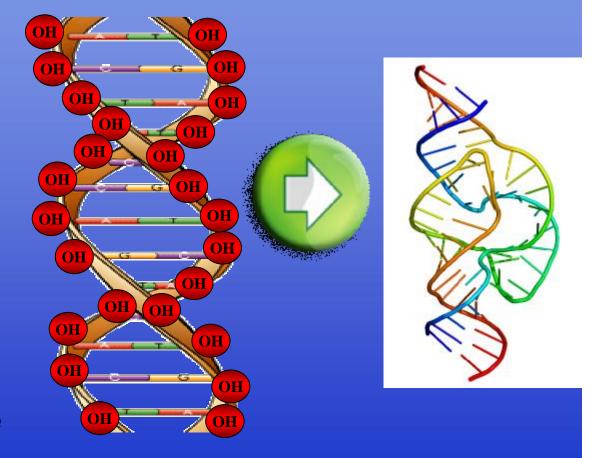


Различные уровни данных о РНК – различные задачи распознавания

<u>Дезокси</u>рибонуклеиновая к-та


$$G^{\frac{1}{2}N} \xrightarrow{H}_{N}^{H}$$

$$T_{\text{HO}-\text{P-O}}$$

Рибонуклеиновая к-та

Рентгеноструктурный анализ некодирующих РНК

- РНК состоят не из одной длинной спирали, а из многочисленных коротких спиралей
- Спирали (2D) образуют сложную пространственную структуру (3D), подобную структуре белков

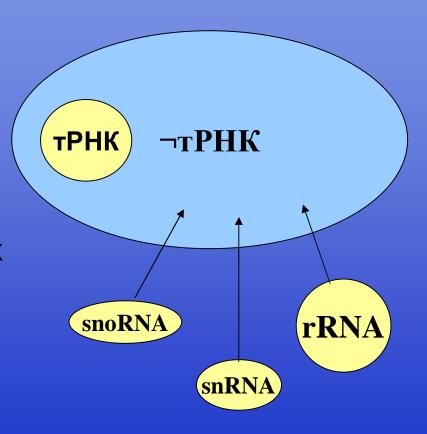
Почему РНК – не ДНК? Доказательство от противного...

«Функциональные» разновидности РНК

РНК в синтезе белков

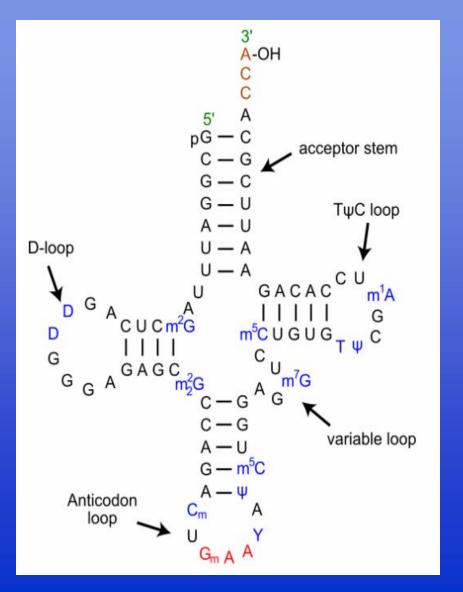
Название (англ)	Сокр.	Биол. функция	Организм
Messenger RNA	mRNA	Кодирует белок	все
<u>Ribosomal RNA</u>	rRNA	трансляция	все
Signal recognition particle RNA	7SL RNA, SRP RNA	интеграция белков с клеточной мембраной	все
<u>Transfer RNA</u>	tRNA	трансляция	все
<u>Transfer-messenger RNA</u>	tmRNA	очистка «застрявшей» рибосомы	бакт.

