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Combinatorial framework for generalization bounds

measures

The central problem of Statistical Learning

X ={x1,...,x¢} — a finite training set of objects,
A — a set of classifiers,

a = argmin Err(a, X) — the empirical risk minimization,
acA
or, more commonly,

a = u(X) — a learning algorithm p trains a classifier a on a set X.

The Generalization Problem:

© How to bound a testing error Err(a, X), where
X ={x{,...,x,} is an independent testing set?

© How to design learning algorithms that generalize well,
i.e. have a small testing error Err(a, X) almost always?
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

The classical approach to Generalization Bounds

In classical approach one find the uniform convergence conditions:

PX< sup |P(a) — Err(a, X)| > 6) < GenBound(?, k, A, £)
acA

where P(a) = ExErr(a, X) [Vapnik, Chervonenkis, 1971].

The Problem:

@ GenBound may be very loose: ~ 10°..10! in realistic cases

To tackle the problem we
© modify the functional at the left-side of the inequality
© propose a combinatorial approach to get the right-side bound
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

Modifying the functional (step 1 from 4)

In classical approach one find the uniform convergence conditions:

PX< sup |P(a) — Err(a, X)| > 5) < GenBound(?, k, A, £)
acA

In combinatorial approach instead of a probability of error P(a)
we bound a testing error:

PX_>-<< sup |Err(a, X) — Err(a, X)| > 5) < GenBound(?, k, A, ¢)
: acA

o
Motivation:
@ we bound an empirically measurable quantity of overfitting:

8(a, X, X) = Err(a,X) — Err(a, X)

@ we remove a redundant technical step of symmetrization that
weakens the bound without adding a sense to the result
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Combinatorial framework for generalization bounds Overfitting
Links t approaches
Overfitting and complexity measures

Modifying the functional (step 2 from 4)

In classical approach one find the uniform convergence conditions:

PX< sup |P(a) — Err(a, X)| > 5) < GenBound(?, k, A, £)
acA

In combinatorial approach instead of supremum over A
we use a learning algorithm p:

ny)?(‘Err(y,(X),)_() — Err(y,(X),X)| > 5) < GenBound(?, k, 11, €)

J
Motivation:

@ we remove the most restrictive condition from the functional

@ we discard classifiers irrelevant to a given learning task

@ we take into account the learning algorithm p

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of overfitting 6 /44



Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

Modifying the functional (step 3 from 4)

In classical approach one find the uniform convergence conditions:
PX( sup !P(a) - Err(a,X)! > 5) < GenBound(?, k, A, €)
acA
In combinatorial approach instead of usual i.i.d. assumption
we use a uniform distribution over all partitions Xt = X U X:
éz [|Err X)—Err(u(X), X)| > e} < GenBound (X", 11, €)
Lxcxt
|X|=¢€ )
Motivation:

@ we make both sides of the inequality data-dependent and
empirically measurable

@ we remove a redundant step of integration over object space
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

Modifying the functional (step 4 from 4)

In classical approach one find the uniform convergence conditions:

PX< sup IP(a) - Err(a,X)I > 5) < GenBound(?, k, A, )
A

ac

In combinatorial approach instead of two-side deviation
we remove |-| and estimate one-side deviation:

Py xt [Err(,u(X),)_() — Err(p(X), X) > e} < GenBound (X%, 11, €)

Motivation:
@ we discard a non-interesting case of negative overfitting
Finished: we defined the probability of large overfitting J
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

Learning with binary loss

Xt ={xq,...,x } — a finite universe set of objects
A=1{a1,...,ap} — a finite set of classifiers

I(a, x) = [classifier a makes an error on object x| — binary loss

Error matrix of size Lx D, all columns are distinct:

ai a as as as ae e ap
X1 1 1 0 0 0 1 1 X "— observable
o o0 o 0 1 1 1 | training sample
Xe 0 0 1 0 0 0 0 of size /
xs1 |0 0 0 1 1 1 0 | X "— hidden
0 o o0 1 o0 O 1 | testing sample
XL 0 1 1 1 1 1 0 odsize k=L—/

a— (I(a,x1),...,1(a,x.)) — binary error vector of classifier a

v(a,X) = ﬁ z;( I(a,x) — error rate of a on a sample X C X!t
X€
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Combinatorial framework for generalization bounds Overfitting
Links ther approach
Overfitting and complex

