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AHHOTAIIUA:

Jlannasi pabora mocBsIeHa 3ajiade JeKOJINPOBaHns CUTHAJIA /I TTOCTPOEHUA HEHPOKOM-
nbloTepHoro nunrepdeiica. HefipokomiibioTepHbIii nHTEpEliC TTOMOTAET JIIOIAM C OrpaHUIeH-
HBIMU BO3MOXKHOCTSIMU BOCCTAHOBUTBH UX MOOMJILHOCTD. [lesibio nccieioBanus sBseTcs mo-
CTpOeHne MOJIEN, TTPEJICKA3bIBAIONIEN TTOJIO?KEHe KOHEYHOCTH 110 CUT'HaJIaM Mo3ra. [Ipobite-
Ma 3aKJII09aeTCsd B M30BITOYHOCTU MCXOJIHOIO OIUCAHUSA JAHHBIX. Koppesdmnus u3amepeHuit
mpudbopa TPUBOIUT K KOPPEJIAIUU BO BXOJHOM ITPOCTPAHCTBe onmcanuii mogesmn. Kpome To-
ro, paccMaTpuBaeTCd MHOIOMEPHBIN Ciryvail, nejeBasd IepeMeHHas dABIAeTCdAd BEKTOPOM N3
[IOCJIEJIOBATE/TbHBIX TTOJIOYKEHII PYKN B IIPOCTPAHCTBE. 3aBUCUMOCTD MEXKTY ITOC/Ie/I0BATE b
HBIMU TO3UIIASIMA PYKU TPUBOJINAT K KOPPEJIANUAM B ITPOCTPAHCTBe OTBeTOB. [l ycTpane-
HUs U30BITOYHO KOPPEJISIUU B IPU3HAKOBOM OIMCAHUU OOBLEKTOB UCIOJIL3YIOTCA METOJIbI
CHUZKEHUS PA3MEPHOCTHU U BBIOOpA IMPU3HAKOB.

Perpeccust MmeTomom dacTHbIX HamMeHbInx Kpajpartos (PLS) ucnonbsyercs B KadecTse
6a30BOIl MO/ JIJII CHUYKEHHUS Pa3MEPHOCTH MPOCTPAHCTBa. JlaHHas MOJENb MPOenupyeT
BXO/THBIE OO'BEKTHI M OTBETHI B CKPBITOE IIPOCTPAHCTBO U MAKCUMU3UPYET KOBAPUAIIMH MEZK LY
npoeknusivu. CovyeTanne 3aBUCUMOCTENH BXO/IHBIX O0BEKTOB 1 OTBETOB TIO3BOJISIET TOCTPOUTH
YCTONYUBYIO MOJIEJIb.

CHmKkenre pasMepHOCTH He MMOO3BOJISET MOCTPOUTH Pa3PeKEeHHyI0 MOJIeb. Pa3pexken-
HOCTD JIOCTUTAETCH ITyTeM BbIOOPA MTPU3HAKOB. BOJIBIMMHCTBO METOJIOB BHIOOPA IMPU3HAKOB He
HCIIOJIb3YIOT 3aBUCUMOCTHU B IIPOCTPAHCTBE OTBETOB. B paboTe mpe raraeTcss HOBBIi 10JIX0/T
K BBIOOpY IPU3HAKOB B CJIydae MHOTOMEPHOI perpeccun. [[jist yueTa KOppesdInii B MaTpUIle
OTBETOB IpEJIaraeTcs 00OOIUTH UICI0 aJrOPUTMa BBIOOPA MPU3HAKOB C ITOMOIIBIO KBa/I-
paruaroro nporpammuposanus (QPFS). Amxropurm QPFES BeiGupaer HekoppempoBaHHbBIE
00'BEKTBI, KOTOPBIE PEJIEBAHTHI CTOJIOIIAM MATPHIILI OTBETOB. [Ipemraraemble MeTOIbI HAKIA-
JILIBAIOT Beca Ha CTOJIOIBI MaTpuilbl oTBeTOB. Wjies coctouT B TOM, 4TOOBI omTpadoBaTh
KOPPEJIMPOBAHHBIE CTOJIONBI M YMEHBIIUTD UX BJIUAHUE Ha BHIOOD MPU3HAKOB.

Boraucnre/ibHbBIN 9KCIEPUMEHT ITPOBOJIUTCA Ha peabHOM HabOpe JAaHHBIX JIEKTPOKOP-
tukorpamm (DKOT). TpesyioxkeHHbIE aJrOPUTMBI CDABHUBAIOTCS 110 PA3TMIHBIM KPUTEPHU-
sIM, TAKUM KaK CTAOUJIBHOCTb W TOYHOCTD IPOTHO3a. AJITOPUTMBI MTOKA3BIBAIOT PE3yJIbTaThl
BBl OazoBoro ajropurva. CpaBHUBAETCS MOJIE/b JIMTHEHHON pEerpeccuu ¢ MCIOIb30BAHN-
em QPFS anropurma m Mojesb perpeccun 9acTHBIX HAMMEHBITNX KBapaToB. Hamrydmmii

pe3ysabTaT jjocturaercd kombunarueit ajgroputmos QPFEFS u PLS.
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1. INTRODUCTION

The research investigates the problem of signal decoding for Brain Computer Interface
(BCI) [1]. BCI aims to develop systems that help people with a severe motor control dis-
ability to recover mobility. The minimally-invasive implant records cortical signals and the
model decodes them on real time to predict the coordinates of an exoskeleton limbs [2,3].
The subject placed inside the exoskeleton can drive it by imagining movements as if they
were making the movement by themselves.