РНК вовлеченные в посттранскрипционные модификации

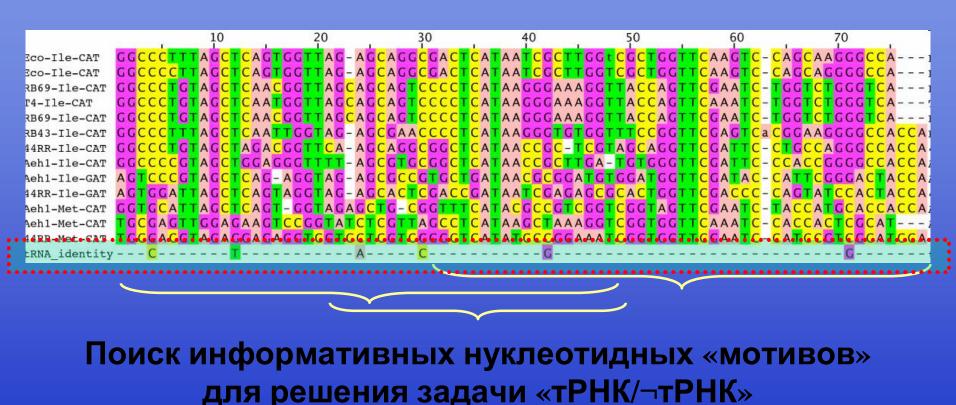

Название (англ)	Сокр.	Биол. функция	Организм
Small nuclear RNA	snRNA	Сплайсинг	Эукариоты, археи
Small nucleolar RNA	snoRNA	модификации нуклеотидов РНК	Эукариоты, археи
Ribonuclease P	RNase P	«fine tuning» тРНК	все
Ribonuclease MRP	RNase MRP	«доводка» рРНК, репликация ДНК	Эукариоты
Y RNA	-	Обработка РНК, репликация ДНК	Животные
Telomerase RNA	-	Синтез теломеры	Эукариоты

Регуляторные РНК

Название (англ)	Сокр.	Биол. функция	Организм
Antisense RNA	aRNA	регуляция транскрипции, деградации мРНК, стабильности мРНК	все
Long noncoding RNA	LNC RNA	регуляция транскрипции, сплайсинга, трансляции, siRNA	эукариоты
<u>MicroRNA</u>	miRNA	регуляция транскрипции	большинство эукариотов
<u>Retrotransposon</u>	-	генетическая вариабельность	эукариоты
Piwi-interacting RNA	piRNA	выключение ретротранспозонов	большинство животных
Small interfering RNA	siRNA	регуляция транскрипции	большинство эукариотов
Trans-acting siRNA	tasiRNA	регуляция транскрипции	наземные растения


Биология и физическая химия, стоящие за задачей **«тРНК**/¬**тРНК**»

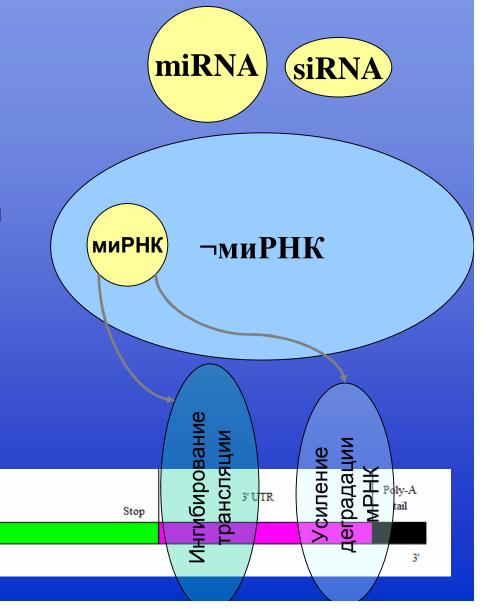
- В эукариотах РНК синтезируются различными видами РНК полимераз:
 - тРНК Pol III,
 - pPHK Pol I,
 - остальные гены $-Pol\ II$
- тРНК в различных организмах
 - нематод *C.elegans*
 - ~29,600 генов, 620 тРНК
 - дрожжи Saccharomyces cerevisiae
 - ~8000 генов, 275 тРНК
 - геном человека
 - ~27,000 генов, 519 тРНК



Детали вторичной структуры транспортной РНК

- **Акцептор-сегмент:** 7bp, замыкает 5' и 3' терминальные нуклеотиды
- **CCA «хвост»:** 3нт, 3'-конец молекулы
- **D-сегмент:** 4 bp спираль и петля с дигидроуридином (D)
- **Антикодон-сегмент:** 5bp спираль с петлей содержащей «антикодон»
- **Т-сегмент:** 5bp спираль, петля содержит псевдоуридин (Ψ)

Стандартный единственный подход: выравнивание первичных структур различных тРНК


NB!