Example. The error matrix for a set of linear classifiers

1 vector having no errors

Nno errors
X1
X2
X3
X4
X5
X6
X7
X3
Xg

X10

[elelololeloleolelole]
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Combinatorial framework for generalization bounds Overfitting
Links t her approach
Overfitting and complexity measures

Example. The error matrix for a set of linear classifiers

1 vector having no errors
5 vectors having 1 error

no errors 1 error
X1 0 1 0 0 0 O
X2 0 0 1 0 0 O
X3 0 0 0 1 0 O
X4 0 0 0 0 1 O
X5 0 0 0 0 0 1
X6 0 0 0 0 0 O
X7 0 0 0 0 0 O
Xg 0 0 0 0 0 O
X9 0 0 0 0 0 O
X10 0 0 0 0 0 O
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Combinatorial framework for generalization bounds

Overfitting
Links to other approaches
Overfitting and comple measures

Example. The error matrix for a set of linear classifiers

no errors
0
0
0
0
0
0
0
0
0
0

[elelololelaleleXa)y

1 error

[elelolololalela)l o]
OCOO0O0OO0O0O+HOO
[elelolelelol dolole]

[elelolele] Jololole]
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1 vector having no errors
5 vectors having 1 error
8 vectors having 2 errors

2 errors

OOO0OO0OO0OO0OOKFO
OOO0OO0OO0OO+HOO
OCOO0OO0OOHHOOO
OOO0OORHOOOO
OCOO0OO0OOHOOOH
OCOO0OOHHOOOOH
OCOOHOOOHOO
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Combinatorial framework for generalization bounds

Probability of large overfitting

w: X — a — learning algorithm

V(,uX, X) — training error rate

v(uX, X) — testing error rate

6(p, X) = v(uX, X) — v(uX, X) — overfitting of yon X and X

Axiom (weaken i.i.d. assumption)

XL is not random, all partitions Xt = X LI X are equiprobable,
X — observable training sample of a fixed size (,
X — hidden testing sample of a fixed size k, L =/{+ k

Def. Probability of large overfitting

Q-(p, X1) = P[8(1, X) > €] :—f Z > ¢]
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
g and complexity measures

Bounding problems

@ Probability of large overfitting:
Q- (1, X1) = P[3(p, X) > €] <7
@ Probability of large testing error:
Re(p, Xb) = Plu(uX, X) > ¢] <?
@ Expectation of OverFitting:
EOF (i, Xb) = Eo(p, X) <7

@ Expectation of testing error (Complete Cross-Validation):

CCV(pu,Xh) = Ev(uX,X) <?
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

Links to Cross-Validation

Expected testing error also called Complete Cross-Validation
(taking expectation is equivalent to averaging over all partitions):

CCV(u, X = EI/(MX,)_() = é Z V(MX,)_()

L xcxt

Usual cross-validation techniques (e.g. hold-out, t-fold, gx t-fold,
partition sampling, etc.) can be viewed as empirical measurements
of CCV by averaging over a representative subset of partitions.

Leave-One-Out is equivalent to CCV for the case k = 1.

:) Combinatorial functionals Q., R., CCV, EOF can be easily
measured empirically by generating ~ 103 random partitions.
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Combinatorial framework for generalization bounds Overfitting

Links to other approaches
Overfitting and complexity measures

Links to Local Rademacher Complexity

Def. Local Rademacher comp/exity of the set A on Xt

1 b. 1
R(A,XH) = E, sup = Za, a, x;), oi = +Lopro 2
acA I._ —1, prob. 5

01,...,0, — independent Rademacher random variables.

