
Tight Combinatorial Generalization Bounds

for Threshold Conjunction Rules⋆

Konstantin Vorontsov, voron@forecsys.ru
and Andrey Ivahnenko, ivahnenko@forecsys.ru

Dorodnycin Computing Center RAS, Moscow, Russia
Moscow Institute of Physics and Technology, Moscow, Russia

Abstract. We propose a combinatorial technique for obtaining tight
data dependent generalization bounds based on a splitting and connec-
tivity graph (SC-graph) of the set of classifiers. We apply this approach
to a parametric set of conjunctive rules and propose an algorithm for
effective SC-bound computation. Experiments on 6 data sets from the
UCI ML Repository show that SC-bound helps to learn more reliable
rule-based classifiers as compositions of less overfitted rules.

Keywords: computational learning theory, generalization bounds, per-
mutational probability, splitting-connectivity bounds, rule induction

1 Introduction

Obtaining exact generalization bounds remains an open problem in Computa-
tional Learning Theory [1]. Experiments [8, 9] have shown that two fine effects
should be taken into account simultaneously to obtain exact bounds: the split-
ting of the set into error levels and the similarity of classifiers. Many practically
used sets contain a lot of similar classifiers that differ on one object, they are
called connected. In this work we develop a combinatorial approach that deals
with splitting and connectivity together and gives tight or even exact bounds
on probability of overfitting. We apply a new SC (splitting and connectivity)
combinatorial bound to the set of conjunctive rules and propose the overfitting
reduction method compatible with most usual rule induction engines.

2 Definitions and notation

Let X = {x1, . . . , xL} be a set of objects and A be a set of classifiers. A binary
loss function I : A × X → {0, 1} exists such that I(a, x) = 1 if a classifier a
produces an error on an object x. A binary vector (ai) ≡

(

I(a, xi)
)

L
i=1 of size L

is called an error vector of the classifier a. Assume that all classifiers from A
have pairwise different error vectors.

⋆ Supported by Russian Foundation for Basic Research grant 11-07-00480 and the
program “Algebraical and combinatorial methods of cybernetics and new generation
information systems” of Russian Academy of Sciences, Branch of Mathematics.

2 Konstantin Vorontsov, Andrey Ivahnenko

The number of errors of a classifier a on a sample X ⊆ X is defined as
n(a,X) =

∑

x∈X I(a,X). For shorter notation denote n(a) = n(a,X).
The error rate is defined as ν(a,X) = 1

|X|n(a,X).

The learning algorithm is a mapping µ : 2X → A that takes a training sam-
ple X ⊆ X and gives a classifier µX ∈ A.

Transductive (permutational) probability. Denote [X]ℓ the set of all
(

L
ℓ

)

= L!
ℓ!(L−ℓ)!

samples X ⊂ X of size ℓ. Assume that all partitions of the general set X into an
observed training sample X of size ℓ and a hidden test sample X̄ = X \X of
size k = L− ℓ can occur with equal probability The classifier a = µX is said
to be overfitted if the discrepancy δ(a,X) = ν(a, X̄) − ν(a,X) is greater than
a given nonnegative threshold ε. Define the probability of overfitting as

Qε(µ,X) = P
[

δ(µX,X) ≥ ε
]

=
1
(

L
ℓ

)

∑

X∈[X]ℓ

[

δ(µ,X) ≥ ε
]

.

where brackets transform a logical value into numerical one: [true] = 1, [false] = 0.
The inversion of a boundQε ≤ η(ε) is an inequality ν(µX, X̄) ≤ ν(µX,X)+ε(η),
which holds with probability at least 1− η, where ε(η) is the inverse for η(ε).

Empirical risk minimization (ERM) is a classical and perhaps most natural
example of the learning algorithm:

µX = argmin
a∈A

n(a,X).