Общая теория алгоритмов выравнивания

Биология за задачей «миРНК/¬миРНК»

- пост-транскрипционные регуляторы, связывают 3'UTR мРНК
 - деградация мРНК
 - ингибирование трансляции
- геном человека
 - 1000 миРНК, регулируют60% (!) генов
 - 40% миРНК в интронах других генов

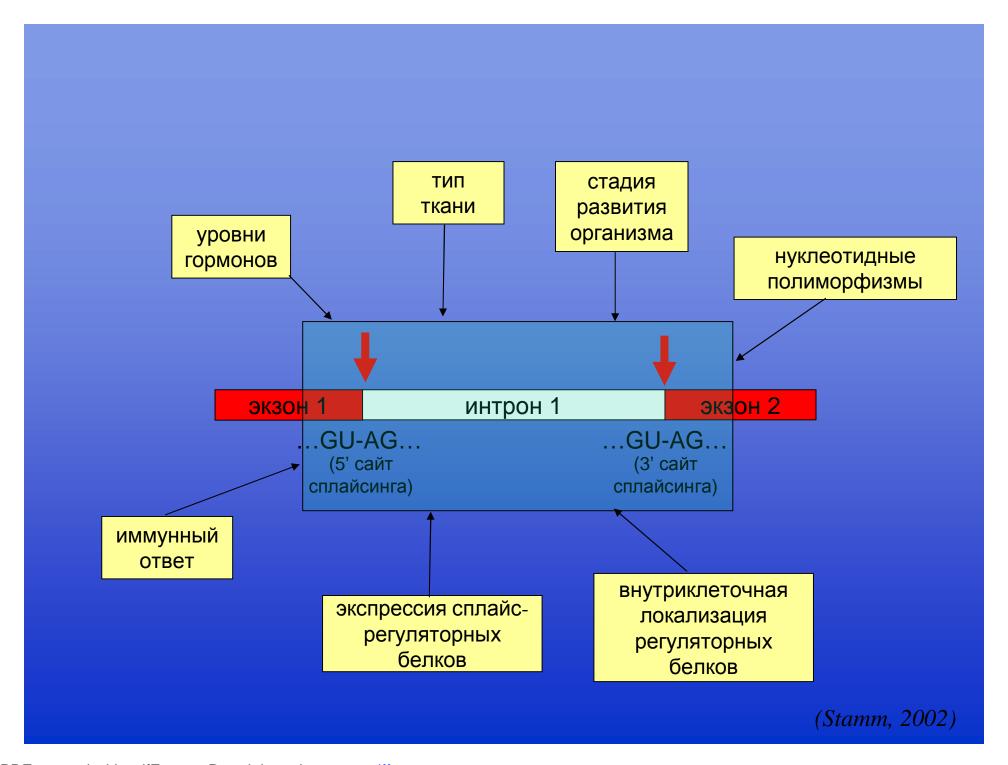
Coding sequence (CDS)

