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Abstract

With a rapid development of technology, new advanced methods for diseases

detection become available. Thus, one possible way to diagnose the internal organs

diseases is based on the information analysis of electrocardiogram signals. Since

these signals contain information about various physiological processes taking place

in the human body, it is possible to use them for health status evaluation. In this

work, we propose a deep learning-based method for detecting various human diseases

on the heart rate variability (HRV) data acquired from the electrocardiograms. We

consider supervised and unsupervised approaches for training the models. In the

first case, we use Convolutional Neural Networks and train them on the labeled

HRV dataset. In the second case, we learn features from HRV data using Stacked

Autoencoders and Restricted Boltzmann Machines, and then build a classifier on the

obtained ones. The accuracy of the proposed models is evaluated on the dataset of

labeled electrocardiograms with diagnosis in 14 different diseases. The final model

demonstrates high performance with an average accuracy over 90% for most of the

diseases. The source code of the models is written in Lua and available publicly.

Keywords: Deep Learning, Convolutional Neural Network, Stacked Autoencoder,

Boltzmann Machine, electrocardiogram, heart rate variability.
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1 Introduction

Problem relevance. Electrocardiograms are a valuable source of information about

human health state, and an appropriate processing of them gives a vital information

that can be applied for diagnosing different kinds of diseases. Nevertheless, relatively

little research effort has been given to explore the connection between non-cardiovascular

diseases and ECG signals. The only solution for this problem was proposed in works [1,2]

and is based on hand-designed features extracted from the ECG signals. Though this

method shows relatively high performance on a large number of diseases, it still has

several issues, among which are incomplete use of information held in the source data and

a complication in extending it on new diseases. To solve these problems, deep learning

techniques both for feature generation and classification can be used.

Goals and Objectives. The goal of the project is to create a purely machine learning

approach for the problem of electrocardiogram processing and diseases classification. For

this purpose, we consider both supervised and unsupervised deep learning techniques and

choose the most appropriate one.

Research methods. To build a model capable of detecting diseases on the ECG data

we use Convolutional Neural Networks, Stacked Autoencoders and Restricted Boltzmann

Machines. The implementation of our models is written in Lua using Torch machine

learning library.

Scientific novelty.

• we propose a supervised approach based on Convolutional Neural Networks and

available of diseases detection on the ECG data;

• we propose a modification of Convolutional Neural Networks in which convolutional

layers are trained by unsupervised methods.

Practical value. We have developed a module that:

• preprocesses and visualizes the source electrocardiograms;

• implements Convolutional Neural Networks;

• implements Stacked Autoencoders and Restricted Boltzmann Machines;
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• performs training of the proposed deep learning models;

• tests the models on the set of all available diseases and visualizes the results.

Statements to be defended.

• Convolutional Neural Network based model for diseases detection on the source

HRV data;

• unsupervised modification of Convolutional Neural Network.

Publications.

• Andrey D. Ignatov, Vadim V. Strijov. Human activity recognition using quasiperi-

odic time series collected from a single tri-axial accelerometer // Multimedia Tools

and Applications, 2015, vol. 74, no. 11.

2 Literature review

2.1 Electrocardiogram processing

Electrocardiogram is a valuable indicator of the human health status. It contains

a comprehensive information about physiological processes taking place in the human

body and thus can be considered as a promising tool for health assessment. However,

at the present time it is primarily used in medicine to diagnose only heart and vessel

diseases [3, 4]. The majority of recent researches in this field are also focused on the

detection of various cardiovascular illnesses. For instance, ECG signals are successfully

applied for arrhythmia classification [5–7], myocardial ischemia detection [8–10], coronary

artery disease detection [11–13], etc. A wide and exhaustive overview of the current state

in ECG signals processing and interpretation is given in book [14].

Currently, only a few of works explored the connectivity between ECG data and non-

cardiovascular diseases. In [15], authors have shown that the ECG signals change their

form for a number of non-cardiac disorders, such as pulmonary embolism, central nervous

system (CNS) diseases, myasthenia gravis, muscular tremors, hypothermia and hypothy-

roidism. Another study [16] has pointed out that besides CNS diseases the changes are

presented for some esophageal disorders. There was also shown that drugs, poisons and

electrical injuries have a considerable impact on the waveform of ECG signals. In another
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paper [17], authors have presented a study where the connection between Friedreich’s

ataxia and electrocardiographic results was shown.