Hypergeometric distribution. For a classifier a such that m = n(a,X) the prob-
ability to make s errors on a sample X is given by a hypergeometric function:
P
[

n(a,X) = s
]

= hℓ, m
L (s) , where hℓ, m

L (s) =
(

m
s

)(

L−m
ℓ−s

)

/
(

L
ℓ

)

, argument s runs
from s0 = max{0,m− k} to s1 = min{m, ℓ}, parameter m takes values 0, . . . , L.

It is assumed that
(

m
s

)

= hℓ, m
L (s) = 0 for all other integers m, s. Define the

cumulative distribution function (left tail) of the hypergeometric distribution

Hℓ, m
L (z) =

⌊z⌋
∑

s=s0

hℓ, m
L (s) .

Consider a set A = {a} containing one fixed classifier, so that µX = a for
any X . Then the probability of overfitting Qε transforms into the probability
of large deviation between error rates in two samples X, X̄.

Theorem 1 (FC-bound). For a fixed classifier a such that m = n(a), for any
set X and any ε ∈ [0, 1] the probability of overfitting is given by the left tail of
hypergeometric distribution:

Qε(a,X) = Hℓ, m
L

(

ℓ
L
(m− εk)

)

. (1)

The exact FC-bound plays a role of the Law of Large Numbers in permuta-
tional probabilistic framework because it predicts the error rate on the hidden
sample from the observed one, whereas the “probability of error” is undefined
here. The hypergeometric distribution is fundamental for all further bounds.

Tight Combinatorial Generalization Bounds for Conjunction Rules 3

Theorem 2 (VC-bound). For any set X, any learning algorithm µ, and any
ε ∈ [0, 1] the probability of overfitting is bounded by the sum of FC-bounds over A:

Qε(µ,X) ≤
∑

a∈A

Hℓ, m
L

(

ℓ
L
(m− εk)

)

, m = n(a). (2)

Further weakening this bound gives a well known form of the VC-bound:
Qε(µ,X) ≤ |A|max

m
Hℓ, m

L

(

ℓ
L
(m− εk)

)

≤ |A| · 3
2e

−ε2ℓ for a case ℓ = k.

VC-bound is highly overestimated because all classifiers make approximately
equal contributions to the VC-bound. However, the set of classifiers is usually
split into error rates in quite nonuniform manner. Most classifiers are unsuit-
able, have vanishing probability to be obtained as a result of learning and make
a negligible contribution to the probability of overfitting. On the other hand,
similar classifiers share their contribution, thus each of them contributes poorly
again. VC theory totally ignores both advantageous effects.

3 Splitting and connectivity bounds

Define the order relation on classifiers a ≤ b as a natural order on their error vec-
tors: ai ≤ bi for all i = 1, . . . , L. Introduce Hamming distance between error vec-
tors: ρ(a, b) =

∑L

i=1 |ai−bi|. Classifiers a and b are called connected if ρ(a, b) = 1.
Define the precedence relation on classifiers a ≺ b as

(

a ≤ b
)

∧
(

ρ(a, b) = 1
)

.
The set of classifiers A can be represented by a multipartite directed graph

that we call the splitting and connectivity graph (SC-graph) in which vertices
are classifiers, and edges (a, b) are pairs of classifiers such that a ≺ b. Partite
subsets Am = {a ∈ A : n(a) = m} are called error layers, m = 0, . . . , L. Each
edge of the SC-graph (a, b) can be uniquely labeled by an object xab ∈ X such
that I(a, xab) = 0 and I(b, xab) = 1.

Upper connectivity q(a) = #
{

xab ∈ X
∣

∣ a ≺ b
}

of a classifier a is the number
of edges leaving the vertex a.

Inferiority r(a) = #
{

xbc ∈ X
∣

∣ b ≺ c ≤ a
}

of a classifier a is the number of
different objects assigned to edges below the vertex a in the SC-graph. If a correct
classifier a0 ∈ A exists such that n(a0) = 0 then inferiority is equal to the number
of errors, r(a) = n(a). In general case r(a) ≤ n(a).

