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An algorithm is proposed for revealing latent user's interests from the observable

protocol of users behavior, e.g., site visits. The algorithm combines the ideas of
analysis of users' media and probabilistic latent semantic analysis. A quality criterion
based on the classi�cation of preliminarily labeled sites is introduced to optimize
the algorithm parameters and compare algorithms. The experiments show that the
quality has an optimum by the essential parameters of the algorithm, however the
attempt of too precise optimization can lead to over�tting.
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1 Introduction
Automatic revealing of users' needs and preferences by the data on their web behavior

(purchases, visits, requests, etc.) is an urgent task in many spheres of client-oriented
business. Speci�cally, such problems should be solved in order to personalize advertising
in recommender systems, provide segmentation of the client base in marketing research,
search for similarly minded people in social networks, etc.

The initial data are the sequence of �user u selected resource r� records. To successfully
solve the aforesaid problems, it is required to adequately estimate the similarity of users
and resources. Customer environment analysis (CEA) [17, 10, 11] is based on the following
principle of consistent similarity measures: �resources (items) are similar if similar users
use them and at the same time, users are similar if they use similar sets of resources.�

The simplest methods for web usage mining (WUM) [9] and collaborative �ltering
(CF) [2], including the Pearson correlation method or the cosine similarity method, are
based on either just the similar ity of users (user-based CF) or that of items (item- based
CF). The need to store all initial data as well as the asymmetric character of the analysis
relative to users and recourses limits the applicability of the methods. The latent semantic
analysis (LSA) [7, 4, 15] have not these limitations and allows for revealing implicit
characteristics of users and items and replace initial data with compressed descriptions,
i.e., pro�les of users and items. As a rule, di�erent kinds of matrix decomposition are used
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for this purpose. Probabilistic models (LSA or pLSA) [8] have more profound statistical
substantiation and allow for interpreting the components of pro�les as probabilities of
preferences. To reveal implicit preferences from the initial data, the EM-algorithm is often
used. The methods for collaborative �ltering are discussed in more detail in Chapter 1.

This paper proposes an approach that combines the principle of consistent similarity
from customer environment analysis and estimation of latent pro�le-based probabilistic
latent analysis. It results in a symmetrized two-stage variant of the EM-algorithm with
two enclosed iteration loops in contrast to the standard pLSA algorithm wherein latent
variables are calculated in one iteration loop. In section 2 the method is considered in
detail and compared to LSA and pLSA algorithms.

Restored pro�les are easy to compare, which makes possible applying the simple
k nearest neighbors (kNN) classi�er and introducing objective quality criteria to compare
di�erent methods of collaborative �ltering.

In section 3, the experimental results and comparative analysis of three methods of
collaborative �ltering (pLSA, symmetric pLSA, and the correlation method based on
Fisher's exact test) will be presented using real search engine data and the data on
articles purchased in a large furniture company. In the experiments the dependence of
classi�cation quality on the length of latent pro�les and iteration number both in the inner
and outer loop of the algorithm is studied. The quality proved to have an optimum by
these parameters; however excessive optimization is redundant and can lead to over�tting.

This article is an extended variant of [11].

2 Objectives and Methods of Collaborative Filtering
Collaborative �ltering as a research trend started at the end of the 1980s when

numerous companies faced the problem of e�ective usage of a vast amount of "raw"data on
users' behavior to solve a number of business problems such as service personalization and
direct marketing [13, 12]. Collaborative �ltering is based on the assumption that similar
users have similar preferences when choosing items. In other words, by �nding users that
are similar to the active user and by examining their preferences, the recommender system
can predict the active user's preferences for certain items and provide a ranked list of items
which active user will most probably like. The methods of collaborative �ltering do not
analyze the content of items; therefore, they are applicable to a wide range of applied
areas. Collaborative �ltering can detect relationships between items that have no content
similarities but are linked implicitly through the groups of users (collaborations) accessing
them. These groups (communities) are formed around a speci�c user pro�le. The proper
methods are considered in the given paper.

2.1 Collaborative Filtering Objective
Let U be the set of users, R be the set of items (resources), Y be the space of

descriptions of transactions (either preference facts or users' estimates of items). The
initial data are presented as the transaction protocol database of users' preferences, i.e.,
the sequence of l triples D = (ui, ri, yi)

l
i=1 ⊂ U ×R× Y .