These papers were very important for understanding the information function of the

heart, but the proposed methods could not be expanded to detect other diseases while

they rely on a specific form of the ECG abnormalities. The problem was largely solved

by Uspenskiy in [1,2]. In his work, he has created a set of 216 features that were further

extracted from the electrocardiograms and used for disease classification. The proposed

solution was tested on the set of 30 diseases and has shown high performance. However,

this method still has weaknesses. First, is does not answer the question whether the

proposed features will perform well on new diseases. Another issue is that features were

generated manually, and thus some information held in the source data can be lost.

2.2 Deep learning

When dealing with such complex data as ECG signals, it seems reasonable to use

machine learning both for feature generation and classification. This approach is widely

used in many data analysis problems related to the considered one: speech recogni-

tion [18, 19], image classification [20, 21], EEG signals processing [22, 23]. Currently,

considerable progress in solving these tasks has been made by models based on deep

learning architecture that learn multiple levels of representation of increasing abstraction.

Training of these models is generally done using two target concepts. In the first

case, supervised learning is used and the model is trained as a whole. Among different

architectures that use this concept quite attractive performance have convolutional neural

networks (CNNs) [23,24]. Compared to standard feed-forward neural networks, they have

convolutional layers that consist of small sets of neurons which look at small sub-regions

of the input data. These layers have shared weights, and thus the process of learning

them is equivalent to the process of learning filters that are applied for each sub-region

of the data. Due to the small number of connections, they are trained more effectively,

and at the same time these filters automatically learn features from the data. While the

previous experiments have shown that the major changes in the form of ECG signals are

local, CNNs seems well suited for the purpose of their detection and classification.

The second training concept is based on unsupervised representation learning from

the data. Three basic approaches [25] for representation learning are now primarily used:

Principal Component Analysis, Autoencoders and Boltzmann Machines. The first one,
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Principal Component Analysis [26], is one of the oldest feature extraction algorithms, that

learns a linear transformation of the input data vectors. Though there is a number of

simple and efficient implementations of this algorithm, it can generate only linear features,

and therefore its power is quite limited.

The other two approaches have layerwise architecture represented by the "visible"

layers that correspond to the data and the "hidden" layers corresponding to the inherent

features of the data. The main difference between these approaches is that in Boltzmann

Machines hidden units are considered as latent random variables and in Autoencoders

they are considered as computational nodes. From the first perspective [27], the question

of feature learning can be interpreted as an attempt to recover a set of these latent random

variables that describe distribution over the observed data. Then learning is conceived

in term of estimating a set of model parameters that maximizes the likelihood of the

training data, and the posterior of the latent variables can be interpreted as a new data

representation. In the Autoencoder framework, inversely, one starts by explicitly defining

a feature-extracting function in a specific parameterized closed form [28,29]. This function

is called the encoder and it allows the straightforward computation of a feature vector

using the input data. Whereas the described approaches have developed a parallel line for

the problem, when building deep models the connection between them becomes tenuous,

and the obtained results are usually different in nature. Thus, in this work we try both

of them and choose the most appropriate one.

The contributions of this work are as follows. First, we propose a supervised approach

to build a model available of diseases detection on ECG data. Here, we use convolutional

neural networks and train them directly on the labeled heart rate variability data acquired

from the ECG signals. Second, we propose a modification of CNN in which the convo-

lutional layers are trained by unsupervised methods. We test our models on the dataset

from the work of Uspenskiy [1, 2], and compare the results with previously obtained on

the same data. The implementation of our models is written in Lua using Torch machine

learning library and is available publicly.

3 Preliminaries

In this section, we introduce some useful notations and give a brief survey of the

considered deep learning models.
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3.1 Convolutional Neural Network

CNN is a hierarchial feed-forward neural network which structure is inspired by the

biological visual system. The principal difference from the standard networks is that

instead of using fully connected layers, it proposes learning filters that are applied to a

small sub-regions of the data. In terms of the network structure, this means that the

output values of each layer are obtained by applying an identical weight matrix (kernel)

and activation function to each block of the data. This results in a shift-invariant fea-

tures generated for each sub-region which form a representation of the input data. More

precisely, the structure of CNNs typically consists of the following three types of layers:

• Convolutional layer. In this layer, a dot product (or a convolution) of each sub-

region of the input data with a kernel is computed, and the result values form

the output of this layer. The layer is parameterized by the size and the number

of kernels, steps of the convolution in the width and height dimensions, and the

activation function h applied to introduce a non-linearity to this layer (usually

sigmoid or tanh). If the kernel size is (km, kn), a size of the two-dimensional input

data dx,y is (m, n), and (sx, sy) are steps of the convolution, then the output values

d′x,y are computed according to:

d′x,y = h
( km∑
i=1

kn∑
j=1

dx′+i,y′+j × wi,j

)
, (3.1)

where x′ = x · sx − 2, y′ = y · sy − 2, and wi,j are the weights of the kernel. Using

these notations, the size of the output layer then is:

m′ = bm− kx
sx

+ 1c, n′ = bn− ky
sy

+ 1c. (3.2)

• Max-pooling layer. This layer follows a convolutional layer and performs a down-

sampling operation in order to reduce the feature size. It takes small rectangular

blocks of the data and produces a singular output for each block. This can be done

by several ways, but the common one is taking a maximum in the block. Thus, if

the block size is 2 × 2, then the number of features will be reduced by 4 times.