The challenge to build such model is redundancy in initial data description. The features
are highly correlated due to spatial nature of the data. The brain sensors are close to each
other. It leads to redundant measurements and instability of the final model. In addition,
the redundant data description requires excess computations which lead to real-time delay.
To overcome this problem dimensionality reduction [4,5] and feature selection [6,7] methods
are used.

The dimensionality reduction algorithms find the optimal combinations of the initial fea-
tures and use these combinations as the model features. For ECoG-based data the widely
used dimensionality reduction algorithm is partial least squares (PLS) [8-10]. The algorithm
projects the features and the targets onto the joint latent space and maximizes the covari-
ances between projected vectors. It allows to save information about initial input and target
matrices and find their relations. The dimensionality of latent space is much less than the
size of initial data description. It leads to a stable linear model built on the small number
of features. The overview of recent advances in PLS algorihm is given in [11,/12]. For this
model we obtain the linear model with small latent dimension. However, the final model use
the whole range of the initial features and it does not allow to remove useless features.

Feature selection is a special case of dimensionality reduction when the latent represen-
tation is a subset of initial data description. Here the model are built on the subset of the
features. Omne of the approach to feature selection is to maximize feature relevances and
minimize pairwise feature redundancy. This approach was recently proposed and investi-
gated in [13]/14]. Quadratic programmic feature selection (QPFS) [15] uses this approach to
construct the optimization problem. It was shown in [16] that QPFS algorithm outperforms
many existing feature selection methods for the univariate regression problem. The QPFS
algorithm introduces two functions: Sim and Rel. Sim estimates the redundancy between
features, Rel contains relevances between each feature and the target vector. QPFS mini-

mizes the function Sim and maximizes the function Rel simultaneously. The algorithm solves
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the following optimization problem

—_— . T _— . T 1
(1-a) 2 Qz—a- b'z — min . (1)
Sim(X) Rel(X,v) 1;z=1

Here columns of the matrix X are the features, and v is the target vector. The ma-
trix Q € R™™ entries measure the pairwise similarities between features. The vector b € R™
expresses the similarities between each feature and the target vector. The normalized vec-
tor z shows the importance of each feature. The function ([1)) penalizes the dependent features
by the function Sim and encourages features relevant to the target by the function Rel. The
parameter a controls the trade-off between Sim and the Rel. To measure similarity the au-
thors use the absolute value of sample correlation coefficient or sample mutual information
coefficient between pairs of features for the function Sim, and between the features and the
target vector for the function Rel.

The paper [17] proposes a multi-way version of the QPFS algorithm for tensor ECoG-
based data. It was shown that QPFS is an appropriate feature selection method for brain
signal decoding problem. We consider the multivariate problem, where the dependent vari-
able is a vector. It refers to the prediction of limb position for not just one timestamp, but
for some period of time. The subsequent hand positions are correlated. It leads to corre-
lations in the model targets. In this situation feature selection algorithms do not take into
account these dependencies. Hence, the selected feature subset is not optimal in terms of
prediction. We propose methods which take into account the dependencies in both input
and target spaces. It allows to get the stable sparse model. We refer to the original QPFS
algortihm as our baseline for the computational experiment.

The experiments were carried out in the ECoG data from the NeuroTycho project 1. We
compared the proposed methods for multivariate feature selection with the baseline strategy
and with PLS algorithm. The stability of the proposed methods were investigated. The
proposed algorithms outperform the baseline algorithm with the same number of features.
The combination of the feature selection procedure and the PLS algorithm gives the best

performance.

Thttp:/ /neurotycho.org/food-tracking-task
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2. PROBLEM STATEMENT

In this section we define the problem of multivariate regression in terms of loss function
minimization. Then the dimensionality reduction and feature selection problems are defined.
We use PLS regression as algorithm for dimensionality reduction. Finally, we state QPFS

algorithm which are the baseline for feature selection.

2.1. Multivariate regression

The goal is to forecast a dependent variable y € R" with r targets from an independent

input object x € R with n features. We assume there is a linear dependence
y=0Ox+e¢ (2)

between the object x and the target variable y, where ® € R"™" is a matrix of model
parameters, € € R" is a residual vector. One has to find the matrix of the model parameters ©

given a dataset (X,Y), where X € R™*" is a design matrix, Y € R™*" is a target matrix

T

X =[x, X =X Xai Y=[y o ¥ml =1, v (3)

The columns x; of X respond to the object features, the columns v; of Y respond to the
targets.
The optimal parameters are determined by minimization of an error function. Define the

quadratic loss function:

2
LOXY)=|Y - X -0OT| — min. (4)
mxr mxn. TXn ||y ()
The solution of ({]) is given by
O =Y'X(X"X)" (5)

The linear dependent columns of X leads to an instable solution for the optimization
problem . If there is a vector a # 0,, such that Xa = 0,,,, then adding a to any column
of © does not change the value of the loss function £(®|X,Y). In this case the matrix XTX
is close to singular and not invertible. To avoid the strong linear dependence, dimensionality

reduction and feature selection techniques are used.



