \mathscr{X}, \sigma, \mathsf{P} \rangle$ on infinite \mathscr{X}

Transferring of combinatorial generalization bound to i.i.d. framework first used in (Vapnik and Chervonenkis, 1971):

Give a combinatorial bound on probability of large overfitting:

$$\mathsf{P}_{\boldsymbol{X} \sim \mathbb{X}^{L}} \big[\delta(\mu, \boldsymbol{X}) \geq \varepsilon \big] = \boldsymbol{Q}_{\varepsilon}(\mu, \mathbb{X}^{L}) \leq \eta(\varepsilon, \mathbb{X}^{L})$$

2 Take expectation on \mathbb{X}^{L} :

$$\mathsf{P}_{\substack{X \sim \mathscr{X}^{\ell} \\ X \sim \mathscr{X}^{k}}} \left[\delta(\mu, X) \geq \varepsilon \right] = \mathsf{E}_{\mathbb{X}^{L}} \ Q_{\varepsilon}(\mu, \mathbb{X}^{L}) \leq \mathsf{E}_{\mathbb{X}^{L}} \ \eta(\varepsilon, \mathbb{X}^{L}).$$

Overfitting Links to other approaches Overfitting and complexity measures

(No) Links to Transductive Learning

In both cases data are partitioned on two subsets, but (training \sqcup testing) \neq (labeled \sqcup unlabeled)

In transductive learning:

- the aim is to get a semi-supervised data clustering,
- labels for the second subset are unknown,
- learning algorithm uses both labeled and unlabeled data.

In our combinatorial approach:

- the aim is to get generalization bounds,
- labels for both training and testing subsets are known,
- learning algorithm can not use the testing set.

Overfitting Links to other approaches Overfitting and complexity measures

Vapnik-Chervonenkis bound

Theorem

For any
$$\mathbb{X}^{L}$$
, μ , A and $\varepsilon \in (0, 1)$
 $Q_{\varepsilon}(\mu, \mathbb{X}^{L}) \stackrel{uniform}{\leq} P[\sup_{a \in A} \delta(a, X) \ge \varepsilon] \stackrel{union}{\leq} \sum_{a \in A} Q_{\varepsilon}(a, \mathbb{X}^{L})$
 $\stackrel{mation}{\leq} |A| \cdot \frac{3}{2} \exp(-\varepsilon^{2}\ell), \text{ for } \ell = k.$

 $\begin{aligned} |A| & -- \text{Shattering Coefficient,} \\ |A| &\leq C_L^0 + C_L^1 + \dots + C_L^h, \ h = \text{VCdim}(A) \end{aligned}$

Usually this bound is overestimated by 10^5-10^{11} times. Why? 1) uniform bound is loose if *A* is split by $\nu(a, \mathbb{X}^L)$ 2) union bound is loose if most classifiers are similar or connected

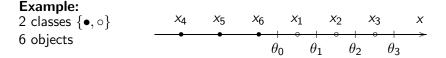
3) approximation bound is not so loose

Overfitting Links to other approaches Overfitting and complexity measures

Monotone chain of classifiers

One-dimensional threshold classifier (decision stump):

$$a_d(x) = [x \ge \theta_d], \qquad d = 0, \dots, D$$



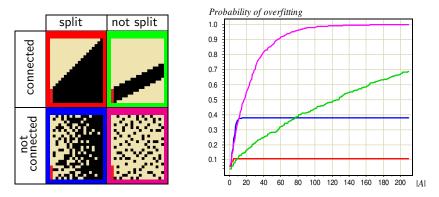
Loss matrix:

	a_0	a_1	a 2	a ₃
x_1	0	1	1	1
<i>x</i> ₂	0	0	1	1
<i>X</i> 3	0	0	0	1
X_4	0	0	0	0
X_5	0	0	0	0
x_6	0	0	0	0

Overfitting Links to other approaches Overfitting and complexity measures

Experiment with monotone chain of classifiers

 $\ell = k = 100$, $\varepsilon = 0.05$, N = 1000 Monte-Carlo partitions.