Expected overfitting is almost the same thing for the case ¢ = k:

+1, x e X
EOF(1, XY = Esup = oil(a, x; o = o
(i 55) = Eoue Z ) ~1, xeX

i=

if we set i to overfitting maximization (very unnatural learning!):

uX = arg ng((y(a’)_() — V(a,X))
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

Links to usual SLT framework

Usual probabilistic assumptions:
XL is i.i.d. from probability space (2", o, P) on infinite 2~

Transferring of combinatorial generalization bound to i.i.d.
framework first used in (Vapnik and Chervonenkis, 1971):

© Give a combinatorial bound on probability of large overfitting:
PXNXL [6(:“’)() > 5] = QE(N’aXL) < 77(5,XL)
© Take expectation on XL

Pyt [0, X) 2 ] = Bt Qs XF) < Ee (e, X5).
X~

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of overfitting 17 /44



Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

(No) Links to Transductive Learning

In both cases data are partitioned on two subsets, but
(training U testing) # (labeled U unlabeled)

In transductive learning:
@ the aim is to get a semi-supervised data clustering,
@ labels for the second subset are unknown,

@ learning algorithm uses both labeled and unlabeled data.

In our combinatorial approach:
@ the aim is to get generalization bounds,
@ labels for both training and testing subsets are known,

@ learning algorithm can not use the testing set.
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Combinatorial framework for generalization bounds Overfitting
Links to other approaches
Overfitting and complexity measures

Vapnik-Chervonenkis bound

Theorem
For any X%, ui, A and € € (0,1)
ut?ifortrjn tL’mior:j
oun oun
Q-(1,X") "<" Plsupd(a, X) >e] < > Q(a,Xh)
approxi- acA acA
"L Al- S exp(—20), for £ = k.

|A| — Shattering Coefficient,

Al < Q@+ Cl+---+ C, h=VCdim(A)

Usually this bound is overestimated by 10°-10'! times. Why?
1) uniform bound is loose if A is split by v(a, XF)

2) union bound is loose if most classifiers are similar or connected
3) approximation bound is not so loose
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Combinatorial framework for generalization bounds Overfitti
Links t er approaches
Overfitting and complexity measures

Monotone chain of classifiers

One-dimensional threshold classifier (decision stump):
ag(x) =[x > 64], d=0,...,D

Example:
2 classes {e,0} X4 X5 Xe X1 X2 X3 X

6 objects ' ' ‘ ‘

Loss matrix:

4o ai a2 as
X1 0 1 1 1
X2 0 0 1 1
X3 0 0 0 1
X4 0 0 0 0
Xs 0 0 0 0
X6 0 0 0 0
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Combinatorial framework for generalization bounds g
Links to other approaches
Overfitting and complexity measures

Experiment with monotone chain of classifiers

¢ =k =100, € =0.05, N = 1000 Monte-Carlo partitions.

Probability of overfitting
1.0 {

not split

09 ]
08
07 ]
06

connected

05 ]

04 3

d

03 ]

not
connecte

02 §

0.1 ]

0 20 40 60 80 100 120 140 160 180 200 |A]

@ With both splitting and connectivity a huge set does not overfit

@ With no splitting and connectivity 30 classifiers may overfit
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Combinatorial framework for generalization bounds g
Links to other approaches
Overfitting and complexity measures

Experiment with monotone chain of classifiers

¢ =k =100, € =0.05, N = 1000 Monte-Carlo partitions.

Complete Cross-Validation

not split

0.09 -

0.08 1
0.07 4

connected

0.06 -

0.05 1

d

0.04 1

0.03 1

not
connecte

0.02

0.01 A

0 50 100 150 200 1Al

@ The local complexity measure should depend on both splitting
and connectivity properties of the set
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ivity bounds
Combinatorial theory of overfitting Model sets (o iew)
Bound computation and usage

Splitting-Connectivity graph (1-inclusion graph)

Define two binary relations on classifiers:
partial order a < b: 1(a,x) < I(b,x) for all x € XF;
precedence a < b: a < b and Hamming distance ||b — a|| = 1.

Definition (SC-graph)

Splitting and Connectivity (SC-) graph (A, E):
A — a set of classifiers with distinct binary error vectors;
E= {(a,b): a< b}.