2.2. Dimensionality reduction

To eliminate the linear dependence and reduce the dimensionality of the input space, the
principal components analysis (PCA) is widely used algorithm. The main disadvantage of
the PCA method is its insensitivity to the interrelation between the features and the targets.
The partial least squares algorithm projects the design matrix X and the target matrix Y to
the latent space with low dimensionality (I < n). The PLS algorithm finds the latent space
matrices T, U € R™*! that best describe the original matrices X and Y.

The design matrix X and the target matrix Y are projected into the latent space in the

following way:

X =T -P'+F =) t -pj+ F, (6)
mxn mxl Ixn mxn k:1m><1 1xn mxn

l
Y=U-Q+E=) w q+E, (7)
mxr mxl Ixr mxr k:1m><1 Ixr mxr

where T, U are scores matrices in the latent space; P, Q are loading matrices; E, F are

residual matrices. PLS maximizes the linear relation between columns of matrices T and U

We use the PLS algorithm as the dimensionality reduction algorithm in this research.

The theoretical explanation of the PLS algorithm are given in Section

2.3. Feature selection

Feature selection is a special case of dimensionality reduction, where the loading matrices T
and U are the submatrices of the design matrix X and the target matrix Y.

The feature selection goal is to find the boolean vector a = {0, 1}", which components
indicate whether the feature is selected. To obtain the optimal vector a among all possible
2" —1 options, introduce the feature selection error function S(a|X,Y). We state the feature

selection problem as follows

a=argmin S(a'|X,Y). (9)
a’e{0,1}m

The goal of feature selection is to construct the appropriate function S(a|X,Y). The particu-

lar examples for the considered feature selection algorithms are given below and summarized

in the Table [Tl



The problem (9] are hard to solve due to discrete binary domain {0,1}". We relax the

problem (9)) to the continuous domain [0, 1]™. The relaxed feature selection problem is

z = argmin S(z'|X,Y). (10)
z'€[0,1]"
Here the vector z entries are normalized feature importances. Firstly, solve the problem ((10))

to obtain the feature importances z. Then the solution of @ is recovered by thresholding:

. 1, z>m;

0, otherwise.

Here the value 7 is a hyperparameter which is defined manually or choosen by cross-
validation.

Once the solution a of @D is known, the problem becomes
L(Ou|Xa,Y) = ||Y - X.O]|; - min, (12)

where the subscript a indicates the submatrix with the columns for which components of a

equal 1.

2.4. Quadratic Programming Feature Selection

Our base algorithm for feature selection is quadratic programming feature selection algo-
rithm. The paper [16] shows that QPFS outperforms many existing feature selection algo-
rithms in different criteria. The QPFS algorithm selects non-correlated features, which are

relevant to the target vector v for the linear regression problem with » =1
— X0|5 — min . 13
lv I = min (13)

The authors of the original QPFS paper [15] suggested the way to select a for and
make Sim(X) and Rel(X, v) impacts the same:

(14)

where Q, b are the mean values of Q and b respectively. The QPFS parameters are defined



as follows:

n

Q= [Sim(Xia Xj)} b = [sim(x;, V)]?=1 : (15)

i,j=1"

Here the function sim(+, ) is a similarity measure. The common ways to define this function

are the absolute value of sample Pearson correlation coefficient

. ,— X) (Vi — D)
sim(x, v) = [corr(x, v b 41 k) S (16)
‘ \/Zz 1 X)2 > (Vi —D)?
or the sample mutual information coefficient
sim(x, v) = I(x, v // p(x; v) log( pix, ) — s )dxdv. (17)
p(x)p(v)

We use the correlation coefficient as a similarity measure sim(-,-). The other ways to
define Q and b are considered in [16].

The problem is convex if the matrix Q is positive semidefinite. In general it is not
always true. To satisfy this condition, the matrix Q spectrum is shifted and the matrix Q
is replaced by Q — AminI, where Ay, is a minimal eigenvalue of Q. The original paper [15|
suggests the way to solve the quadratic problem (|1 efficiently. In |18] the sequential minimal

optimization framework is proposed for solving .



3. PARTIAL LEAST SQUARES REGRESSION

The pseudocode of the PLS regression algorithm is given in the Algorithm [I} In each of the [
steps the algorithm iteratively calculates columns tg, ux, pg, qr of the matrices T, U, P, Q,
respectively. After the computation of the next set of vectors, the one-rank approximations
are subtracted from the matrices X, Y. This step is called a matrix deflation. In the first
step one has to normalize the columns of the original matrices (subtract the mean and divide
by the standard deviation). During the test mode we need to normalize test data, compute

the model prediction , and then perform the reverse normalization.

Algorithm 1 PLSR algorithm
Require: X,Y,[;
Ensure: T, P, Q;
1: normalize matrices X u Y by columns

2: initialize ug (the first column of Y)

3: Xl = )(7 Yl =Y

4: for k=1,...,l do

5 repeat

6: wi = X /(W up1); Wy = II:VV_IZII
7 tk = Xka

8 Cg = thk/(tgtk), Cp .= ”z:H

9 u; .= Yka

10:  until t; stabilizes
11: Pr = X—Igtk/(t;tk), qi ‘= Y,Iuk/(uzuk)
12: Xk_|_1 = X — tkp;—

T YTty T
130 Yy =Y —wqy = Y — ( )

tity

The vectors t, and uy from the inner loop of the algorithm [I] contain information about
the design matrix X and the target matrix Y, respectively. The blocks of steps (6)—(7)
and (8)-(9) are analogues of the PCA algorithm for the matrices X and Y [19]. Sequential
repetition of the blocks takes into account the interaction between the matrices X and Y.