Commonly, the transaction protocol is aggregated in the cross-tabulation matrix
F = ‖fur‖U×R, where fur = aggr

{
(ui, ri, yi) ∈ D

∣∣ ui = u, ri = r
}
, aggr is the aggregation
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function whose form depends on the subject area and a particular objective.
The main objectives of collaborative �ltering are forecasting of un�lled cells fur,

estimation of similarity functions K(u, u′), K(r, r′), and K(u, r) between users and items,
and revealing of interpretable latent characteristics (pro�les) of users and resources.

Information about the transaction protocol can be accumulated in the form of implicit
ratings or explicit ratings.

The implicit rating is obtained by monitoring user actions. For example, if U is the
set of Internet users, R is the set of resources (sites, documents, news items, etc.), then
the protocol of users' visits is aggregated in the cross-tabulation matrix F = ‖fur‖ where
fur is the number of visits of the resource r by the user u. The most typical objectives
are as follows: 1) predict the active user's preferences for certain items and 2) provide a
ranked list of items which active user u will most probably like.

In the case of explicit ratings, users rate the chosen items. Thus, if U are users of an
online-store, R are goods (books, video, music, etc.), then a rating made by the user u
of the good r can be the value of fur. Commonly, user ratings have discrete values in the
rating scale. Personalization problems are set in a similar way in this case.

The collaborative �ltering algorithm is usually divided into two large classes -
memory-based and model-based.

2.2 Memory-Based Algorithms
Memory-based algorithms [13, 1, 6] are based on storage of the whole cross-tabulation

matrix F and direct search for similar users (rows) and items (columns) in it. The value
of the unknown rating f̂ur for user u and resource r is estimated by the set of ratings
given to the resource by other users whose preference is the most similar to those of the
user u:

f̂ur = aggr
u′∈Uα(u)

fu′r,

where Uα(u) = {u′ ∈ U | K(u′, u) > α} is the set of users similar to u; the function of
user similarity K(u, u′) takes larger values the closer the u and u′ preferences are; the
α parameter speci�es the threshold value for similarity; aggr is an aggregating function,
e.g., the Nadaraj a-Watson formula of nonparametric (kernel) smoothening with the kernel
functions K(u, u′):

f̂ur = f̄u +

∑
u′∈Uα(u)

K(u, u′)(fu′r − f̄u′)

∑
u′∈Uα(u)

K(u, u′)
,

where f̄u = 1
|R(u)|

∑
r∈R(u)

fur is the average u user's rating, R(u) is the set of items chosen

by the user u. The closer the preferences of users u and u′, the greater the contribution
of rating fu′r into f̂ur to be forecasted.

In collaborative recommender systems, di�erent approaches to estimating the
similarity between users K(u, u′) are used. Let R(u, u′) be the set of items chosen by
both users u and u′. In the correlation approach [13, 6], the similarity of users u and u′ is
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estimated by the Pearson correlation coe�cient:

K(u, u′) =

∑
r∈R(u,u′)

(fur − f̄u)(fu′r − f̄u′)

√ ∑
r∈R(u,u′)

(fur − f̄u)2
∑

r∈R(u,u′)
(fu′r − f̄u′)2

.

With the approach using the linear similarity approach [6, 1], users u and u′ are presented
as vectors of m-dimensional space, m = |R(u, u′)|, and the similarity is estimated as the
cosine of the angle between these vectors:

K(u, u′) =

∑
r∈R(u,u′)

furfu′r

√ ∑
r∈R(u,u′)

f 2
ur

∑
r∈R(u,u′)

f 2
u′r

.