Theorem 3 (SC-bound). If µ is ERM then for any ε ∈ [0, 1] the probability
of overfitting is bounded by the weighted sum of FC-bounds over the set A:

Qε(µ,X) ≤
∑

a∈A

PaH
ℓ−q, m−r
L−q−r

(

ℓ
L
(m− εk)

)

, (3)

where q = q(a) is upper connectivity, r = r(a) is inferiority, m = n(a) is the
number of errors of classifier a, Pa =

(

L−q−r
ℓ−q

)

/
(

L
ℓ

)

is an upper bound on the

probability to learn the classifier a, P[µX=a] ≤ Pa.

The weight Pa decreases exponentially as connectivity q(a) and inferior-
ity r(a) increase. This fact has two important consequences.

4 Konstantin Vorontsov, Andrey Ivahnenko

First, connected sets of classifiers are less subjected to overfitting. Not only
the fact of connectedness but better the number of connections is important.

Second, only lower layers contribute significantly to the probability of over-
fitting. This fact encourages effective procedures for SC-bound computation.

SC-bound (3) is much more tight than the VC-bound (2). It transforms to
the VC-bound by substituting q = r = 0, i. e. by disregarding the SC-graph.

4 SC-bound for threshold conjunctive rules

Consider a classification problem with labels yi ∈ Y , i = 1, . . . , L assigned to
each object xi ∈ X respectively. Consider a parametric set R of conjunctive rules

r(x; θ) =
∏

j∈J

[

xj ≤ θj
]

,

where x = (x1, . . . , xn) is a vector of numerical features of object x, J ⊆ {1, . . . , n}
is a subset of features, θj ∈ R is a threshold parameter for j-th feature. An ob-
ject x is said to be covered by the rule r(x) if r(x) = 1.

A rule induction system learns a rule set Ry for each class y ∈ Y from a training
set X . Two criteria are optimized simultaneously to select useful rules — the
number of positive and negative examples covered by r, respectively:

p(r,X) = #
{

xi ∈ X
∣

∣ r(xi) = 1, yi = y
}

→ max;

n(r,X) = #
{

xi ∈ X
∣

∣ r(xi) = 1, yi 6= y
}

→ min .

In practice the two-criteria optimization task is reduced to one-criterion task
by means of heuristic function H(p, n). Examples of H are Fisher’s exact test [5],
entropy, Gini index, χ2- and ω2-tests, and many others [4].

Rule based classifier. After learning the rule sets Ry for all y ∈ Y the classifier
can be buildup as a composition of rules, e.g. as a weighted voting:

a(x) = argmax
y∈Y

∑

r∈Ry

wrr(x),

where weights wr ≥ 0 are learned from the training set X . So, there are three
things to learn: (1) thresholds θj , j ∈ J for each subset J ; (2) feature subset J
for each rule r; (3) weightwr for each rule r. Respectively, there are three reasons
for overfitting. In this work we use SC-bound to estimate overfitting resulting
from thresholds learning and build a criterion for feature subset selection, with
motivation that a good classifier can be hardly build up from overfitted rules.

The idea of heuristic modification is to obtain the SC-bound on p and n for a
fixed J ; then to get inverted estimates that hold with probability at least 1− η:

1
k
p(r, X̄) ≥ 1

ℓ
p(r,X)− εp(η),

1
k
n(r, X̄) ≤ 1

ℓ
n(r,X) + εn(η),

and to use them instead of p, n in a heuristicH ′(p, n) = H
(

p−ℓεp(η), n+ℓεn(η)
)

.
The modified heuristic H ′ gives a more accurate features selection criterion that
takes into account the overfitting resulting from thresholds learning.

Tight Combinatorial Generalization Bounds for Conjunction Rules 5

Specialization of SC-bound for conjunctive rules. Define the binary loss function
as I(r, xi) =

[

r(xi) 6= [yi=y]
]

, i = 1, . . . , L, for any rule r of class y. For the sake

of simplicity suppose that all values xj
i are pairwise different for each feature j,

features take integers 1, . . . , L and the thresholds take integers 0, . . . , L.

