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...The open country in the suburbs was quiet and deserted. Moreover,
few would venture out into the snow at this time of the night. After
leaving the house, Zhu Zhen looked back and saw no footprints. He
then wended his way to Miss Zhou's grave. ...Unfortunately for him, the
grave keepers had a dog. At this point, it emerged from its straw kennel
to bark at the intruding stranger. Earlier in the day, Zhu Zhen had
prepared a piece of fried dough and stuffed some drug in it. He now
tossed the dough to the barking dog. The dog sniffed at it and, liking the
aroma, ate it up. The very next moment, the dog gave a bark and
collapsed to the ground. Zhu Zhen drew near the grave...

The Fan Tower Restaurant as Witness to the Love of Zhou Shengxian,
from Stories to Awaken the World (Xingshi Hengyan); translated by Shuhui Yang and Yungin Yang 2/17
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Topic Modeling

Topic modelling assumes that there are a number of /atent topics which explain

the text collection.
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https://web.archive.org/web/20220401002514/http://www.machinelearning.ru/wiki/images/9/96/Voron21ptm-intro.pdf
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Typical Topic Modeling Experiment Pipeline

while not is_good(topic_model):

set_parameters(topic_model)
train(topic_model, dataset)
assess_quality(topic_model)
analyze_topics(topic_model)
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TopicBank: Collection of Coherent Topics

Problem:

e Huge number of experiments to
find best topic model.
e Found good topics may be /ost.

Solution:

e Save found topics (good and,
optionally, bad) in the topic bank

e Use topic bank to validate newly
trained topic models.
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Proposed Methodology

for i in range(N):
set_parameters(topic_model)
train(topic_model, dataset)
good_topics = analyze_topics(topic_model)
add_topics(topic_bank, good_topics)

while not is_good(topic_model):
set_parameters(topic_model)
train(topic_model, dataset)
assess_quality(topic_model, topic_bank)

assess_quality(best_topic_model, human)
analyze_topics(best_topic_model, human)

TopicBank creation:

Input: dataset
Output: topic bank

TopicBank application:

Input: dataset, topic bank
Output: topic model (best)
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Proposed Methodology

for i in range(N):

set_parameters(topic_model) TopicBank creation:

train(topic_model, dataset) e Input: dataset

good_topics = analyze_topics(topic_model) e Output: topic bank
add_topics(topic_bank, /good_topics)

Automatic or semi-automatic evaluation of the quality of new topics
_(topic coherence).

Evaluation of the dependencies between new topics and the topics

of the topic bank (two-level hierarchical topic model).

Good topics can be added to the topic bank if the topics of the topic

) bank remain different.
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TopicBank Creation: Dependencies Between Topics

Possible relationship types
between model topics and
topics in the topic bank:

1) merging topics
2) no child topics
3) no parent topics
4) splitting topic

5) remaining topic

Bank topics

Model topics
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Proposed Methodology

Topic model topics are compared with the topics stored in the topic bank.

while not is_good(topic_model): TopicBank application:
set_parameters(topic_model) e Input: dataset, topic bank

train(topic_model, dataset) 0O _ ) | (b
assess_quality(topic_model, topic_bank) ¢ utput: topic mode ( eSt)
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TopicBank as Intrinsic Quality Measure

e The more the model managed to find good topics, the better.
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TopicBank as Intrinsic Quality Measure

e The distance between topics is calculated as jaccard distance.

p(word | topic)
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Experiment

Goal:
Understand if the topic bank can be used to assess the quality of topic models.

Task:
Check if the topic bank allows to find the best model from a fixed set of models.

Plan:
e Take several text collections.
e Create a topic bank for each text collection.
e Take a set of topic models.
e Evaluate the quality of topic models on all datasets (using topic banks).
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Models

PLSA: a simple topic model without any hyperparameters aside from T.

LDA: a well-known topic model, having priors for ® and © distributions.

ARTM: a PLSA extension which can obtain topics with desired qualities.
Arora, CDC: topic models with specific topic distributions initialization.

Hofmann, T. Probabilistic latent semantic analysis, 1999.

Blei D. M., Ng A. Y., Jordan M. |. Latent dirichlet allocation, 2003.

Vorontsov K. et al. BIgARTM: Open source library for reqularized multimodal topic modeling, 2015.
Arora S. et al. Computing a nonnegative matrix factorization — provably, 2012.

Dobrynin V., Patterson D., Rooney N. Contextual document clustering, 2004.
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Datasets

Name |D| Language
PostNauka 3446 Russian
Reuters 10788 English
Brown 500 Emnglish
20 NG 18846 English

AG News 127600 English
Watan2004 20291 Arabic
Habrahabr 133978 Russian

Datasets used in the experiments (|D| is the number of documents in a dataset).

Preprocessing: lemmatization, stop-words removal.
14 /17



Results

The process of bank creation reaches saturation: no more new topics are added.

Number of topics in the bank

18

16

14

12

10

LA
A4S

25

5.0

7.5 10.0 12.5
Number of trained models

15.0 17.5 20.0

960

950

©
»
o

Topic bank perplexity
b
o

920

910

\
¢
\’\

W W R A

2.5 5.0 7.5 10.0 12.5
Number of trained models

15.0 17.5 20.0
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in the topic bank (left); perplexity of the topic bank as a topic model (right; the lower the better).
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Results

TopicBank managed to find the topic models with the largest number of
interpretable topics (Arora and CDC).
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Conclusion

e TopicBank is introduced which is a “wrapper” over topic modeling that should accelerate the
validation of newly trained topic models.

e Algorithm for automatically creating a topic bank for a given text collection is proposed.

e Experiment was conducted on real data, confirming the possibility of using TopicBank to
assess the quality of topic models.

Possible future directions:

e \alidate neural topic models with TopicBank.
e Investigate the possibility for faster TopicBank creation.
e Require that TopicBank itself should be a good topic model (low perplexity).

Publication: Alekseev V. et al. TopicBank: Collection of coherent topics using multiple model
training with their further use for topic model validation //Data & Knowledge Engineering. — 2021.
—Vol. 135. — p. 101921. — https://doi.org/10.1016/j.datak.2021.101921.

Code: https://qithub.com/machine-intelligence-laboratory/OptimalNumberOfTopics.



https://doi.org/10.1016/j.datak.2021.101921
https://github.com/machine-intelligence-laboratory/OptimalNumberOfTopics