One more similarity function applied to the cross-tabulation matrices is based on
Fisher's exact test [17]. We consider the function relative to resources rather than users
since in this proper form it will be used in the experimental part of our work. Generally,
most similarity functions used in collaborative �ltering can be de�ned for both users and
resources. We will estimate the similarity of resources r and r′ by testing the statistical
hypothesis that users choose at least one of two resources r and r′ independently. Let
U(r) and U(r′) be the sets of users who prefer either just the resource r or the resource
r′, respectively, and let U(r, r′) be the set of users choosing both resources. If the set of
U(r, r′) is so large that the probability of joint choice of both resources

P (r, r′) = C
|U(r,r′)|
|U(r)| C

|U(r′)|−|U(r,r′)|
|U |−|U(r)|

/
C
|U(r′)|
|U |

is less than the speci�ed level of signi�cance α, then one can assume that the data observed
contradict the independence hypothesis. Consequently, there is a regular relationship
between visits of this pair of resources. The less P (r, r′), the more similar the resources.
The similarity function is de�ned as a monotonically deñreasing function of probability,
e.g., K(r, r′) = − log P (r, r′).

2.3 Model-Based Algorithms
In contrast to memory-based methods, model-based algorithms store in memory

neither the initial protocol nor the cross-tabulation matrix F . Instead, a vector description
(pro�le) is formed for each user and each item. The similarity functions of users and
items are realized by direct comparison of these pro�les. In some models the pro�le
components have a content interpretation. In particular, they can correspond to the types
and topics of items, users' interests, or user's social and demographic characteristics. In
some applications pro�les may not possess any interpretation.

Latent semantic analysis (LSA) is based on matrix factorizations [7, 15, 4]. Let us
assume that each user is interested in a set of topics from a set of all possible topics T .
Commonly, the number of topics |T | is considerably smaller than the number of users |U |,
the number of items |R| and protocol length l. Let us denote the importance degree of
a topic t for a user u ∈ U through ptu. Then the vector (ptu)t∈T is a latent pro�le of
user u, and P = (ptu)|T |×|U | is the matrix of all pro�les of all users. Similarly, we denote
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through qtr the ability of the item r ∈ R to satisfy the interest in topic t. Then the vector
(qtr)t∈T is a latent pro�le of the item r, and Q = (qtr)|T |×|R| is the matrix of pro�les of all
items. We also introduce λt, characterizing the degree of importance of the topic t ∈ T
independent of items and users. Then it is quite natural to describe values in the cross-
tabulation matrix by the model f̂ur =

∑
t∈T

λtptuqtr, or, in the matrix form, F̂ = PΛQò. To
�nd matrices P and Q, the least squares method is applied:∑

u∈U

∑
r∈R

(
f̂ur − fur

)2
=

∥∥F − PΛQò∥∥2 → min
P,Λ,Q

. (1)

The given problem is solved by means of singular value decomposition, or, which is the
same, the principal components analysis. In practice, explicit solution of the problem of
eigenvalue is time consuming. There are fast iteration methods estimating PΛ and Q
without direct calculation of the matrix spectrum and at the same time determining the
number of topics T [16].

In most typical applications, matrix F is not �lled completely and, moreover, is
strongly sparse. Then, the summing up in (1) is only made by pairs (u, r) ∈ U × R, for
which the values of fur exist. In these cases the sparse methods of principal components
analysis are used [3].

The singular factorization has a drawback that some components of pro�les ptu and qtr

turn out to be negative, which impedes their interpretation. Nonnegative matrix
factorizations (NNMF) [5] guarantee that ptu > 0 and qtr > 0. In this case the elements
of pro�les ptu could be interpreted as the conditional probabilities p(u|t), if normalization∑
u∈U

p(u|t) = 1 was ful�lled.
Probabilistic latent semantic analysis is based on explicit probabilistic interpretation

of the pro�les [14]. Owing to e�ective numerical methods, these models are widely used [6,
2, 1].

The latent pro�le of a user u ∈ U is the vector of (unknown) conditional probabilities
ptu = p(t|u) that the given user u is interested in the topic t ∈ T . The pro�le should meet
the normalization condition

∑
t∈T

ptu = 1.
The latent pro�le of an item r ∈ R is the vector of (unknown) conditional

probabilities qtr = q(t|r) that the given item r corresponds to the topic t ∈ T . Similarly,∑
t∈T

qtr = 1.
Here and below all probabilities concerning users are denoted by p, and the

probabilities concerning items are denoted by q.
We consider the probabilistic model of item r preference by a user u:

p(u, r) =
∑
t∈T

p(t)p(u|t)q(r|t), (2)

where p(t) is a priori probability characterizing the "popularity"of the topic t ∈ T , p(u|t)
is a posteriori distribution of users by each topic t, q(r|t) is the a posterior distribution
of items by each topic t.