5' UTR

Start

миРНК – интернет ресурсы

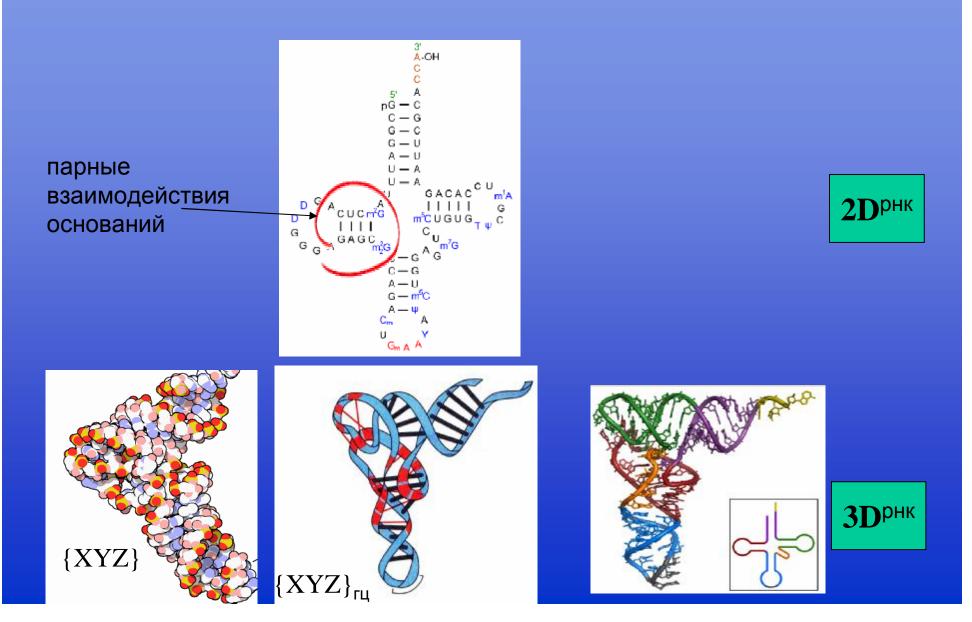

Program	URL	Species
"In silico" cloning MiRscan	http://genes.mit.edu/mirscan	C. elegans, Human
Target identification		
TargetScan Diana MicroT	http://genes.mit.edu/targetscan http://www.diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi	Vertebrates Human/Mouse
miRNA-target prediction	http://www.russell.embl.de/miRNAs/	Drosophila
miRanda RNAhybrid	http://www.microrna.org/miranda.html http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/	Drosophila/Human Drosophila
RNAcalibrate	http://bibiserv.techiak.um-bielefeld.de/manybird/	Бтозорина
RNA effective	1	**
mirnaviewer Pictar	http://cbio.mskcc.org/mirnaviewer/ http://pictar.bio.nyu.edu/	Human Human
MicroRNAs database		
The MicroRNAs Registry	http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml	All


(Sevignani, 2006)

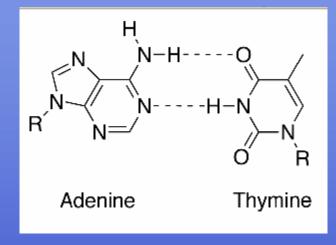
Альтернативный сплайсинг i.3 3'UTR **1** ген 5'UTR e.2 i.2 **e.3** e.1 i.1 сплайсинг Генетика и Генетика и биохимия клетки, биохимия клетки, состояние №1 состояние №2 <u>2, 3..</u> белка e.1 e.2 e.1 | e.3 Более 80% генов человека могут претерпевать альт. **СПЛАЙСИН** (Matlin, 2005). Белок №2 Белок №1

Основные разновидности альтернативного сплайсинга

- Пропуск экзона
- Взаимоисключающие экзоны
- Изменение границ экзонов
- Отказ от сплайсинга (интрон остается)