The theoretical explanation of the PLS algorithm follows from the statements.

Proposition 1. The best description of the matrices X and Y taking into account their

interrelation is achieved by maximization of the covariance between the vectors t, and uy.

The statement follows from the equation

cov(ty, uy) = corr(ty, uy) - /var(ty) - \/var(ug). (18)

10



Maximization of the vectors t; and u; variances corresponds to keeping information about
original matrices, the correlation of these vectors corresponds to interrelation between X
and Y.

In the inner loop of the Algorithm [I| the normalized weight vectors w;, and c; are calcu-

lated. These vectors construct the matrices W and C, respectively.

Proposition 2. The vector wy and ci are eigenvectors of the matrices XngY,IXk and

Y! X X[ Y}, corresponding to the mazimum eigenvalues.

wy, o Xy o0 X]Yreroy o XYY 6y o XYY X owiy, (19)

cr o Yt o0 Y Xwy o Y X X upoy o Y X X[ Yyept, (20)

where the oc symbol means equality up to a multiplicative constant.

The statement follows from the fact that the update rule for vectors wy, c; coincides
with the iteration of the power method for the maximum eigenvalue.
We formulate the power method as follows. Let a matrix A be diagonalizable, x be some

vector, then

lim A*x = Apax(A) - Vinax, (21)

k—o0

where vy, is the eigenvector A, corresponding to the maximum eigenvalue Ay (A). B

Proposition 3. The update rule for the vectors in steps (6)—(9) of the algorithm (1| corre-

sponds to the mazximization of the covariance between the vectors t; and uy.

The maximum covariance between the vectors t, and uy is equal to the maximum eigen-

value of the matrix XY, Y] X:

max cov(ty, u;)?> = max cov (Xka,Yka)2 = max cov (CZY;—X;CW]C)2 =

tr,up [[wi[l=1 [[wi|l=1
llexll=1 llexll=1
2
= max COVHY;—kakH = max W;XZYkYngwk =
[well=1 lwll=1

= Amax (XPYRY[Xy), (22)

where A\pax(A) is the maximum eigenvalue of A. Using the statement [2| we obtain the

required result. W

11



After the inner loop the following step (11:) is to compute vectors pg, qx by projection of
the matrices X and Y} columns to the vector t,. Before proceeding with the next iteration

one has to deflate the matrices X and Y} by the one-rank approximations t;p; and tzq;

Xps1 = Xp, — typg =X — ) _tpy, (23)
k
Yip=Ye—thqf =Y = tpq). (24)
k
Each next vector t;,; turns out to be orthogonal to all vectors t;, i =1,... k.

Let assume that the dimension of the input, the target, and the latent spaces are equal to 2
(n =r =1=2). Figure|l|shows the result of the PLS algorithm in this case. Blue and green
dots represent the rows of the matrices X and Y, respectively. The dots were generated from
a normal distribution with zero mean. Contours of the distribution for covariance matrices
are shown in red. Black contours are unit circles. Red arrows correspond to principal
components for this set of points. Black arrows correspond to the vectors of the matrices W
and C from the PLS algorithm. The vectors t; and uy are equal to the projected matrices Xy
and Yy, to the vectors wy and cy, respectively, and are denoted by black pluses. Taking into
account the interaction between the matrices X and Y the vectors w; and c; deviate from
the principal components directions. The deviation of the vectors wy, is insignificant. In
the first iteration, c; is close to the principal component pc;, but the vectors ci in the next
iterations could strongly correlate. The difference in the vectors wj and c; the behaviour
is associated with the assymmetric deflation process , . In particular, we subtract
from Y the one-rank approximation found in the space of the design matrix X.

To obtain the model prediction and find the model parameters, multiply the both hand
sides of @ by the matrix W. Since the residual matrix E rows are orthogonal to the columns
of W, we have

XW =TP'W. (25)

The linear transformation between objects in the input and latent spaces is the following
T =XW*, where W* = W(PTW) L. (26)
The matrix of the model parameters could be found from equations ,

Y=UQ"+E~TBQ"+E=XW'BQ' +E=X0 +E. (27)

12



eoe X e®e Y

+++ t1 +++ W
1.01
0.5
0.01
—0.5
—1.01

10 —05 00 05 10 10 —05 00 05 10

Figure 1: PLS algorithm example for the case n =r =1=2

Thus, the model parameters are equal to
©=W(P"W)'BQ". (28)

The final model is a linear model which are low-dimensional in the latent space. It

reduces the data redundancy and increases the model stability.
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4. MULTIVARIATE QPFS

We are aimed to propose the algorithms which suitable for feature selection in multivariate
case. If the target space is multidimensional it prone to redundancy and correlations between
the targets. In this section we consider the algorithms that take into account the probable

dependencies in both input and target spaces.

