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АННОТАЦИЯ:

Данная работа посвящена задаче декодирования сигнала для построения нейроком-

пьютерного интерфейса. Нейрокомпьютерный интерфейс помогает людям с ограничен-

ными возможностями восстановить их мобильность. Целью исследования является по-

строение модели, предсказывающей положение конечности по сигналам мозга. Пробле-

ма заключается в избыточности исходного описания данных. Корреляция измерений

прибора приводит к корреляции во входном пространстве описаний модели. Кроме то-

го, рассматривается многомерный случай, целевая переменная является вектором из

последовательных положений руки в пространстве. Зависимость между последователь-

ными позициями руки приводит к корреляциям в пространстве ответов. Для устране-

ния избыточной корреляции в признаковом описании объектов используются методы

снижения размерности и выбора признаков.

Регрессия методом частных наименьших квадратов (PLS) используется в качестве

базовой модели для снижения размерности пространства. Данная модель проецирует

входные объекты и ответы в скрытое пространство и максимизирует ковариации между

проекциями. Сочетание зависимостей входных объектов и ответов позволяет построить

устойчивую модель.

Снижение размерности не поозволяет построить разреженную модель. Разрежен-

ность достигается путем выбора признаков. Большинство методов выбора признаков не

используют зависимости в пространстве ответов. В работе предлагается новый подход

к выбору признаков в случае многомерной регрессии. Для учета корреляций в матрице

ответов предлагается обобщить идею алгоритма выбора признаков с помощью квад-

ратичного программирования (QPFS). Алгоритм QPFS выбирает некоррелированные

объекты, которые релеванты столбцам матрицы ответов. Предлагаемые методы накла-

дывают веса на столбцы матрицы ответов. Идея состоит в том, чтобы оштрафовать

коррелированные столбцы и уменьшить их влияние на выбор признаков.

Вычислительный эксперимент проводится на реальном наборе данных электрокор-

тикограмм (ЭКОГ). Предложенные алгоритмы сравниваются по различным критери-

ям, таким как стабильность и точность прогноза. Алгоритмы показывают результаты

выше базового алгоритма. Сравнивается модель линейной регрессии с использовани-

ем QPFS алгоритма и модель регрессии частных наименьших квадратов. Наилучший

результат достигается комбинацией алгоритмов QPFS и PLS.

2



Contents

1 Introduction 4

2 Problem statement 6

2.1 Multivariate regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Quadratic Programming Feature Selection . . . . . . . . . . . . . . . . . . . 8

3 Partial least squares regression 10

4 Multivariate QPFS 14

4.1 Relevance aggregation (RelAgg). . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Symmetric importances (SymImp). . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Minimax QPFS (MinMax and MaxMin). . . . . . . . . . . . . . . . . . . . . 16

4.4 Minimax Relevances (MaxRel). . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 Asymmetric Importance (AsymImp) . . . . . . . . . . . . . . . . . . . . . . 19

5 Experiment 22

5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion 28

3



1. INTRODUCTION

The research investigates the problem of signal decoding for Brain Computer Interface

(BCI) [1]. BCI aims to develop systems that help people with a severe motor control dis-

ability to recover mobility. The minimally-invasive implant records cortical signals and the

model decodes them on real time to predict the coordinates of an exoskeleton limbs [2, 3].

The subject placed inside the exoskeleton can drive it by imagining movements as if they

were making the movement by themselves.

The challenge to build such model is redundancy in initial data description. The features

are highly correlated due to spatial nature of the data. The brain sensors are close to each

other. It leads to redundant measurements and instability of the final model. In addition,

the redundant data description requires excess computations which lead to real-time delay.

To overcome this problem dimensionality reduction [4,5] and feature selection [6,7] methods

are used.