• . Finally, after several convolutional and max-pooling layers, the obtained features

are converted into a single one-dimensional vector that is used for the classification.

The classification layers are fully connected and usually use one output unit per

class label.
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While the overall structure is similar for all convolutional networks, their architecture

can be significantly varied depending on the problem type and the used approach. An

example of LeNet architecture used for handwritten digits recognition in paper [30] is

presented on the figure 1.

Figure 1: LeNet CNN architecture

3.2 Single-Layer Autoencoder

An Autoencoder is a symmetrical neural network that is used for unsupervised feature

learning. Its training is done by minimizing the reconstruction error between the input

data and its reconstruction at the output layer, and the activation values of the hidden

layer are considered as a feature vector corresponding to the input data.

Encoding of an input vector x ∈ RN in the autoencoder is done by applying a linear

transformation and a nonlinear activation function to x:

h = σ(W1x+ b1), (3.3)

where W1 ∈ RH×N is a weight matrix, b1 ∈ RH is a bias, σ(t) = (1 + exp(−t))−1 is a

logistic sigmoid function, and h ∈ RH represents activation values of the hidden layer.

Decoding of the obtained vector h is done by another transformation with a separate

weight matrix W2 and bias b2:

x′ = σ(WT
2h+ b2), (3.4)

where x′ is a reconstruction of the vector x. With these notations, in case of mean square

error criterion the reconstruction error can be written as:

L(X,X′) = 1

2

m∑
i=1

||xi − x′i||22, (3.5)

where X = {xi}mi=1 and X′ = {x′i}mi=1 are the training and reconstructed data respectively.
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3.3 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is a two-layer bipartite graphical model with

a set of visible units v, a set of hidden units h, and symmetrical connections between

these two layers represented by a weight matrix W. The joint distribution between the

hidden and visible variables is given by:

p(v,h) =
1

Z
exp
(
−E(v,h)

)
, (3.6)

E(v,h) = −hTWv − bTv − cTh, (3.7)

where E(v,h) is an energy function, b and c are visible and hidden units biases respec-

tively, Z is the partition function, and vi, bi ∈ {0, 1}. The hidden units are conditionally

independent of one another given the visible layer, and vice versa. In principle, the model

can be trained by performing stochastic gradient ascent on the log-likelihood of the data,

however, in this case it is computationally intractable. Instead, one uses the contrastive

divergence approximation (Hinton, 1999, 2002), which performs well in practice.

3.4 Stacked Autoencoders and Deep Belief Networks

While the representation power of a single Autoencoder and RBM is limited, they are

usually stacked to form a deep architecture — a Stacked Autoencoder and a Deep Belief

Network (DBN) respectively. These models consist of many layers, and each two adjacent

layers have a full set of connections between them. Training these models as a whole is

computationally costly, and thus it is usually done by greedily training each layer using

the activations from the previous level as an input. Once a stack of Autoencoders or a

DBN has been built, its highest level output representation can be used as an input to

a stand-alone supervised learning algorithm. Alternatively, a logistic regression layer can

be added to the top layer, yielding a deep neural network that can be used for supervised

learning.

4 Data description

The considered dataset consists of electrocardiograms obtained from 192 healthy

persons and 9396 patients with various internal diseases. These ECG were acquired using

electrocardiography complex "KAD-3" , which comparing to the common cardiographs

has a broader frequency band of input signals (from 0.5 to 500 Hz). To make the diagnoses
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Figure 2: ECG visual representation

of patients more reliable, in the dataset were included those of them that were confirmed

both by clinical evaluation and laboratory-instrumentation methods.

While electrocardiograms have an excessively complex structure, their simplified rep-

resentation is usually used instead. In cardiology, the intervals between QRS complexes [4]

are commonly measured, and the configuration of these signals is then visually observed.

In this work, besides these intervals we also consider an amplitude or "swing" of the QRS

complexes [31], and a ratio between each amplitude-interval pair, which form heart rate

variability data. Thus, in this case the cardiogram is represented by three one-dimensional

time series of amplitudes, intervals and their ratio respectively. To obtain valid informa-

tion, there were registered 600 modes of electrocardiogram that leads to the same length

of the mentioned time series.