4.1. Relevance aggregation (RelAgg).

First approach to apply the QPFS algorithm to the multivariate case (r > 1) is to aggregate
feature relevances through all » components. The term Sim(X) is still the same, the matrix

Q is defined by . The vector b is aggregated across all targets and is defined by

n

(29)

b= [Z sim(x;, Vi)

k=1

i=1

The drawback of this approach is its insensitivity to the dependencies in the columns

of Y. Observe the following example:

X:[X17X27X3]7 Y = VlaV17"'7V17V2]7 (30)

r—1

We have three features and r targets, where first » — 1 targets are identical. The pairwise
features similarities are given by the matrix Q. The matrix B entries show pairwise features

relevances to the targets. The vector b is obtained by summation of the matrix B over

columns.
1 0 0 04 ... 04 0 (r—1)-04+0
Q=10 1 08|, B=]05 ... 05 08|, b=|[(r—1)-05+038 (31)
0 08 1 0.8 ... 0.8 0.1 (r—1)-0.8+0.1.
1

We would like to select only two features. For such configuration the best feature sub-
set is [xq, Xa)- The feature x, predicts the second target vs and the combination of fea-
tures X, Xy predicts the first component. The QPFS algorithm for » = 2 gives the solu-
tion z = [0.37,0.61,0.02]. It coincides with our knowledge. However, if we add the collinear
columns to the matrix Y and increase r to 5, the QPFS solution will be z = [0.40,0.17, 0.43].

14



Here we lose the relevant feature x, and select the redundant feature x;. The following sub-
sections propose the extension of the QPFS algorithm which are overcome the challenge of

this example.

4.2. Symmetric importances (SymlImp).

To take into account the dependencies in the columns of the matrix Y we extend the
QPF'S function to the multivariate case. We add the term Sim(Y) and modify the
term Rel(X,Y) as follows

a1 - 7, Qu2, —ay - 7, Bz, +as - z;Qyzy — min . (32)
N—_—— —— —— 2,>0p, 1] 2,=1
Sim(X) Rel(X,Y) Sim(Y) zy>0,,11z,=1

Determine the entries of matrices Q, € R™", Q, € R™", B € R™" in the following way

Q. = [Sim(xi,xj)}zjzl, Q, = [sim(v;, I/j)]:’jzl, B = [sim(x;, Vj)]i=1,....n - (33)

Jj=1,...,r

The vector z, shows the features importances, while z, is a vector with the targets impor-
tances. The correlated targets will be penalized by Sim(Y') and have the lower importances.
The coefficients g, ag, and «as control the influence of each term on the function (32))

and satisfy the conditions:
041+062—|—043:1, ozZ-ZO,izl,Z,B. (34)

Proposition 4. The balance between the terms Sim(X), Rel(X,Y), and Sim(Y) for the
problem 15 achieved by the following coefficients:

e WP (35)
QB+Q,Q,+Q,B

Ny = —— ngy — (36)
QB+Q.Q,+Q,B

- —— B (37)
QB+Q,Q,+Q,B

Here Q,, B, Qy are mean values of Q, B, and Q,, respectively.

15



Z;1 Zy;2 Z:3 Zy1 Zy 2 Zy3 Zy 4 Zy5

1.0

0.81

0.61

0.41 | \

0.21

0.0 , , , , : ; ; ,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

a3 a3

Figure 2: Feature importances z, and z, w.r.t. az for the considered example

Proof. The desired values of oy, s, and ag are given by solving of the following equations

a; + as +az = 1; (38)
Oélax = OéQE = 063Qy. (39)

Here, the mean values Q,, B, Qy of the corresponding matrices Q,, B, and Q, are the

mean values of the terms Sim(X), Rel(X,Y), and Sim(Y). O

To investigate the impact of the term Sim(Y) on the function (32)), we balance the terms
Sim(X) and Rel(X,Y) by fixing the proportion between «; and asy:

a1 =

We apply the proposed algorithm to the discussed example . The given matrix Q cor-
responds to the matrix Q,. We additionally define the matrix Q, by setting corr(vy,vs) =
0.2 and all others entries to one. Figure [2| shows the importances of features z, and tar-
gets z, with respect to ag coefficient. If ag is small, the impact of all targets are almost
identical and the feature x; dominates the feature x,. When as becomes larger than 0.2,

the importance z, 5 of the target v5 grows up along with the importance of the feature x,.

4.3. Minimax QPFS (MinMax and MaxMin).

The function is symmetric with respect to z, and z,. It penalizes the features that are
correlated and are not relevant to the targets. At the same time it penalizes the targets that
are correlated and are not sufficiently explained by the features. It leads to small importances

for the targets which are difficult to predict by the features and large importances for the
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targets which are strongly correlated with the features. It contradicts with the intuition.
Our goal is to predict all targets, especially which are difficult to explain, by selected relevant

and non-correlated the features. We express this into two related problems:

a1 -7, Qu2, —ay - z) Bz, — min ; (41)
N—_—— Zy>0np,
Sim(X) Rel(X)Y)  17zo=1

s -z, Quz, +ay - 2] Bz, — min (42)
3" by \yly 2 x Y S0,
N—— Zy_Om
Sim(Y) Rel(X)Y)  1jzy=1

The difference between and is the sign of Rel. In feature space the non-relevant
components should have smaller importances. Meanwhile, the targets that are not relevant
to the features should have larger importances. The problems and are merged into

the joint min-max or max-min formulation

min max f(z,,z or max min Zy % 43
2,>0, Zy20r f( x y)7 ZyZOr 20>0, f( Z y) ’ ( )
172,=1172,=1 1] 2,=11]2,=1
where
= -z —as - 2)Bz, —ag -z 44
f(zaw Zy) =01 Z, Q:czac Q- Z2,D7Zy (6%} Zy Qyzy . ( )
Sim(X) Rel(X,Y) Sim(Y)

Theorem 1. For positive definite matrices Q, and Q, the maz-min and min-maz prob-

lems have the same optimal value.