The dimensionality reduction algorithms find the optimal combinations of the initial fea-

tures and use these combinations as the model features. For ECoG-based data the widely

used dimensionality reduction algorithm is partial least squares (PLS) [8–10]. The algorithm

projects the features and the targets onto the joint latent space and maximizes the covari-

ances between projected vectors. It allows to save information about initial input and target

matrices and find their relations. The dimensionality of latent space is much less than the

size of initial data description. It leads to a stable linear model built on the small number

of features. The overview of recent advances in PLS algorihm is given in [11, 12]. For this

model we obtain the linear model with small latent dimension. However, the final model use

the whole range of the initial features and it does not allow to remove useless features.

Feature selection is a special case of dimensionality reduction when the latent represen-

tation is a subset of initial data description. Here the model are built on the subset of the

features. One of the approach to feature selection is to maximize feature relevances and

minimize pairwise feature redundancy. This approach was recently proposed and investi-

gated in [13,14]. Quadratic programmic feature selection (QPFS) [15] uses this approach to

construct the optimization problem. It was shown in [16] that QPFS algorithm outperforms

many existing feature selection methods for the univariate regression problem. The QPFS

algorithm introduces two functions: Sim and Rel. Sim estimates the redundancy between

features, Rel contains relevances between each feature and the target vector. QPFS mini-

mizes the function Sim and maximizes the function Rel simultaneously. The algorithm solves
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the following optimization problem

(1− α) · zTQz︸ ︷︷ ︸
Sim(X)

−α · bTz︸︷︷︸
Rel(X,ν)

→ min
z≥0n

1T
nz=1

. (1)

Here columns of the matrix X are the features, and ν is the target vector. The ma-

trix Q ∈ Rn×n entries measure the pairwise similarities between features. The vector b ∈ Rn

expresses the similarities between each feature and the target vector. The normalized vec-

tor z shows the importance of each feature. The function (1) penalizes the dependent features

by the function Sim and encourages features relevant to the target by the function Rel. The

parameter α controls the trade-off between Sim and the Rel. To measure similarity the au-

thors use the absolute value of sample correlation coefficient or sample mutual information

coefficient between pairs of features for the function Sim, and between the features and the

target vector for the function Rel.

The paper [17] proposes a multi-way version of the QPFS algorithm for tensor ECoG-

based data. It was shown that QPFS is an appropriate feature selection method for brain

signal decoding problem. We consider the multivariate problem, where the dependent vari-

able is a vector. It refers to the prediction of limb position for not just one timestamp, but

for some period of time. The subsequent hand positions are correlated. It leads to corre-

lations in the model targets. In this situation feature selection algorithms do not take into

account these dependencies. Hence, the selected feature subset is not optimal in terms of

prediction. We propose methods which take into account the dependencies in both input

and target spaces. It allows to get the stable sparse model. We refer to the original QPFS

algortihm as our baseline for the computational experiment.

The experiments were carried out in the ECoG data from the NeuroTycho project 1. We

compared the proposed methods for multivariate feature selection with the baseline strategy

and with PLS algorithm. The stability of the proposed methods were investigated. The

proposed algorithms outperform the baseline algorithm with the same number of features.

The combination of the feature selection procedure and the PLS algorithm gives the best

performance.

1http://neurotycho.org/food-tracking-task
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2. PROBLEM STATEMENT

In this section we define the problem of multivariate regression in terms of loss function

minimization. Then the dimensionality reduction and feature selection problems are defined.

We use PLS regression as algorithm for dimensionality reduction. Finally, we state QPFS

algorithm which are the baseline for feature selection.

2.1. Multivariate regression

The goal is to forecast a dependent variable y ∈ Rr with r targets from an independent

input object x ∈ Rn with n features. We assume there is a linear dependence

y = Θx + ε (2)

between the object x and the target variable y, where Θ ∈ Rr×n is a matrix of model

parameters, ε ∈ Rr is a residual vector. One has to find the matrix of the model parameters Θ

given a dataset (X,Y), where X ∈ Rm×n is a design matrix, Y ∈ Rm×r is a target matrix

X = [x1, . . . ,xm]T = [χ1, . . . ,χn]; Y = [y1, . . . ,ym]T = [ν1, . . . ,νr]. (3)

The columns χj of X respond to the object features, the columns νj of Y respond to the

targets.