Then the principle of the maximum likelihood is used to �nd unknown parameters
p(t), p(u|t), and q(r|t) in the given model by the cross-tabulation matrix F = ‖fur‖U×R

observed where fur is the number of times that the user u has chosen the item r:
L = ln

∏
u∈U

∏
r∈R

p(u, r)fur =
∑
u∈U

∑
r∈R

fur ln p(u, r) → max
p(t), p(u|t), q(r|t)

. (3)
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To estimate the maximum likelihood the Expectation-Maximization (EM) algorithm
is used. The idea is as follows. To estimate unknown parameters p(t), p(u|t), and q(r|t),
auxiliary latent variables p(t|u, r) are introduced that can be interpreted as the probability
that the user u, choosing the item r, was interested in the topic t. Latent variables can be
calculated easily if the parameters p(t), p(u|t), and q(r|t) are known. On the other hand,
the solution of the problem of maximum likelihood is strongly simpli�ed if the latent
parameters are known.

The EM algorithm consists of two steps repeated iteratively.
At the E-step (Expectation), the expected values of latent variables p(t|u, r) are

calculated by the Bayes formula based on the current values of unknown parameters:

p(t|u, r) =
p(t)p(u|t)q(r|t)∑

t′∈T

p(t′)p(u|t′)q(r|t′) , u ∈ U, r ∈ R, t ∈ T.

At the M-step (Maximization), the problem of maximum likelihood is to be solved
and the following approximation of unknown parameters p(t), p(u|t), and q(r|t) is found.
The problem can be solved analytically using latent variables found at the E-step. The
solution is written in the following way:

p(t) =

∑
u∈U

∑
r∈R

furp(t|u, r)

∑
u∈U

∑
r∈R

fur

, t ∈ T ;

q(r|t) =

∑
u∈U

furp(t|u, r)

∑
u∈U

∑
r′∈R

fur′p(t|u, r′)
, r ∈ R, t ∈ T ;

p(u|t) =

∑
r∈R

furp(t|u, r)

∑
u′∈U

∑
r∈R

fu′rp(t|u′, r) , u ∈ U, t ∈ T.

Further, one needs to return to the E-step at new values of parameters p(t), p(u|t), and
q(r|t). Iterations continue until stabilization of the values of parameters and/or likelihood.
Initial approximations for p(t), p(u|t), and q(r|t) are initialized by random or uniform
distributions.

The found parameters p(u|t) and q(r|t) are conditional distributions of users and
items relative to each topic t. However, the desired pro�les of users and items should have
the form of conditional distributions of topics p(t|u) and q(t|r). To calculate them the
Bayes formula is used:

ptu = p(t|u) =
p(t)p(u|t)∑

t′∈T

p(t′)p(u|t′) , u ∈ U, t ∈ T ;

qtr = q(t|r) =
p(t)q(r|t)∑

t′∈T

p(t′)q(r|t′) , r ∈ R, t ∈ T.

3 Symmetric Probabilistic Latent Semantic Model
We propose a symmetric model of probabilistic latent semantic analysis wherein the

pro�les of users and items are speci�ed alternately. The experiments show that in this
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case both the accuracy of pro�les and the rate of convergence increase.
Let F = ‖fur‖U×R be a cross-tabulation matrix where fur is the number of times

when the user u ∈ U has chosen the item r ∈ R.
Instead of probabilistic model (2), we will write another expression formally

equivalent to it for the probability of the choice of the item r by the user u:

p(u, r) =
∑
t∈T

p(u)p(t|u)q(r|t, u), (4)

where p(u) = pu and q(r) = qr are prior probabilities of the occurrence of a user u and
an item r respectively, p(t|u) = ptu is the probability that the user u is interested in
the topic t, and q(r|t, u) = q(r|t) is the posteriori probability that the item r will be
chosen under the condition that the choice is due to interest in topic t. The hypothesis
that the posteriori probability q(r|t, u) does not depend on the user u is a necessary
simplifying assumption in the given model. A priori probabilities and pro�les should meet
the conditions of normalization

∑
u∈U

pu = 1 è
∑
t∈T

ptu = 1 for all u ∈ U .
We express the posteriori probability q(r|t) through a priori probabilities q(r) = qr

and item pro�les q(t|r) = qtr by using the Bayes formula:

q(r|t) =
q(t|r)q(r)∑

r′∈R

q(t|r′)q(r′) =
qtrqr∑

r′∈R

qtr′qr′
.