For any pair of vectors u = (uj)j∈J , v = (vj)j∈J define an order relation
(u ≤ v) ↔ ∀j ∈ J (uj ≤ vj). Define (u < v) ↔ (u ≤ v and u 6= v).

A boundary point of the subset S ⊆ X is a vector θS : θjS = max
x∈S

xj , j ∈ J .
Note that r(x, θS) = 1 for any x ∈ S.
A boundary object of the subset S ⊆ X is any object x ∈ S: ∃j ∈ J : xj = θjS .
A boundary subset is a subset S ⊆ X such that all objects x ∈ S are its bound-

ary objects. Each boundary subset is unambiguously defined by its boundary
point. Empty set is a boundary subset with boundary point θj

∅
= 0, j ∈ J .

The following theorem states that the sum over all rules in SC-bound (3) can
be calculated by running over all boundary subsets.

Theorem 4. The set of rules r(x; θS) where S runs over all boundary subsets
coincide with the set of all rules r(x; θ) having pairwise different error vectors.

Then our idea is to iterate all rules (really, boundary subsets) from bottom to
upper levels of SC-graph and use early stopping to bypass rules from higher levels
that make no significant contribution to the SC-bound. To do this effectively we
first consider an algorithm for the neighbor search of boundary subsets.

Searching the set of neighbor rules. Consider a rule r(x; θ) defined by a threshold
vector θ = (θj)j∈J . Its neighborhood Vθ is defined as a set of all rules r(x, θ′)
that differ from r(x; θ) on single object. Algorithm 4.1 iterates all neighbor rules
r(x, θ′) such that θ′ is a boundary point of a boundary subset.

At first stage (steps 1–5) neighbor rules r(x; θ′) are produced from θ by
decreasing thresholds θ′ ≤ θ. For each boundary object thresholds θ decrease
until another object becomes boundary.

At second stage (steps 6–11) neighbor rules r(x; θ′) are produced from θ by
increasing thresholds θ′ ≥ θ. This is a more involved case that requires a recursive
procedure. The preliminary work at steps 6, 7 helps to reduce further search
by determining the maximal boundary θ̄ that neighbor rules may fall in.

Each object x ∈ X can have one of three states: x.checked ∈ {false, bad, good},
what enables to avoid the repeated processing of objects at second stage.

Initially all objects are not checked. Then for each object x ∈ X covered by the
rule r(x; θ̄) but not covered by the rule r(x; θ) the recursive procedure Check(x)
is invoked. If the rule r(x; θ′) covers only one object x in addition to objects
covered by r(x; θ) then x is good. Otherwise the rule r(x; θ′) covers two objects
x, x̃ not covered by the rule r(x; θ); in such case x is bad and the procedure
Check(x̃) is invoked recursively with the object x̃. Each good object x induces
the neighbor rule θ′ = max{θ, x}, which is added to the set Vθ.

Algorithm 4.1 guarantee that all neighbor rules will be found. Besides it
calculates all characteristics of the rule needed to calculate SC-bound: q(θ),

6 Konstantin Vorontsov, Andrey Ivahnenko

Algorithm 4.1 Seek the neighborhood Vθ of the rule r(x; θ).

Require: features subset J , thresholds θ = (θj)j∈J , class label y ∈ Y , general set X.
Ensure: Vθ, Xθ , X

′

θ, q(θ), r(θ), n(θ).

1: Vθ := ∅;
2: for all x ∈ X such that r(x; θ) = 1 and θj = xj for some j ∈ J do

3: for all j ∈ J such that xj = θj do

4: θ′j := max
{

x
j
i

∣

∣ xi ∈ X, xi < θ
}

;
5: AddNeighbor(θ, θ′, x);
6: for all j ∈ J do

7: θ̄j := max
{

L, xj
∣

∣ x ∈ X, xj > θj , xt ≤ θt, t 6= j
}

;
8: for all j ∈ J do

9: for all x such that θj < xj ≤ θ̄j do

10: if x < θ̄ and x.checked = false then

11: Check(x);