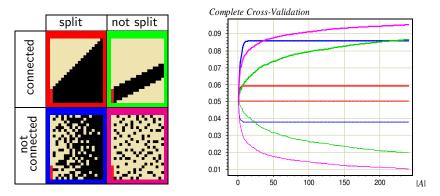


- With both splitting and connectivity a huge set does not overfit
- With no splitting and connectivity 30 classifiers may overfit

Overfitting Links to other approaches Overfitting and complexity measures

Experiment with monotone chain of classifiers

 $\ell = k = 100$, $\varepsilon = 0.05$, N = 1000 Monte-Carlo partitions.



• The local complexity measure should depend on both splitting and connectivity properties of the set

Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

Splitting-Connectivity graph (1-inclusion graph)

Define two binary relations on classifiers: partial order $a \le b$: $I(a, x) \le I(b, x)$ for all $x \in \mathbb{X}^{L}$; precedence $a \prec b$: $a \le b$ and Hamming distance ||b - a|| = 1.

Definition (SC-graph)

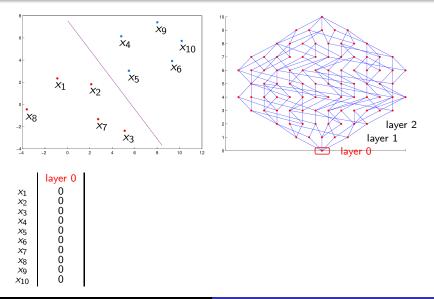
Splitting and Connectivity (SC-) graph $\langle A, E \rangle$: A - a set of classifiers with distinct binary error vectors; $E = \{(a, b): a \prec b\}.$

Properties of the SC-graph:

- each edge (a, b) is labeled by an object $x_{ab} \in \mathbb{X}^{L}$ such that $0 = I(a, x_{ab}) < I(b, x_{ab}) = 1$;
- multipartite graph with layers $A_m = \{a \in A : \nu(a, \mathbb{X}^L) = \frac{m}{L}\}, m = 0, \dots, L + 1;$

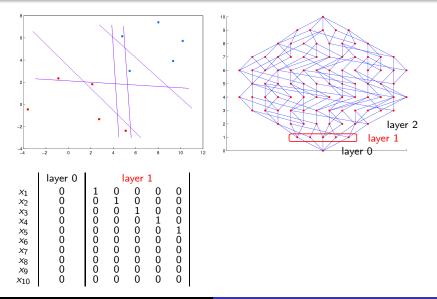
Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

Example. Error matrix and SC-graph for a set of linear classifiers



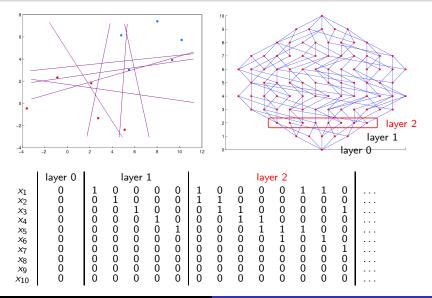
Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

Example. Error matrix and SC-graph for a set of linear classifiers



Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

Example. Error matrix and SC-graph for a set of linear classifiers

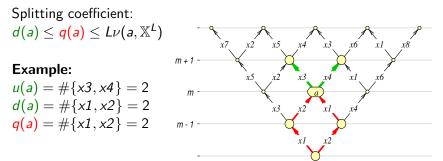


Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

Connectivity and splitting coefficients of a classifier

Def. Connectivity coefficient of a classifier
$$a \in A$$
:
 $u(a) = \# \{ x_{ab} \in \mathbb{X}^{L} : a \prec b \}$ — up-connectivity,
 $d(a) = \# \{ x_{ba} \in \mathbb{X}^{L} : b \prec a \}$ — down-connectivity.