We substitute the expression into the formula for p(u, r):

p(u, r) =
∑
t∈T

puptu
qrqtr∑

r′∈R

qtr′qr′
.

A priori probabilities pu and qr are easy to estimate empirically as the share of
transactions wherein, respectively, the choice was made by the user u or the item r was
chosen:

pu =
1

l

∑
r∈R

fur; qr =
1

l

∑
u∈U

fur; l =
∑
u∈U

∑
r∈R

fur.

Therefore, the probability p(u, r) is expressed through known priori probabilities pu,
qr, and unknown pro�les of users ptu and items qtr. Note that p(u, r) linearly depends on
the pro�les of users ptu and in a rather complex way on the pro�les of items qtr. Therefore,
we will assume that the pro�les of items qtr have been known and �xed already. To �nd
the pro�les of users P = (ptu)|T |×|U |, we shall maximize the likelihood at |U | equality
restrictions

L
(
P

)
=

∑
u∈U

∑
r∈R

fur ln p(u, r) → max
{ptu}

;

∑
t∈T

ptu = 1, u ∈ U.

There are also inequality restrictions ptu > 0. However, they will not be considered
and later we will prove that they are ful�lled with a guarantee.
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Let us write the Lagrangian of the optimization problem:

L
(
P, λ

)
=

∑
u∈U

∑
r∈R

fur ln

(
pu

∑
t∈T

ptuq(r|t)
)
−

∑
u∈U

λu

(∑
t∈T

ptu − 1

)
,

where λ = (λu)u∈U is the vector of dual variables. We di�erentiate the Lagrangian with
respect to ptu and set the derivative equal to zero:

∂L

∂ptu

=
∑
r∈R

fur
1

ptu

ptuq(r|t)∑
t′∈T

pt′uq(r|t′) − λu = 0, t ∈ T, u ∈ U. (5)

We introduce auxiliary latent variables Htr(u):

Htr(u) =
ptuq(r|t)∑

t′∈T

pt′uq(r|t′) , t ∈ T, r ∈ R, u ∈ U.

Note that according to the Bayes formula, Htr(u) = H(t|r, u) is a posteriori
probability of the topic t for the given pair (u, r). In other words, it is the probability that
interest in topic t caused the choice of the item r by the user u. Evidently, for any pair
(u, r) ∈ U×R , the normalization condition

∑
t∈T

Htr(u) = 1 is ful�lled.
Let us assume that the latent variables Htr(u) are known. We multiply both parts of

equation (5) by ptu and the sum by t:
∑
t∈T

∑
r∈R

furHtr(u) = λu

∑
t∈T

ptu, u ∈ U.

Permuting the summing signs and taking into account the normalization conditions∑
t∈T

ptu = 1 and
∑
t∈T

Htr(u) = 1, we get λu =
∑
r∈R

fur. Substituting λu again into (5), we
have:

ptu =

∑
r∈R

furHtr(u)

∑
r∈R

fur

.

Since the latent variables Htr(u) ) are not actually �xed and depend on ptu, to
maximize likelihood we need to apply an iteration that is a variant of the EM-algorithm.
Each iteration consists of two steps. At the E-step, pro�les ptu are �xed and according to
the Bayes formula latent variables Htr(u) are calculated. At the M-step, latent variables
Htr(u) are �xed and pro�les ptu are calculated. Uniform distribution ptu = |T |−1 can be
used as the initial approximation. Note that at any nonnegative initial approximation
the nonnegative value of latent variables and pro�les ptu is guaranteed at all subsequent
iterations.