12: Procedure Check(x)
13: for all j ∈ J such that θj < xj do

14: for all x̃ such that θj < x̃j < xj do

15: if θ < x̃ < x then

16: x.checked := bad;
17: if x̃.checked = false then Check(x̃);
18: exit;
19: x.checked := good;
20: θ′j := max{θj , xj}, for all j ∈ J ;
21: AddNeighbor(θ, θ′, x);

22: Procedure AddNeighbor (θ, θ′, xi)
23: add the rule θ′ into the set of neighbors Vθ;
24: if r(xi; θ) = [yi=y] then
25: Xθ := Xθ ∪ {xi}; q(θ) := |Xθ |;
26: else

27: X ′

θ := X ′

θ ∪X ′

θ′ ∪ {xi}; r(θ) := |X ′

θ |; n(θ) := n(θ′) + 1;

r(θ), and n(θ). To avoid the exhaustive search of all objects at steps 4, 7, 9, 14
the sorting index is to be built in advance for each coordinate j ∈ J .

Level-wise bottom-up calculation of SC-bound. Algorithm 4.2 starts from a lowest
layer of classifiers. At each step it process a layer Θ consisting of all rules θ that
makesm = n(θ) errors on general set. For each rule θ Algorithm 4.2 calculates its
contribution to the SC-bound, builds its neighborhood, and forms the (m+1)-th
layer Θ′ joining upper parts of all neighborhoods. The steps are repeated until
layer contribution becomes sufficiently small. Note that early stopping gives
a lower estimate for (3), witch is upper bound on probability of overfitting.

Experiment. We used following state-of-the art algorithms as baseline rule learn-
ers: C4.5 [7], C5.0 [6], RIPPER [2], and SLIPPER [3]. Our rule learning engine
was based on breadth-first search as feature selection strategy and Fisher’s ex-
act test (FET) as heuristic H . To build compositions of rules three algorithms

Tight Combinatorial Generalization Bounds for Conjunction Rules 7

Algorithm 4.2 SC-bound calculation for the set of conjunction rules.

Require: features subset J , class label y ∈ Y , set of objects X.
Ensure: Qε — SC-bound on probability of overfitting (3).

1: Θ := Argmin
θ

n(θ); Qε := 0;

2: repeat

3: Qε,m := 0; Θ′ := ∅;
4: for all θ ∈ Θ do

5: call Algorithm 4.1 to build the neighborhood Vθ;
6: Qε,m := Qε,m + 1

Cℓ
L

C
ℓ−q(θ)
L−q(θ)−r(θ)H

ℓ−q(θ), n(θ)−r(θ)
L−q(θ)−r(θ)

(

ℓ
L
(n(θ)− εk)

)

;

7: Θ′ := Θ′ ∪
{

θ′ ∈ Vθ : n(θ
′) = n(θ) + 1

}

;
8: Qε := Qε +Qε,m; Θ := Θ′;
9: until the contribution of the m-th layer Qε,m becomes small.

has been implemented. Logistic Regression (LR) is a linear classifier that ag-
gregates rules learned independently. Weighted Voting (WV) is a boosting-like
ensemble of rules similar to SLIPPER which learns each subsequent rule from
reweighted training set. Decision List (DL) is a greedy algorithm which learns
each subsequent rule from training objects not covered by all previous rules.

We implemented two modifications of heuristicH ′(p, n). The SC modification
uses SC-bound on the probability of overfitting Qε as described above. The MC
modification uses the Monte-Carlo estimation of Qε via 100 random partitions
X = X ⊔ X̄ . For both modifications we set ℓ = k.

Results are presented in Table 1. Initial unmodified versions of our algorithms
WV and DL with FET heuristic have a performance comparable to the baseline.
WV outperforms DL, what corresponds to the results of other authors. Both SC
and MC modifications of the FET heuristic reduce overfitting of rules and of
classifier as a whole. Both modified classifiers outperform their respective initial
versions for all 6 tasks. It must be emphasized that the only modification is
the rule evaluation heuristic, all other things being equal. Thus, all difference
in performance is due to generalization bound used in modified FET heuristic.
The difference between SC and MC results is not significant, but MC estimation
is much more time consuming. A moderate looseness of the SC-bound really takes
place but does not reduce its practical usefulness as a rule selection criterion.