Finally, we proposed a visual representation of this data. Instead of using raw time

series, we considered increments between each two adjacent points and applied a hyper-

bolic arctangent function to normalize it. Thus, for each electrocardiogram we obtained a

grayscale image of size 599× 3, well suitable for its further processing. Besides a good vi-

sualization, this allowed the problem to be treated a visual recognition problem, which has

opened up new ways of dealing with it. An example of the obtained visual representation

is presented on the figure 2.

5 Model architecture

When developing a model structure, the principal task is to take into account the

specifics of the data. One important property of the measured signal is that its waveform

is quite the same both for healthy and ill people, particularly, this difference can not be

observed by visual analysis. However, when considering local behavior of the signal, it

has tangibly different variations for people with illnesses. To catch this distinction, the

model should learn local data structure at the first levels of abstraction. For this purpose,

two different approaches are considered.
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Figure 3: CNN architecture

5.1 Convolutional Neural Network

The first approach is based on the supervised learning. Our initial experiments have

shown that a standard neural network with fully connected layers is not applicable to

this problem. Because of the complex data structure and a small number of the learning

samples (about 800 per class), it is prone to overfitting the training set and is not able

to catch the data specifics mentioned above. Thus, a model with a more appropriate

structure was required. Generally, this model should also meet the following two criterions:

it should have enough levels of representation to learn the described data variations, and

at the same time have a relatively small number of training parameters not to overfit the

small dataset. To achieve this, a model based on the Convolutional Neural Network was

developed.

The architecture of our neural network is summarized in figure 3. It contains five

learned layers: two convolutional and three fully-connected. The first layer learns invari-

ant features that detect local abnormalities in the ECG signals, and consists only of one

convolutional kernel of size 3 × 2. The computational experiment described below has

shown that we can use non-overlapping data sub-regions while performing a convolution.

This has reduced a number of output values by six times and made the use of max-pooling

layer unnecessary.

The second convolutional layer uses a kernel of size 5× 1, and therefore each output

from this layer holds the information about 30 subsequent points from the input data.

While this is enough to learn the data structure, the proposed architecture prevents

overfitting and is easy to train because it has only a few different weights to learn in the
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Figure 4: The architecture of the unsupervised-based model

first two layers. The last three layers are fully-connected and they perform a classification

of the features obtained after the convolutional layers. The output of the last layer is fed to

a softmax which produces a distribution over the class labels. The details about training

and regularization of the proposed model are given in the computational experiment.

5.2 CNN with unsupervised convolutional layer

The second approach was developed using unsupervised learning techniques. We were

facing the same challenges as described in the section above. A standard Autoencoder

and Restricted Boltzmann Machine are good at learning data trends, but they are not

able to encode the small local variation, which in this case can be considered as a noise.

Therefore, here we propose using a similar model structure to the Convolutional Neural

Network, but the role of a convolutional kernel here plays a stacked encoder that learns

small pieces of the input data. Thus, the principal difference is that this "unsupervised

convolutional layer" is training separately from the whole model and its outputs represent

purely encoded data instead of the learned feature maps.

This layer brings several advantages to the training process. First, an encoder can

be trained on the small data pieces, and this greatly increases a training sample while

each data sub-region can be used for training. This also prevents overfitting and makes

it possible for encoder to consist of many layers. Second, an encoder learns the main

patterns that occur in HRV data for healthy and ill people, which is crucial for our

problem. Finally, the proposed layer reduces the size of the data by generating only a few

features for each sub-region almost without losing an information held in it.
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Figure 5: The accuracy of the models on the validation set during the training process

In this work, we use an encoder that consists of six hidden layers, and train it as

a whole on the HRV data. The features obtained after this unsupervised layer are then

classified with a Deep Neural Network, which together with this layer forms an architecture

presented in the figure 4.

6 Computational experiment

In this section, we make a quantitative evaluation of the proposed approaches on

the dataset of ECG signals. The signals were acquired from 192 healthy people and

9396 patients ill with 14 different diseases. The dataset was initially split into two non-

overlapping sets: 80% of ECGs were used for training the models, and 20% for testing.

The models were trained using stochastic gradient descent with momentum of 0.9

and weight decay of 0.02. A weight decay was important for the models to learn because

of an excessively small amount of the training data. It prevented them from overfitting,

and together with a developed model structure allowed the models not to lose gener-
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alization ability during the whole training process. The accuracy of the supervised and

unsupervised models on the validation set during their training is presented in the figure 5.