The item pro�les qtr have thus far been �xed. The problem of optimization of the
item pro�les qtr at �xed user pro�les ptu is set and solved in the "symmetric way"if we
replace u ↔ r and q ↔ p in all formulas. Omitting further considerations, we write only
the initial probabilistic model that is formally equivalent to models (2) and (4):

p(u, r) =
∑
t∈T

q(r)q(t|r)p(u|t, r), (6)
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Algorithm 3.1. Symmetric Algorithm.
Require:

cross-tabulation matrix F = ‖fur‖U×R;
number of topics |T |;
number of iterations at the outer loop Ipq;
number of iterations at the inner loop IEM;

Ensure:
ptu �user pro�les, qtr � item pro�les;

1: estimates of a priori probabilities:
pu := 1

l

∑
r∈R fur; qr := 1

l

∑
u∈U fur for all u ∈ U , r ∈ R;

2: initial approximation of pro�les:
ptu := |T |−1; qtr := |T |−1 for all u ∈ U , r ∈ R, t ∈ T ;

3: for the outer iteration loop Ipq times: do
4: q(r|t) :=

qtrqr∑
r′∈R qtr′qr′

for all r ∈ R, t ∈ T ;
5: for the inner iteration loop IEM times: do
6: E-step: Htr(u) :=

ptuq(r|t)∑
t′∈T pt′uq(r|t′) for all t ∈ T , u ∈ U , r ∈ R;

7: M-step: ptu :=

∑
r∈R furHtr(u)∑

r∈R fur

for all u ∈ U , t ∈ T ;

8: p(u|t) :=
ptupu∑

u′∈U ptu′pu′
for all u ∈ U , t ∈ T ;

9: for the inner iteration loop IEM times: do
10: E-step: Htu(r) :=

qtrp(u|t)∑
t′∈T qt′rp(u|t′) for all t ∈ T , u ∈ U , r ∈ R;

11: M-step: qtr :=

∑
u∈U furHtu(r)∑

u∈U fur

for all r ∈ R, t ∈ T ;

where p(u|t, r) = p(u|t) is a posteriori probability that the choice will be made by the
user u under the condition that the choice is due to interest in topic t.

The main idea of the symmetric EM-algorithm is in the arrangement of two enclosed
iteration loops. At the outer loop, two problems are solved alternately, i.e., �rst user
pro�les ptu are optimized at �xed item pro�les qtr and then vice versa, pro�les qtr are
optimized at �xed ptu. Each optimization of pro�les is implemented by the inner loop
of the EM algorithm wherein latent variables Htr(u) and the pro�le approximation are
calculated alternately. The implementation of the procedure is shown in more detail in
Algorithm 3.1.

Note that the equivalence of all three models (2), (4), and (6) follows from the
conditional probability determined in the following way:

p(u)p(t|u) = p(u, t) = p(t)p(u|t), u ∈ U, t ∈ T ;

q(r)q(t|r) = q(r, t) = p(t)q(r|t), r ∈ R, t ∈ T.

However, in the standard pLSA algorithm and the symmetric one, the iteration is arranged
in a di�erent way, has di�erent characteristics, and, generally speaking, yields di�erent
results.
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4 Experiments
The suggested algorithm was tested and compared with standard algorithms using

real data of Yandex search machine, goods purchase in a large furniture company, and
model data.

4.1 The Search Engine Data
The search engine data were a protocol of clicks on documents returned by the

search machine. The one week log �le of the "Yandex"search machine, 3.7 Gb in size,
contained the data on 129 000 resources, 14 606 users, and 207 696 user clicks. After the
data preprocessing stage we retained 1024 most visited web sites as items and 1902 most
active users (having made not less than 30 visits).

In the experiments di�erent methods for constructing the similarity functions were
compared including those based on the construction of site pro�les.

In order to estimate the quality of the similarity functions, 400 sites were labeled by
12 classes. The quality criterion was found as the share of errors in classi�cation of the
labeled sites by the simple k nearest neighbor classi�er. The site labeling was used only
to estimate the quality quality but not used to calculate of pro�les or similarity functions.
The similarity of pro�les was estimated through mean squared deviation with preliminary
zeroing of noninformative components.