Def. Splitting coefficient (inferiority) of a classifier $a \in A$ $q(a) = \# \{ x_{cb} \in \mathbb{X}^L : \exists b \ c \prec b \leq a \}$



Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

The Splitting–Connectivity (SC-) bound

Empirical Risk Minimization (ERM) — learning algorithm μ :

$$\mu X \in A(X), \qquad A(X) = \operatorname{Arg}\min_{a \in A} \nu(a, X)$$

Theorem (SC-bound)

For any \mathbb{X}^{L} , A, ERM μ , and $\varepsilon \in (0, 1)$ $Q_{\varepsilon} \leq \sum_{a \in A} \frac{C_{L-u-q}^{\ell-u}}{C_{L}^{\ell}} H_{L-u-q}^{\ell-u, m-q}(\varepsilon),$ where $m = L\nu(a, \mathbb{X}^{L})$, u = u(a), q = q(a), $H_{L}^{\ell, m}(\varepsilon) = \sum_{s=0}^{\lfloor (m-\varepsilon k)\ell/L \rfloor} \frac{C_{m}^{s} C_{L-m}^{\ell-s}}{C_{L}^{\ell}}$ — hypergeometric tail function.

Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

The properties of the SC-bound

$$Q_{\varepsilon} \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \frac{C_{L-u-q}^{\ell-u}}{C_{L}^{\ell}} H_{L-u-q}^{\ell-u, m-q}(\varepsilon)$$

If |A| = 1 then SC-bound gives an exact estimate of testing error for a single classifier:

$$Q_{\varepsilon} = \mathsf{P}\big[\nu(a,\bar{X}) - \nu(a,X) > \varepsilon\big] = H_{L}^{\ell,\,m}\left(\varepsilon\right) \stackrel{\ell=k}{\leq} \frac{3}{2}e^{-\varepsilon^{2}\ell}$$

Substitution u(a) ≡ q(a) ≡ 0 transforms the SC-bound into Vapnik–Chervonenkis bound:

$$Q_{\varepsilon} \leq \sum_{a \in A} H_{L}^{\ell, m}(\varepsilon) \stackrel{\ell=k}{\leq} |A| \cdot \frac{3}{2} e^{-\varepsilon^{2} \ell}$$

Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

The properties of the SC-bound

$$Q_{\varepsilon} \leq \sum_{\boldsymbol{a} \in \mathcal{A}} \frac{C_{L-u-q}^{\ell-u}}{C_{L}^{\ell}} H_{L-u-q}^{\ell-u, m-q}(\varepsilon)$$

The probability to get a classifier a as a result of learning:

$$\mathsf{P}[\mu X = a] \le \frac{C_{L-u-q}^{\ell-u}}{C_L^{\ell}}$$

- The contribution of a ∈ A decreases exponentially by:
 u(a) ⇒ connected sets are less subjected to overfitting;
 q(a) ⇒ only lower layers contribute significantly to Q_ε.
- The SC-bound is exact for some nontrivial sets of classifiers.

Sets of classifiers with known combinatorial bounds

Model sets of classifiers with exact SC-bound:

- monotone and unimodal *n*-dimensional lattices (Botov, 2010)
- pencils of monotone chains (Frey, 2011)
- intervals in boolean cube and their slices (Vorontsov, 2009)
- Hamming balls in boolean cube and their slices (Frey, 2010)
- sparse subsets of lattices and Hamming balls (Frey, 2011)

Real sets of classifiers with tight computable SC-bound:

- conjunction rules (Ivahnenko, 2010)
- linear classifiers (Sokolov, 2012)
- decision stumps or arbitrary chains (Ishkina, 2013)

Real sets of classifiers with **exact** computable CCV bound:

- k nearest neighbor classification (Vorontsov, 2004; Ivanov, 2009)
- isotonic separation (Vorontsov and Makhina, 2011; Guz, 2011)

Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

The Local Complexity Regularization

Main steps to use combinatorial Splitting-Connectivity bound:

Calculate SC-bound anyway (e.g. via random walks):

$$\mathsf{P}\big[\big(\mu X, \bar{X}\big) - \nu\big(\mu X, X\big) \geq \varepsilon\big] \ \leq \ \mathsf{SCbound}(\varepsilon; A, \mathbb{X}^{\mathcal{L}}) \equiv \eta$$