5 Conclusion

This work gives a new SC (splitting and connectivity) combinatorial bound on
probability of overfitting. It takes into account a fine internal structure of the
set of classifiers formalized in terms of the SC-graph. For a set of threshold con-
junctive rules a level-wise bottom-up algorithm with early stopping is proposed
for effective SC-bound computation. The inverted SC-bound is used to mod-
ify standard rule evaluation heuristic. This modification can be build in most
known rule learners. It enables to take into account an amount of overfitting
resulting from thresholds learning, and then to select features subset for each

8 Konstantin Vorontsov, Andrey Ivahnenko

Table 1. Experimental results on 6 real data sets from UCI Machine Learning Reposi-
tory. For each pair 〈task, algorithm〉 an average testing error obtained from 10-fold cross
validation is given, in percents. For each task three best results are bold-emphasized.
Algorithms 1–7 are baseline rule learners. Our algorithms: WV — Weighted Voting,
DL — Decision List, SC — using heuristic modified by SC-bound, MC — using
heuristic modified by Monte-Carlo estimation of the probability of overfitting.

tasks
algorithms

australian echo-card heart dis. hepatitis labor liver

1 RIPPER−opt 15.5 2.9 19.7 20.7 18.0 32.7

2 RIPPER+opt 15.2 5.5 20.1 23.2 18.0 31.3

3 C4.5 (Tree) 14.2 5.5 20.8 18.8 14.7 37.7

4 C4.5 (Rules) 15.5 6.8 20.0 18.8 14.7 37.5

5 C5.0 14.0 4.3 21.8 20.1 18.4 31.9

6 SLIPPER 15.7 4.3 19.4 17.4 12.3 32.2

7 LR 14.8 4.3 19.9 18.8 14.2 32.0

8 WV 14.9 4.3 20.1 19.0 14.0 32.3

9 DL 15.1 4.5 20.5 19.5 14.7 35.8

10 WV+MC 13.9 3.0 19.5 18.3 13.2 30.7

11 DL+MC 14.5 3.5 19.8 18.7 13.8 32.8

12 WV+SC 14.1 3.2 19.3 18.1 13.4 30.2

13 DL+SC 14.4 3.6 19.5 18.6 13.6 32.3

rule more accurately. Experiments on six real data sets show that the proposed
modification reduces overfitting significantly.

References

1. Boucheron, S., Bousquet, O., Lugosi, G.: Theory of classification: A survey of some
recent advances. ESAIM: Probability and Statistics (9), 323–375 (2005)

2. Cohen, W.W.: Fast effective rule induction. In: Proc. of the 12th International
Conference on Machine Learning, Tahoe City, CA. pp. 115–123. Morgan Kaufmann
(1995)

3. Cohen, W.W., Singer, Y.: A simple, fast and effective rule learner. In: Proc. of the
16 National Conference on Artificial Intelligence. pp. 335–342 (1999)

4. Fürnkranz, J., Flach, P.A.: Roc ‘n’ rule learning-towards a better understanding of
covering algorithms. Machine Learning 58(1), 39–77 (2005)

5. Martin, J.K.: An exact probability metric for decision tree splitting and stopping.
Machine Learning 28(2-3), 257–291 (1997)

6. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Fran-
cisco, CA (1993)

7. Quinlan, J.R.: Bagging, boosting, and C4.5. In: AAAI/IAAI, Vol. 1. pp. 725–730
(1996)

8. Vorontsov, K.V.: Combinatorial probability and the tightness of generalization
bounds. Pattern Recognition and Image Analysis 18(2), 243–259 (2008)

9. Vorontsov, K.V.: Splitting and similarity phenomena in the sets of classifiers and
their effect on the probability of overfitting. Pattern Recognition and Image Analysis
19(3), 412–420 (2009)