In order to construct pro�les, two algorithms were used and compared: the
standard pSLA and the symmetric algorithm. For the symmetric pSLA, coordinatewise
optimization of parameters |T |, Ipq, and IEM by the aforesaid criterion was used. After
the pro�le construction, all components were zeroed in it except 3 maximum components
and renormalization was undertaken.

Figure 1 shows the results of the optimization of the number of topics |T | in both
algorithms. The best results were achieved at |T | = 65 for the symmetric algorithm and
|T | = 55 in standard pLSA.

Figure 2 shows the results of optimization of the number of inner and outer iterations
for the two-stage (symmetric) algorithm and the number of EM-iterations for standard
pLSA. The best quality was achieved for three iterations at the outer loop in the case of
the two-stage algorithm and at 27 EM-iterations in standard pLSA.

Further increase in the number of topics |T | or iterations can deteriorate the quality
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Topics

Sites

Ðèñ. 3. Site pro�les example.

of the pro�le. It can be interpreted as over�tting with an attempt to excessively �t pro�les
with respect to a particular data.

The semantic interpretation of the components was not speci�ed a priori; nevertheless,
the same components occurred to be dominants in pro�les of sites having similar content.
By way of example, the �gure 3 shows the pro�les of length |T | = 12 for some sites. Here we
managed to ascribe topical interpretations to all 12 components. Therefore, interpretation
of the pro�le components is possible already after the problem was solved on the basis of
analysis of a small part of the resources whose topic is known.

In the symmetric algorithm inside each of two inner loops, latent variables Htr(u) and
Htu(r) are calculated, which estimate conditional probabilities H(t|u, r) in two di�erent
ways. The dependence of the mean modulus of deviation of these two estimates on the
number of outer iterations is shown in Fig. 4. It is clearly seen that mean deviations
become small after the �rst iteration and converge rapidly in the next iterations, which
indirectly con�rms the correctness of the algorithm.

There are numerous ways to introduce the distance functions (metrics) on users
ρ(u, u′) and items ρ(r, r′). The most evident one is the mean squared deviation between
pro�les. The most evident one is the mean squared deviation between pro�les. To
give a visual check-up of metrics quality we used the multidimensional scaling (MDS)
representing a �nite set of points with a given pairwise distances as a two-dimensional
scatter plot also called a similarity map (Fig. 5). Sites having similar topics turn out
to form visually separable clusters on the map. Moreover, site pro�les in each cluster
have, as a rule, the same maximal components (see the example in the �gure 3). The
best clustering was achieved at preliminary zeroing of all components except for the three
maximal ones in each pro�le.
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4.2 The Data on Goods Purchased
The data on goods purchased in the furniture company is the history of sales for three

years of operation of the company. For analysis 1920 goods that were sold more than 100
times and 1328 users that purchased goods more than 30 times were chosen. By the users
and goods chosen, the sampling of 112 256 facts of goods purchased was analyzed.

In order to estimate the quality by goods, 403 goods were divided into 12 categories.
In a similar way, the data of the search engine were processed using the simple k nearest
neighbor classi�er (at k = 5) to estimate the fraction of correctly classi�ed goods. Optimal
functional (3% of classi�cation errors) was achieved at the topic number |T |=30, 4 inner,
and 4 outer iterations for the symmetric algorithm. In addition the pro�les and the metric
were constructed on the set of users.

4.3 Comparison of Distance functions
To compare the quality of di�erent algorithms of collaborative �ltering via the

classi�cation quality, the simple k nearest neighbor classi�er was used. In Figs. 6 and 7,
three distance functions are used to compare items, i.e., the distance between pro�les in
the symmetric algorithm, the distance between pro�les in the standard pLSA, and the
distance based on the Fisher's exact test for the data of the search engine and the furniture
company.

Therefore, the symmetric model converges faster and provides a higher quality of the
similarity functions compared to standard pLSA and the correlation measure of similarity
based on Fisher's exact test.

4.4 Model Data
In the experiment on the model data at |R| = 500, |U | = 1000, true pro�les were

speci�ed by random choice of two topics in each pro�le. The usage sampling was generated
according to probabilistic model (4). The quality of pro�les was estimated by the absolute
deviation from true pro�les, two maxima being revealed in the restored pro�les and the
remaining components being zeroed.
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Ðèñ. 6. Comparison of di�erent metrics by
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Ðèñ. 7. Comparison of metrics by the furniture
company data.