Proof. Denote
C'={z:2>0,,1'z=1}, C ={z:2>0,,1]z=1}. (45)

The sets C" and C" are compact and convex. The function f : C" x C" — R is a continuous
function. If Q, and Q, are positive definite matrices, the function f is convex-concave, i.e.
f(-,z,) : C* = R is convex for fixed z,, and f(z,,-) : C" — R is concave for fixed z,. In this

case Neumann’s minimax theorem states

dnin max f(zs,2,) = max min f(z,2,) (46)

]

To solve the min-max problem (43), fix some z, € C". For fixed vector z, we solve the
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problem

max f(z,,2,) = max |a; -z, Qu2z, — - 2, Bz, — a3 - 2, Quz,]. (47)
z,€C, 2y >0,
1z,=1

The Lagrangian for this problem is
L(zy, 2y, A\, p) = o1 - 20 QuZy — 2 - 20 Bz, — 03 -2, Quzy + A - (12, — 1) + p'z,.  (48)

Here the Lagrange multipliers p, corresponding to the inequality constraints z, > 0,, are

restricted to be non-negative. The dual problem is

Jmin g(ze, A, p) = min gg@L(zx,zy,A,u) : (49)

The strong duality holds for quadratic problem with positive definite matrices Q,
and Q,. Therefore, the optimal value for equals the optimal value for . It allows to

solve the problem

min _ g(zy, A, p) (50)

z2z€C", A, p>0,
instead of ({43).
Setting the gradient of the Langrangian V, L(z,,z,, A, ) to zero, we obtain an optimal

value z,:

1
Zy = —

=—Q, ' (—a2 BTz, + A1, 4 p). (51)
20&3

The dual function is equal to

2
Q(Zm)vli) = max L(ZCIHZZH )‘7“’) = ZI <_4a_2 ’ BleBT — Qg Q:p) Zy

zy€RT Qa3
1 1 Qo
21T Q - — . uTQ! 2 3.17Q'BTz,
T - Q, T M Q, »+ s ,Q, B'z
1

a2 TA-1pT
— . B'z, + )\ (52
2a; pQ, Bz, +A (52)

)\‘1T -1
FQ, 1+ 20,

It brings to the quadratic problem (50) with n + r + 1 variables.

4.4. Minimax Relevances (MaxRel).

The problem (50) is not convex. If we shift the spectrum for the matrix of quadratic
form (52)), the optimality is lost and the solutions obtained by min-max and max-min prob-
lems are not the same. To overcome this problem, we suggest to drop the term Sim(Y). It

brings to the following min-max problem
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1 _ . T _ . T
Jnin - max (1-a) -2,Q.z, — - 2,Bz,] . (53)
]-;I;,Zzzl IIZyZI

The Lagrangian for the problem (53]) with the fixed vector z, is
L(Zs, 2y, A\ ) = (1 — ) - 2] Quz, — -2, Bz, + A- (1)z, — 1) + 'z, (54)
Setting the gradient of the Langrangian V, L(z.,z,, A, i) to zero, we obtain:
a-B'z, =\-1,+ p. (55)
The dual function is equal to

(1_(1)'ZIQ$ZI—>\, O"BTZ:CZ)\']-T"i_M;
g(Zx, A, N) - (56)
400, otherwise.

In this case the feature importances are the solution of , which is expressed as follows

1 —_— . T R—
e (1-a) z,Q.z, — \] . (57)
a~Bsz:)\-1T+u

This quadratic problem is convex for the positive definite matrix Q.

4.5. Asymmetric Importance (AsymlImp)

Another way to overcome the problem of SymlImp strategy is to add penalty for targets,
which are well-explained by the features. We add the term b'z, to the term Rel(X,Y):

T T T T .
oy -2, Quz, —g - (zx Bz, —b zy) +asz -z, Quz, — min ) (58)
N—— \ ~ " N—— 2:2>0n,1,2,=1
Sim(X) Rel(X,Y) Sim(Y) 2y 20,1 2y=1

Proposition 5. Let the vector b equal

bj = max [B];;. (59)

i=1,..n

Then the importances coefficients for the vector z, will be nonnegative in term Rel(X,Y) for

the problem .
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Proof. The proposition follows from the fact

n

n
D 7ibiy < (Z ) by = max b,
i=1 i=1
where z; > 0 and ) |z = L. ]

Hence, the function encourages the features which are relevant to the targets and

encourages the targets that are not sufficiently correlated with the features.

Proposition 6. The balance between the terms Sim(X), Rel(X,Y), and Rel(X,Y) for the
problem 15 achieved by the following coefficients:

) = == g(b_B_) —; (60)
Q,(b-B)+Q,Q,+Q,B
Q.Q,
= == —— __; 61
“7qQ,b-B)+QQ, QB o
g3 = QB (62)

Proof. The desired values of aq, as, and ag are given by solution of the following equations

a1+ e + a3 = 1; (63)
Q 062E; (64)
az (b —B) = a3Q,. (65)

Here we balance Sim(X) with the first term of Rel(X,Y) by and Sim(Y) with the
full Rel(X,Y) by (63). O

Proposition 7. For the case r = 1 the proposed functions , , , and
coincide with the original QPFS algorithm (|1)).