Properties of the SC-graph:
@ each edge (a, b) is labeled by an object x,, € Xt such that
0=1(a,xap) < I(b,xsp) = 1;
@ multipartite graph with layers
An={acA:v(a,Xt)=2%, m=0,...,L+1;
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Splitting-Con
Combinatorial theory of overfitting del s \
nd computation and usage

Example. Error matrix and SC-graph for a set of linear classifiers

layer O
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10

[elelolololololelefe]
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Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (overview)
Bound computation and usage

Example. Error matrix and SC-graph for a set of linear classifiers

layer O layer 1
X1 0 1 0 0 0 O
X2 0 0o 1 0 0 O
X3 0 0 0 1 0 O
X4 0 0 0 0 1 O
X5 0 0 0 0 0 1
X6 0 0 0 0 0 O
X7 0 0 0 0 0 O
Xg 0 0 0 0 0 O
X9 0 0 0 0 0 O
X10 0 0 0 0 0 O
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Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (overview)
Bound computation and usage

Example. Error matrix and SC-graph for a set of linear classifiers

A _K> 7] layer 2
\‘\W layer 1
— L L — 1 fal
-4 -2 o 2 4 6 8 10 12 |dycl U

layer O layer 1 layer 2
X1 0 1 0 0 0 OjJ1 0 O O O 1 1 O
X2 0 o 1 0 O O(1 1 0 0O O O O O
X3 0 o 0 1 0 0|0 1 1 0 O O 0 1
X4 0 o 0 o 1 0(O0 O 1 1 0 O O O
X5 0 o 0 0o 0 1{]0 O O 1 1 1 0 O
X6 0 o 0 0 0 0|0 O O O 1 0 1 O
X7 0 o 0 0o 0 0|0 O O O O O O0 1
Xg 0 o 0 0 0 0|0 O O O O O O0 O
X9 0 o 0 o 0 0|0 O O O O O 0 O
X10 0 o 0 0 0 0j]0 O O O O O O O
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Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (overview)
Bound computation and usage

Connectivity and splitting coefficients of a classifier

Def. Connectivity coefficient of a classifier a € A:
u(a) = #{xap € Xt: a < b} — up-connectivity,
d(a) = #{xps € XL: b < a} — down-connectivity.

Def. Splitting coefficient (inferiority) of a classifier a € A
q(a) = #{x» €XL: 3b c < b < a}

Splitting coefficient:

d(a) < q(a) < Lv(a,X") A VRANAN 7

Example: mer \< }j( x >/
u(a) = #{x3,x4} =2 m- \< pé >/

d(a) = #{XlaXZ} — 2 "3 2 ) »
q(a) = #{x1,x2} =2 m-1- \q p/
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Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (overview)

Bound computation and usage

The Splitting—Connectivity (SC-) bound

Empirical Risk Minimization (ERM) — learning algorithm p:
uX € A(X), A(X) = Arg mi/r41 v(a, X)
ac

Theorem (SC-bound)
For any Xt, A, ERM p, and € € (O 1)

Q6<Z L u— qHﬁ u, m— q(g)’

L—u—q
acA L
where m = Lv(a,X!), u=u(a), q=q(a),
[(m—ek)¢/L] Cs CE s
Hp™ () = > =" — hypergeometric tail function.
s=0 CL
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Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (overview)
Bound computation and usage

The properties of the SC-bound

Clli g

—u—q 0—u, m—q

Qe < Z 7"'/1_,,,7(7 (¢)
acA L

O If |[A] =1 then SC-bound gives an exact estimate of testing
error for a single classifier:

_ =k
Q. =P[u(a,X)—v(a,X)>e] = H'™(e) < 3

@ Substitution u(a) = g(a) = 0 transforms the SC-bound into
Vapnik—Chervonenkis bound:

{=k
Q<Y HM(e) < |A] e

acA
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Splitting-Connectivity bounds

Combinatorial theory of overfitting Model sets (overview)
Bound computation and usage

The properties of the SC-bound

Cé—u
L—u—q ; f—u,m—q
Q: < Z THL,ufq (¢)
acA

© The probability to get a classifier a as a result of learning:
—u
PluX = a] < —
= 7
¢
© The contribution of a € A decreases exponentially by:
u(a) = connected sets are less subjected to overfitting;
g(a) = only lower layers contribute significantly to Q..

@ The SC-bound is exact for some nontrivial sets of classifiers.