Parameter optimization has shown that the best quality of pro�le restoration is
achieved at 6 iterations at the outer loop and 2 EM-iterations at the inner loop.

The algorithm divergence was also studied using model data. We should have found
out at which minimal number of topics and minimal initial protocol length the algorithm
converges. The number of topics was taken equal in the initial and restored pro�les. Under
the conditions of the given experiment, the algorithm proved to diverge at the number of
topics less than 10 or a sampling length less than 700.

Ñïèñîê ëèòåðàòóðû
[1] Adomavicius G., Tuzhilin A. Toward the next generation of recommender systems:

a survey of the state-of-the-art and possible extensions // IEEE Transactions on
Knowledge and Data Engineering. � 2005. � Vol. 17, no. 6.

[2] Billsus D., Pazzani M. J. Learning collaborative information �lters // Proc. 15th
International Conf. on Machine Learning. � Morgan Kaufmann, San Francisco, CA,
1998. � Pp. 46�54.

[3] Brand M. Fast online svd revisions for lightweight recommender systems // SIAM
International Conference on Data Mining. � 2003.

[4] Deerwester S., Dumais S. T., Furnas G. W., Landauer T. K., Harshman R. Indexing
by latent semantic analysis // Journal of the American Society for Information
Science. � 1990. � Vol. 41. � Pp. 391�407.

[5] Gaussier E., Goutte C. Relation between plsa and nmf and implications // SIGIR
'05: Proceedings of the 28th annual international ACM SIGIR conference on Research
and development in information retrieval. � New York, NY, USA: ACM, 2005. �
Pp. 601�602.

[6] Grcar M. User pro�ling: Collaborative �ltering // SIKDD 2004 at multiconference
IS 12-15 Oct 2004, Ljubljana, Slovenia. � 2004.

[7] Hofmann T. Latent semantic models for collaborative �ltering // ACM Transactions
on Information Systems. � 2004. � Vol. 22, no. 1. � Pp. 89�115.

13



[8] Hofmann T., Puzicha J. Latent class models for collaborative �ltering //
International Joint Conference in Arti�cial Intelligence. � 1999.

[9] Jin X., Zhou Y., Mobasher B. Web usage mining based on probabilistic latent
semantic analysis. � 2004.

[10] Leksin V. A., Vorontsov K. V. The client environment analysis: the reconstruction of
latent pro�les and similarity estimation of users and items // Mathematical Methods
of Pattern Recognition�13. � MAKS Press, Moscow, 2007. � Ñ. 488�491.

[11] Leksin V. A., Vorontsov K. V. The over�tting in probabilistic latent semantic
models // Pattern Recognition and Image Analysis: new information technologies
(PRIA-9). � Vol. 1. � Nizhni Novgorod, Russian Federation, 2008. � Pp. 393�396.

[12] Marlin B. Collaborative �ltering: A machine learning perspective: Ph.D. thesis /
Master's thesis, University of Toronto. � 2004.

[13] Resnick P., Iacovou N., Suchak M., Bergstorm P., Riedl J. GroupLens: An open
architecture for collaborative �ltering of netnews // Proceedings of ACM 1994
Conference on Computer Supported Cooperative Work. � Chapel Hill, North
Carolina: ACM, 1994. � Pp. 175�186.

[14] Schein A. I., Popescul A., Ungar L. H., Pennock D. M. Generative models for cold-
start recommendations // the SIGIR'01 Workshop on Recommender Systems. �
2001.

[15] Srebro N., Rennie J. D. M., Jaakkola T. S. Maximum-margin matrix factorization //
Advances in Neural Information Processing Systems 17. � MIT Press, 2005. �
Pp. 1329�1336.

[16] Vorontsov K. V. Preliminary data processing for a special class of recognition
problems // Comp. Maths Math. Phys.� 1995. � Vol. 35, no. 10. � Pp. 1259�1267.

[17] Vorontsov K. V., Rudakov K. V., Leksin V. A., E�mov A. N. Web usage mining
based on web users and web sites similarity measures // Arti�cial Intelligence. �
2006. � Ñ. 285�288.

14