2 Invert the SC-bound: with probability at least $1-\eta$

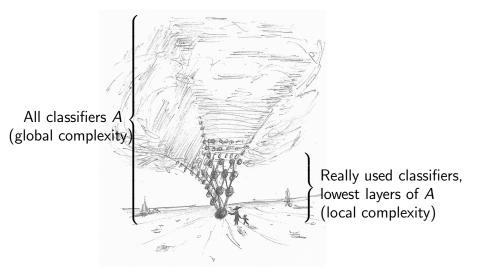
$$u(\mu X, \bar{X}) \leq \nu(\mu X, X) + \varepsilon(\eta; A, \mathbb{X}^{L})$$

Solution Use $\varepsilon(\eta; A, \mathbb{X}^L)$ as a penalty for features or model selection

Vorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp. 66–73.

Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

Splitting gives an idea of effective SC-bound computation



Splitting-Connectivity bounds Model sets (overview) Bound computation and usage

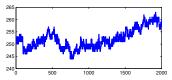
SC-bound computation via Random Walks

- 1. Learn a good classifier
- 2. Run a large number of short walks to get a subset $B \subset A$
- 3. Compute a partial sum $Q_{\varepsilon} \approx \sum_{a \in B} \text{summand}(a)$

Special kind of Random Walks for multipartite graph:

- 1) based on Frontier sampling algorithm
- 2) do not permit to walk in higher layers of a graph
- 3) estimate contributions of layers separately

Random walk with gravitation:

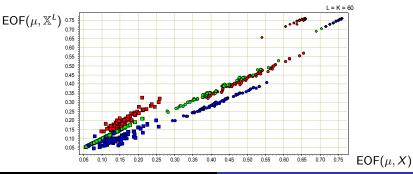


Making bounds observable

SCbound(μ , \mathbb{X}^{L}) depends on a hidden set \overline{X} , then we use SCbound(μ , X) instead.

Open problems: is it correct? why? may be not always?

Really EOF(μ , X) is well concentrated near to EOF(μ , \mathbb{X}^{L}): Experiments on model data, L = 60, testing sample size K = 60



Ensemble learning

2-class classification problem: $(x_i, y_i)_{i=1}^L$ — training set, $x_i \in \mathbb{R}^n$, $y_i \in \{-1, +1\}$

Ensemble — weighted voting of base weak classifiers $b_t(x)$:

$$a(x) = \operatorname{sign} \sum_{t=1}^{T} w_t b_t(x)$$

Main idea is to apply generalization bound as features selection criterion in base classifiers

Our goals:

1) to reduce overfitting of base classifiers

2) to reduce the complexity of composition T

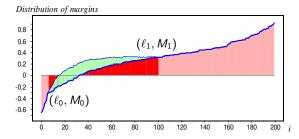
Ensembles of Conjunction Rules Ensembles of low-dimensional Linear Classifiers Comparing with state-of-art PAC-Bayesian bounds

ComBoost: Committee boosting

Instead of objects reweighting ComBoost trains each base classifier on the training subset $X' \subset X$ in order to augment margins of the ensemble as much as possible:

$$X' = \left\{ x_i \in X : M_0 \leq \mathsf{Margin}(i) \leq M_1
ight\}$$

 $\mathsf{Margin}(i) = y_i \sum_{t=1}^T w_t b_t(x_i).$



Ensembles of Conjunction Rules Ensembles of low-dimensional Linear Classifiers Comparing with state-of-art PAC-Bayesian bounds

Learning ensembles of Conjunction Rules

Conjunction rule is a simple well interpretable 1-class classifier:

$$r_{\mathcal{Y}}(x) = \bigwedge_{j \in J} [f_j(x) \leq_j \theta_j],$$

where $f_j(x)$ — features $J \subseteq \{1, ..., n\}$ — a small subset of features θ_j — thresholds \leq_j — one of the signs \leq or \geq y — the class of the rule