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of overfitting 30/44



Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (overview)
Bound computation and usage

Sets of classifiers with known combinatorial bounds

Model sets of classifiers with exact SC-bound:
@ monotone and unimodal n-dimensional lattices (Botov, 2010)
@ pencils of monotone chains (Frey, 2011)
@ intervals in boolean cube and their slices (Vorontsov, 2009)
@ Hamming balls in boolean cube and their slices (Frey, 2010)
@ sparse subsets of lattices and Hamming balls (Frey, 2011)
Real sets of classifiers with tight computable SC-bound:
@ conjunction rules (lvahnenko, 2010)
@ linear classifiers (Sokolov, 2012)
@ decision stumps or arbitrary chains (Ishkina, 2013)
Real sets of classifiers with exact computable CCV bound:
@ k nearest neighbor classification (Vorontsov, 2004; lvanov, 2009)
@ isotonic separation (Vorontsov and Makhina, 2011; Guz, 2011)
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Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (overview)
Bound computation and usage

The Local Complexity Regularization

Main steps to use combinatorial Splitting-Connectivity bound:

© Calculate SC-bound anyway (e.g. via random walks):
P[(MX,)_() - V(MX,X) > 5] < SChound(e; A, X)) =19
© Invert the SC-bound: with probability at least 1 — n
v (X, X) < v(uX,X) +e(m; A X")

© Use c(n; A, X!) as a penalty for features or model selection

Vorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds
for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp.66-73.
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Splitting-Connectivity bounds
Combinatorial theory of overfitting Model sets (ov: W
Bound computation and usage

Splitting gives an idea of effective SC-bound computation

All classifiers A
(global complexity

Really used classifiers,
flowest layers of A
J. (local complexity)
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ity bounds
Combinatorial theory of overfitting

Bound computation and usage

SC-bound computation via Random Walks

1. Learn a good classifier
2. Run a large number of short walks to get a subset B C A

3. Compute a partial sum Q- ~ ) summand(a)
aeB

Special kind of Random Walks for multipartite graph:
1) based on Frontier sampling algorithm

2) do not permit to walk in higher layers of a graph
3) estimate contributions of layers separately

Simple random walk: Random walk with gravitation:

320 265

300 260
255
280
250

260 245

240
0 500 1000 1500 2000 0 500 1000 1500 2000
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ity bounds
Combinatorial theory of overfitting

Bound computation and usage

Making bounds observable

SCbound (s, Xb) depends on a hidden set X, then we use
SCbound(y, X) instead.

Open problems: is it correct? why? may be not always?

Really EOF(j, X) is well concentrated near to EOF (1, X!):
Experiments on model data, L = 60, testing sample size K = 60

L=K=60
L
EOF(u, X") s ot
. N
0.65 ®
0.60
055 °®

0.50
045
0.40
035
0.30
0.25
020
0.15
0.10
0.05

005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 EOF(ILL X)
)
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Ensembles of Conjunction Rules
Ensemt f i ional Linear Classifiers
Applications to learning algorithms design Comparing wi ate-of-ar C-Bayesian bounds

Ensemble learning

2-class classification problem:
(xi,yi)b, — training set, x; € R", y; € {—1,+1}

Ensemble — weighted voting of base weak classifiers b;(x):
T
a(x) = sign Z wy by (x)
t=1

Main idea is to apply generalization bound
as features selection criterion in base classifiers

Our goals:
1) to reduce overfitting of base classifiers
2) to reduce the complexity of composition T
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Ensembles of Conjunction Rules
f low-dimensional Linear Classifiers
Applications to learning algorithms design g aring with sta f-art PAC-Bayesian bounds

ComBoost: Committee boosting

Instead of objects reweighting ComBoost trains each base classifier
on the training subset X’ C X in order to augment margins of the
ensemble as much as possible:

X' = {x,- € X: My < Margin(i) < /\/Il}

-
Margin(i) = y;i ) webe(x;)-
t=1

Distribution of margins

08 ]
06 ]
04 ]
02 |

0]
02 ]
-0.4 ]
06 1

(Zlv Ml)

0 20 40 60 80 100 120 140 160 180 200
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Ensembles of Conjunction Rules
Ensemt f i ional Linear Classifiers
Applications to learning algorithms design Comparing wi ate-of-ar C-Bayesian bounds

Learning ensembles of Conjunction Rules

Conjunction rule is a simple well interpretable 1-class classifier:

OEINOETL
jed
where f;(x) — features
J C{1,...,n} — a small subset of features
t/; — thresholds
Sj — one of the signs < or >
y — the class of the rule

Weighted voting of rule sets R,, y € Y:

a(x) = arg max E w,r(x)
yeYy
rery

We use SC-bounds to reduce overfitting of rule learning
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Ensembles of ConJunctlon Rules
Ensemb ow ional Linear Classifiers
Applications to learning algorithms design Compar state-of-art PAC-Bayesian bounds

Experiment on UCI real data sets. Results

“ tasks
Algorithm austr | echo | heart | hepa | labor | liver
RIPPER-opt 155 | 297 | 19.7 | 20.7 | 18.0 | 32.7
RIPPER+4o0pt || 15.2 | 5,53 | 20.1 | 23.2 | 180 | 31.3
C4.5(Tree) 142 | 551 | 20.8 | 188 | 14.7 | 37.7
C4.5(Rules) 155 | 6.87 | 20.0 | 188 | 14.7 | 375
C5.0 140 | 430 | 21.8 | 20.1 | 184 | 31.9
SLIPPER 157 | 434 | 194 | 174 | 123 | 32.2
LR 148 | 430 | 199 | 188 | 142 | 32.0
| our WV | 149 | 437 [ 201 [19.0 | 140 [323 |

[our W +CS 141 [32 [193 [18.1 [13.4 [30.2 |

Two top results are highlighted for each task.

Voorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds
for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp.66-73.
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classifiers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Liner classifiers and ensembles

Linear classifier: a(x) = sign(w, x)
Ensemble of low-dimensional linear classifiers

T
a(x) = sign Z tan(w;, x)
t=1

Random Walks for SC-bound computation
1) find all neighbor classifiers in the dual space:

2) lookup along random rays
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of Conjunction Rules
of low-dimensional Linear Classifiers
Applications to learning algorithms design g g with state-of-art PAC-Bayesian bounds

Experiment 1: ComBoost ensemble of linear classifiers

| | statlog | waveform | wine | faults |

ERM + MCCV 85,35 87,56 71,63 | 73,62
ERM + SC-bound 85,08 87,66 71,08 | 71,65
LR + MCCV 84,04 88,13 71,52 | 70,86
LR 80,77 87,34 71,49 | 71,09
PacBayes DD 82,13 87,17 64,68 | 67,67

The percentage of correct predictions on testing set (averaged
over 5 partitions). Two top results for every task are shown in bold

Feature selection criteria:
@ ERM — learning by minimizing error rate from subset

of classifiers sampled from random walks
@ LR — learning by Logistic Regression
@ MCCV — Monte-Carlo cross-validation
@ DD — PAC-Bayes Dimension-Dependent bound (Jin, 2012)
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classifiers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Experiment 2: comparing bounds for Logistic Regression

All bounds are calculated from subset generated by random walk
@ MC — Monte-Carlo bound (very slow)
@ SC — Splitting-Connectivity bound
@ VC — Vapnik—Chervonenkis bound
@ DD — Dimension-Dependent PAC-Bayes bound (Jin, 2012)

UCI Task MC SC VC PAC DD
glass 0.115 | 0.146 | 0.356 0.913
liver 0.095 | 0.533 | 0.595 1.159
ionosphere || 0.083 | 0.149 | 0.238 1.259
wdbc 0.052 | 0.070 | 0.136 0.949
australian 0.043 | 0.244 | 0.277 0.798
pima 0.045 | 0.373 | 0.410 0.823
Conclusions:

1) combinatorial bounds are much tighter than PAC-Bayes bounds
2) SC-bound initially proved for ERM fit well for Logistic Regression
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Conclusions

Combinatorial framework
@ gives tight (in some cases exact) generalization bounds
@ that can be computed approximately from Random Walks

@ and gives more accurate base classifiers in Ensemble Learning

Restrictions:
@ binary loss
@ computational costs

@ low sample sizes, low dimensions

Further work:
@ more effective approximations
@ bigger sample sizes, bigger dimensions
@ more applications
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Questions?

Konstantin Vorontsov
vokov@forecsys.ru

www.MachineLearning.ru/wiki (in Russian):

@ User:Vokov
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