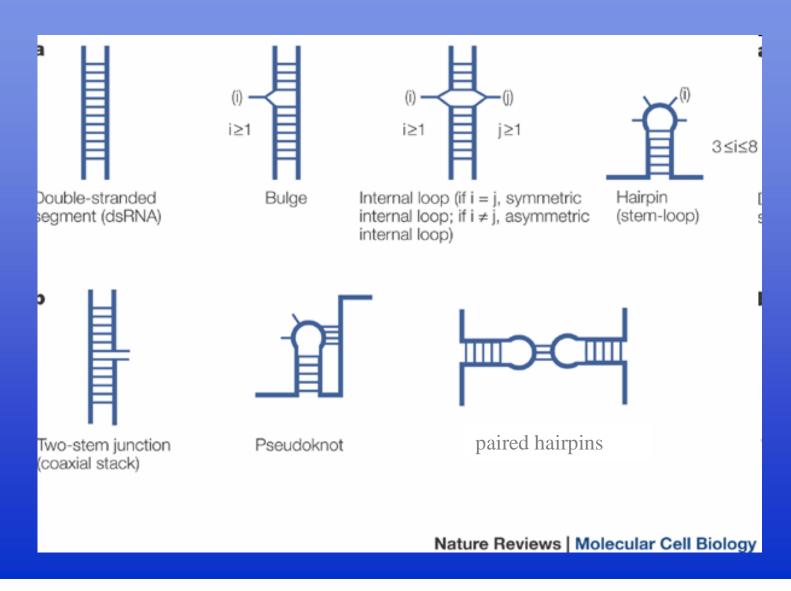


Уровни структуры РНК

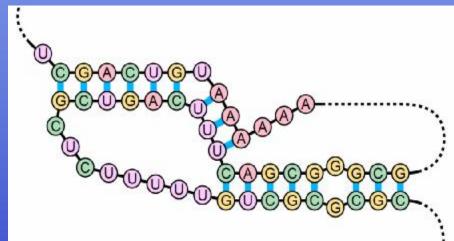


GCGGAUUUAGCUCAGDDGGGAGAGCGCCAGAGACUGAAYAPCUGGAGGUCCUGUGTPCGAUCCACAGAAUUCGCACCA

Взаимодействия пар оснований


- «Классические» (по Уотсону-Крику)
 - -A-T
 - -G-C
- в РНК
 - -A-U
 - -G-C

Уточненные правила взаимодействия пар оснований (на примере взаимодействия кодонантикодон)


тРНК антикодон	мРНК кодон
A	U
C	G
G	f C или $m U$
U	А или <i>G</i>
I	$oldsymbol{A}$ или $oldsymbol{C}$ или $oldsymbol{U}$

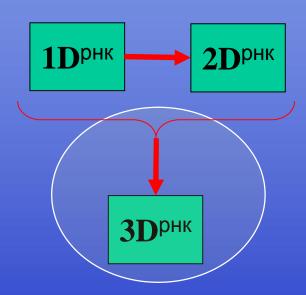
Разновидности 2D^{рнк}

Псевдоузел РНК (pseudoknot)

- «Спаренные» фрагменты типа «спираль-петля»
- Перекрывающиеся взаимодействия пар (т.е. взаимодействия 3 и 4 нуклеотидов)

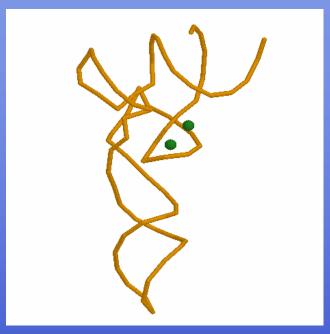
- Пропускаются большинством методов т.н. "RNA structure prediction"
- Необходим для функции РНК (пример: теломераза)

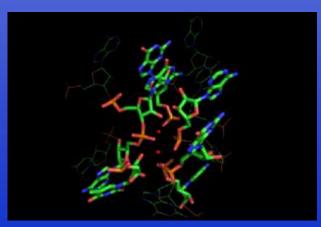
Задача 3Dрнк>2Dрнк


 Распознавание элементов вторичной структуры в пространственной структуре РНК

- Алгоритмы распознавания 2D в 3D на основе к.л. экспертного словаря 2D^{рнк}
- Разработка словаря 2D на основе анализа 3D

«Свертывание» РНК: 1Dрнк > 3Dрнк


- 1-ый шаг: **2D**рнк
- 2-ой шаг: взаимодействия фрагментов **2D**^{рнк}
 - пост-трансляционные модификации РНК увеличивают количество неканонических взаимодействий
- 3-ий шаг: учет катионов в стабилизации структуры



PNAS 1993; 90(20):9408-12

Катионы в структуре РНК

- Функционирующие в клетке РНК плотно упакованы.
- Стабилизация осуществляется посредством катионов (Mg, K, прежде всего)
- РНК последовательно сворачивается, катионы стабилизируют промежуточные структуры, компенсируя избыточный «-» заряд фосфатов
- Сайты связывания Mg, K имеют определенную структуру

Нуклеотиды	Сокращения по IUPAC
A	A
C	С
G	G
T	T/U
(AC)	M
(AG)	R
(AT)	W
(CG)	S
(CT)	Y
(GT)	K
(AGC)	V
(CGT)	D
(AGTC)	X/N

Условные обозначения нуклеотидных вариантов