Weighted voting of rule sets R_y , $y \in Y$:

$$a(x) = \arg \max_{y \in Y} \sum_{r \in R_y} w_r r(x)$$

We use SC-bounds to reduce overfitting of rule learning

Ensembles of Conjunction Rules Ensembles of low-dimensional Linear Classifiers Comparing with state-of-art PAC-Bayesian bounds

Experiment on UCI real data sets. Results

	tasks						
Algorithm	austr	echo	heart	hepa	labor	liver	
RIPPER-opt	15.5	2.97	19.7	20.7	18.0	32.7	
RIPPER+opt	15.2	5.53	20.1	23.2	18.0	31.3	
C4.5(Tree)	14.2	5.51	20.8	18.8	14.7	37.7	
C4.5(Rules)	15.5	6.87	20.0	18.8	14.7	37.5	
C5.0	14.0	4.30	21.8	20.1	18.4	31.9	
SLIPPER	15.7	4.34	19.4	17.4	12.3	32.2	
LR	14.8	4.30	19.9	18.8	14.2	32.0	
our WV	14.9	4.37	20.1	19.0	14.0	32.3	
our $WV + CS$	14.1	3.2	19.3	18.1	13.4	30.2	

Two top results are highlighted for each task.

Vorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp. 66–73.

Ensembles of Conjunction Rules Ensembles of low-dimensional Linear Classifiers Comparing with state-of-art PAC-Bayesian bounds

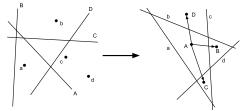
Liner classifiers and ensembles

Linear classifier: $a(x) = \operatorname{sign} \langle w, x \rangle$ Ensemble of low-dimensional linear classifiers

$$a(x) = \operatorname{sign} \sum_{t=1}^{T} \operatorname{tan} \langle w_t, x \rangle$$

Random Walks for SC-bound computation

1) find all neighbor classifiers in the dual space:



2) lookup along random rays

Experiment 1: ComBoost ensemble of linear classifiers

	statlog	waveform	wine	faults
ERM + MCCV	85,35	87,56	71,63	73,62
$ERM + SC ext{-bound}$	85,08	87,66	71,08	71,65
LR + MCCV	84,04	88,13	71,52	70,86
LR	80,77	87,34	71,49	71,09
PacBayes DD	82,13	87,17	64,68	67,67

The percentage of correct predictions on testing set (averaged over 5 partitions). Two top results for every task are shown in **bold**.

Feature selection criteria:

- ERM learning by minimizing error rate from subset of classifiers sampled from random walks
- LR learning by Logistic Regression
- MCCV Monte-Carlo cross-validation
- DD PAC-Bayes Dimension-Dependent bound (Jin, 2012)

Experiment 2: comparing bounds for Logistic Regression

All bounds are calculated from subset generated by random walk

- MC Monte-Carlo bound (very slow)
- SC Splitting-Connectivity bound
- VC Vapnik-Chervonenkis bound
- DD Dimension-Dependent PAC-Bayes bound (Jin, 2012)

UCI Task	MC	SC	VC	PAC DD
glass	0.115	0.146	0.356	0.913
liver	0.095	0.533	0.595	1.159
ionosphere	0.083	0.149	0.238	1.259
wdbc	0.052	0.070	0.136	0.949
australian	0.043	0.244	0.277	0.798
pima	0.045	0.373	0.410	0.823

Conclusions:

1) combinatorial bounds are much tighter than PAC-Bayes bounds

2) SC-bound initially proved for ERM fit well for Logistic Regression

Conclusions

Combinatorial framework

- gives tight (in some cases exact) generalization bounds
- that can be computed approximately from Random Walks
- and gives more accurate base classifiers in Ensemble Learning

Restrictions:

- binary loss
- computational costs
- low sample sizes, low dimensions

Further work:

- more effective approximations
- bigger sample sizes, bigger dimensions
- more applications

Konstantin Vorontsov vokov@forecsys.ru

www.MachineLearning.ru/wiki (in Russian):

User:Vokov