Proof. If r is equal to 1, then Q, = g, is a scalar, z, = 1, B = b. It reduces the prob-

lems (?7), (43), and to

-2, QuZy — g -z b — min . (66)
22>0,, 11 z,=1

Setting o = brings to the original QPFS problem . m

+a
To summarize all proposed strategies for multivariate feature selection, Table [1| shows the

core ideas and error functions for each method. RelAgg is the baseline strategy, which does
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Algorithm Idea Error function S(a|X,Y)
RelAgg | min[Sim(X) — Rel(X,Y)] min[(1 - a) -z Quz,; — a -z, B1, ]
in [Sim(X) — Rel(X,Y
SymImp min [Sim(X) N Sim((Y)] ) zgu% (o1 - 2] Q2o — @2 - 2, Bzy + a3 - 2, Qyz, |
, min [Sim(X) — Rel(X,Y)] . T T T
MinMax max[Rel(X, Y) + Sim(Y )] min H;?X [ 2] Quzy — 2 - 2] Bzy — a3 - z, Qyzy]
in [Sim(X) — Rel(X,Y
MaxRel | [Sim(X) el ) minmax[(1 — ) - 2] Quz, — a - 7] Bz,
max |[Rel(X,Y)] Zo 7y
min [Sim(X) — Rel(X,Y)] . T T T T
AsymImp . [Rel(X, Y) + Sim(Y)] 2“52, [061 2, QuZy — - (zx Bz, - b zy) +az -z, Qyzy]

Table 1: Overview of the proposed multivariate QPFS algorithms

not consider the target space correlations. SymImp penalizes the pairwise target correlations.
MinMax more sensitive to the targets which are difficult for prediction. MaxRel strategy
use the minimax approach, but drop the term with pairwise target similarities. AsymImp
strategy add the term to the SymImp function to make the features and targets influence

asymmetric. The ideas in MinMax and AsymImp approaches are the same.
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5. EXPERIMENT

We carried out computational experiment with ECoG data from the NeuroTycho project.
The input data consists of brain voltage signals recorded from 32 channels. The goal is
to predict 3D hand position in the next moments given the input signal. The example of
input signals and the 3D wrist coordinates are shown in Figure [3] The initial voltage signals
are transformed to the spatial-temporal representation using wavelet transformation with
Morlet mother wavelet. The procedure of extracting feature representation from the raw
data are described in details in [20,21]. We unfold the data and feature description at each
time moment has dimension equals to 32 (channels) x 27 (frequencies) = 864. Each object
is the representation of local history time segment with duration At = 1s. The time step
between objects is 6t = 0.05s. The final matrices are X € R8900x84 550 Y ¢ RI8I00x3k
where k is a number of timestamps that we predict. We split our data into train and test

parts with the ratio 0.67.

5.1. Metrics

To evaluate the selected feature subset we introduce criteria that estimate the quality of fea-
ture selection. We measure multicorrelation by mean value of miltiple correlation coefficient

as follows

1
R? = Ztr (CTR_1C) ; where C = [corr(x;, V;)|i=1
r =1

7
J

sy Ty R = [COI‘I‘(Xi, Xj)]:’fj:l' (67)

)

This coefficient lies between 0 and 1. The bigger R? means the better feature subset we
have.
The model stability is given by the logarithmic ratio between minimal eigenvalue Ay,

and maximum eigenvalue \p., of the matrix XTX:

)\min
Stability = In A (68)

max

A smaller value of Stability indicates less multicollinearity in the matrix X.
The scaled Root Mean Squared Error (sSRMSE) shows the quality of the model prediction.
We estimate sSRMSE on train and test data.

MSE(Y,Ya) _ Y = Yall2
MSE(Y.Y)  [[Y Y2

sRMSE(Y,Y,) = (69)
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Figure 3: Brain signals (left plot) and 3D hand coordinates (right plot)

Here ?a = Xa@Z is a model prediction and Y is a constant prediction obtained by averaging
the targets across all objects. The error on the test set should be as minimal as possible.
Bayesian Information Criteria (BIC) is a trade-off between prediction quality and the

size of selected subset ||al|o:
BIC = mIn (MSE(Y,?a)> +lallo - Inm, (70)

where |lallo = #{j : a; # 0} = > 7_, a;. The less value of BIC means the better feature

subset.

5.2. Results

To show the redundancy in the data representation we solve the QPFS problem for our
data. Figures[d and [5] show the result, where we use the Relevance Aggregation strategy and
k =1. QPFS importances z, decrease sharply. It allows to use the elbow rule to choose the
threshold value 7. In our experiments we set 7 = 10~%. Only about one hundred features
have importances significantly greater than zero. Starting from this amount of features, the
test error stops to decrease.

Figure [6] shows the dependencies in the matrices X and Y. Frequencies in the matrix X
are highly correlated. The frequencies are choosen in logarithmic scale, the closer the fre-
quencies are the higher the correlations. In the target matrix Y the correlations between
axes are not significant in comparison with the correlations between consequent moments
and these correlations decay with time.