We report the performance of our models in tables 1 and 2. Here, for each of 14 dis-

eases we specify the sample size, sensitivity, specificity, and the overall diagnostic accuracy

obtained on the test set. Sensitivity here implies the percentage of people for whom the

disease was successfully detected, and specificity means the percentage of healthy people

who were not misdiagnosed this particular disease.

The first approach, based on the Convolutional Neural Network, shows an average

performance of 88.45% among all diseases. For the majority of them it has an overall

diagnostic accuracy over 88%. The most complicated task for this model was to distinguish

between healthy people and people ill with diseases number 1, 11 and 13, and in this case

the overall accuracy was only about 80%.

The second, unsupervised-based approach, shows a noticeable performance increase

comparing to the CNN. The average accuracy of this model is 2.19% higher, and reaches

90,64%. The lowest accuracy, which was obtained for disease number 1, was also increased

by about 4% to 82.35%. Overall, this method shows an improvement for all diseases except

7, 9 and 10, for which the results remain the same.

To compare these results with previously obtained on the same set of diseases, we have

implemented a feature generation algorithm proposed by Uspenskiy as it was described in

his work [32]. To classify the features, we used k-nearest neighbor method with a number

of neighbors set to 1 for all diseases as a baseline. The obtained results are summarized in

table 3. The average accuracy of this method is 87.71%, and generally the results are very

similar to those ones obtained by the CNN. However, when considering the unsupervised-

based model, this yields a significantly better performance for all diseases form the set,

and in some cases (for diseases number 1, 5, 10 and 11) the increase can be over 5%.

7 Conclusion

In this work, we present a deep learning-based method for human diseases detection

on the electrocardiogram signals. Taking into account the data specifics, we propose two

different approaches to solve the problem that are based on the supervised and unsuper-

vised learning. For the first approach, we use the Convolutional Neural Networks, and

train them on a raw HRV data. For the second one, we propose an unsupervised mod-

ification of the convolutional layer, where instead of the convolutional kernel a Stacked
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Table 1: The overall accuracy of the supervised model

Disease number Sample size Sensitivity Specificity Overall accuracy, %

1 660 88.28 47.62 78.24

2 1837 100 58.62 97.04

3 266 94.12 85.37 90.22

4 1232 98.82 64.52 95.09

5 625 94.87 73.91 88.96

6 745 92.11 71.43 88.23

7 836 97.01 76.92 93.20

8 700 94.20 85.00 92.13

9 662 95.56 61.11 88.30

10 329 94.66 76.31 90.38

11 244 73.81 86.67 80.46

12 238 84.62 91.18 87.21

13 266 93.22 57.78 80.43

14 756 94.63 65.85 88.42

Table 2: The overall accuracy of the unsupervised model

Disease number Sample size Sensitivity Specificity Overall accuracy, %

1 660 94.53 45.24 82.35

2 1837 99.20 75.86 97.54

3 266 94.19 90.24 92.39

4 1232 99.21 80.65 97.19

5 625 94.87 76.09 89.57

6 745 97.37 65.71 91.44

7 836 98.80 69.23 93.20

8 700 97.83 75.00 92.70

9 662 94.82 63.89 88.30

10 329 92.00 86.21 90.38

11 244 83.33 84.44 83.90

12 238 96.15 88.24 93.02

13 266 91.53 78.79 86.96

14 756 94.63 73.17 90.00
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Table 3: The overall accuracy of the method proposed by Uspenskiy

Disease number Sample size Sensitivity Specificity Overall accuracy, %

1 660 85.93 35.71 73.53

2 1837 97.34 62.07 94.83

3 266 94.11 85.37 90.22

4 1232 99.61 74.19 96.84

5 625 93.16 60.87 84.05

6 745 95.40 68.57 90.37

7 836 97.61 69.23 92.23

8 700 97.10 75.00 92.13

9 662 93.33 61.11 86.55

10 329 89.33 72.41 84.62

11 244 85.71 71.11 78.16

12 238 88.46 91.18 89.53

13 266 93.22 72.72 85.87

14 756 96.64 60.98 88.95

Autoencoder is used. We test the models on the set of labeled ECG signals obtained

from healthy people and people ill with 14 different illnesses. To compare the results with

previously proposed method [32] that uses hand-designed features, we implemented it

and tested on the same dataset. The approach based on CNN and the method [32] show

a similar performance with 88.45% and 87.71% of average diseases detection accuracy

respectively. However, the use of generated by an Autoencoder features together with a

deep architecture allows the unsupervised model to outperform previous results by more

that 2% and achieve an average accuracy of 90,64%.
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