We apply the QPFS algorithm with SymImp strategy for different values of a3 coefficient
according to formulas . The dependence between target importances z, with respect

to ag for different values of k is shown in Figure [7] If we predict wrist coordinates only
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Figure 6: Correlation matrices for X and Y

for one timestamp k = 1, targets importances are almost the same. It tells about the
independence between z, y, and z coordinates. For £ = 2 and & = 3 the importances of
some targets become zero when ag increases. The vertical lines correspond to the optimal
value of coefficient a3 obtained by . The importances z,, for this value of a3 are similar.
It means that the algorithm does not distinguish the targets for £ = 1,2, 3.

We compare the proposed strategies of multivariate QPFS that are given in Table [I] for
the ECoG dataset. Firstly, we apply all methods to get feature importances. Then we fit
linear regression model with increasing number of features. For each method the features
are sorted by the obtained importances. We show how the described metrics are changed
with the increasing feature set size. Figure [§| illustrates the results for prediction of £ = 30
timestamps. Here the feature importances threshold 7 are shown by colored ticks. These
thresholds are larger for the proposed methods with comparison to the baseline RelAgg
strategy. The SymImp strategy has the largest threshold, it does not allow to get the small
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Figure 7: Target importances z, with respect to az for QPFS with Symmetric Importance

feature subset. However, this strategy shows the best performance in terms of SRMSE on
test data. The second value of performance is given by AsymlImp, followed by MaxRel. All
proposed algorithms give the less test error compared to the RelAgg strategy. The Stability
criteria is also increased for the proposed algorithms. Here we consider the AsymImp strategy
as the best in terms of prediction quality and the size of selected feature subset.

To compare the structure of the selected feature subsets and investigate the stability of
the selection procedure, we use bootstrap approach. First, the bootstrap data are generated.
Then solve the feature selection problem for each pair of the design and the target matri-
ces. The obtained feature importances are compared. We calculate the average pairwise
Spearman correlation coefficient and the ¢, distance to obtain the measure of the algorithms
stability. Table [2| shows the average error, the size of the subset and the described statistics
for each method. The error was calculated by fitting the linear regression model on the
50 features with the largest importances. The MaxRel strategy shows the worst stability.

AsymImp gives the least error on the test data. The size of selected feature subsets are
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Figure 8: Feature selection algorithms evaluation for ECoG data, prediction of £ = 30

timestamps
Table 2: The stability of the selected feature subset
sRMSE lallo Spearman p 0y dist
RelAgg 0.965 £ 0.002 26.8 +£3.8 0.915 + 0.016 0.145 £+ 0.018
SymImp | 0.961 4+ 0.001 224.4 +£9.0 0.910 + 0.017 0.025 £ 0.002
MinMax | 0.961 + 0.002 101.0 &+ 2.1 0.932 + 0.009 0.059 + 0.004
MaxRel 0.958 +£ 0.003 41.2 +5.2 0.862 + 0.027 0.178 4+ 0.010
AsymImp | 0.955 + 0.001 85.8 + 10.2 0.926 + 0.011 0.078 + 0.007

overestimated using the equal threshold 7 = 1074,

The value of 7 should be cross-validated

to get the optimal threshold and the feature subset size.

We fit the PLS regression model for the data to compare the dimensionality reduction
and feature selection. Figure [9] shows the example of the model prediction. Three solid lines
show 3D coordinates of the hand position and the dashed lines are the model predictions.

Figure demonstrates the scaled RMSE on train and test data with respect to the
dimensionality of the latent space [. The test error achieves minimum value at hte point

= 11. PLS regression is more flexible approach compared to the linear model built on the
subset of features. It leads to the less error, but the model are not sparse.

Figure [T1] compares 3 models: linear regression and PLS regression built on 100 features

given by qpfs and PLS regression with all features. We do not include linear regression with
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Figure 9: Example of 3D hand position prediction by PLS regression

all features because its results are close to the constant prediction. We use the AsymImp
strategy for QPFS in this experiment. The number of PLS latent dimension is | = 15.
Here PLS regression are significantly better than linear regression with QPFS features. It
means that the latter model is not flexible enough. However, the best result is obtained
by combination of PLS regression model with QPFS features. This model is sparse since it
uses only 100 QPFS features. The ability of the PLS model to find the optimal latent data

representation allows to improve model performance.
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Figure 10: Test scaled RMSE for PLS Figure 11: sRMSE box plots for different
regression model models
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6. CONCLUSION

The study investigates the problem of signal decoding in relation to modelling Brain Com-
puter Interface. To build a stable edequate model, it was proposed to reduce dimensionality
of the problem using the dependencies in both input and target spaces. The partial least
squares regression is considered as linear model for dimensionality reduction. The algo-
rithm solves feature selection in a single quadratic programming optimization problem. The
quadratic programming approach is investigated as feature selection algorithm. The mul-
tivariate extensions for the QPFS algorithms are proposed. The resulting feature subset
includes non-correlated features which are relevant to the most difficult targets.

The computational experiments were carried out on the ECoG data. The resulting model
predicts the limb position of an exoskeleton by brain signals. The proposed algorithms
outperforms the baseline algorithm and reduce the problem dimension significantly. The
combination of feature selection for sparsifying the model and the dimensionality reduction

for increasing model stability give the best result.
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