The optimal parameters are determined by minimization of an error function. Define the

quadratic loss function:

L(Θ|X,Y) =

∥∥∥∥ Y
m×r
− X

m×n
· Θ
r×n

T

∥∥∥∥2
2

→ min
Θ

. (4)

The solution of (4) is given by

Θ = YTX(XTX)−1. (5)

The linear dependent columns of X leads to an instable solution for the optimization

problem (4). If there is a vector α 6= 0n such that Xα = 0m, then adding α to any column

of Θ does not change the value of the loss function L(Θ|X,Y). In this case the matrix XTX

is close to singular and not invertible. To avoid the strong linear dependence, dimensionality

reduction and feature selection techniques are used.
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2.2. Dimensionality reduction

To eliminate the linear dependence and reduce the dimensionality of the input space, the

principal components analysis (PCA) is widely used algorithm. The main disadvantage of

the PCA method is its insensitivity to the interrelation between the features and the targets.

The partial least squares algorithm projects the design matrix X and the target matrix Y to

the latent space with low dimensionality (l < n). The PLS algorithm finds the latent space

matrices T,U ∈ Rm×l that best describe the original matrices X and Y.

The design matrix X and the target matrix Y are projected into the latent space in the

following way:

X
m×n

= T
m×l
·PT

l×n
+ F

m×n
=

l∑
k=1

tk
m×1
· pT

k
1×n

+ F
m×n

, (6)

Y
m×r

= U
m×l
·QT

l×r
+ E

m×r
=

l∑
k=1

uk
m×1
· qT

k
1×r

+ E
m×r

, (7)

where T, U are scores matrices in the latent space; P, Q are loading matrices; E, F are

residual matrices. PLS maximizes the linear relation between columns of matrices T and U

U ≈ TB, B = diag(βk), βk = uT
k tk/(t

T
k tk). (8)

We use the PLS algorithm as the dimensionality reduction algorithm in this research.

The theoretical explanation of the PLS algorithm are given in Section 3.

2.3. Feature selection

Feature selection is a special case of dimensionality reduction, where the loading matrices T

and U are the submatrices of the design matrix X and the target matrix Y.

The feature selection goal is to find the boolean vector a = {0, 1}n, which components

indicate whether the feature is selected. To obtain the optimal vector a among all possible

2n−1 options, introduce the feature selection error function S(a|X,Y). We state the feature

selection problem as follows

a = arg min
a′∈{0,1}n

S(a′|X,Y). (9)

The goal of feature selection is to construct the appropriate function S(a|X,Y). The particu-

lar examples for the considered feature selection algorithms are given below and summarized

in the Table 1.
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The problem (9) are hard to solve due to discrete binary domain {0, 1}n. We relax the

problem (9) to the continuous domain [0, 1]n. The relaxed feature selection problem is

z = arg min
z′∈[0,1]n

S(z′|X,Y). (10)

Here the vector z entries are normalized feature importances. Firstly, solve the problem (10)

to obtain the feature importances z. Then the solution of (9) is recovered by thresholding:

a = [aj]
n
j=1, aj =

1, zj > τ ;

0, otherwise.
(11)

Here the value τ is a hyperparameter which is defined manually or choosen by cross-

validation.

Once the solution a of (9) is known, the problem (4) becomes

L(Θa|Xa,Y) =
∥∥Y −XaΘ

T
a

∥∥2
2
→ min

Θa

, (12)

where the subscript a indicates the submatrix with the columns for which components of a

equal 1.

2.4. Quadratic Programming Feature Selection

Our base algorithm for feature selection is quadratic programming feature selection algo-

rithm. The paper [16] shows that QPFS outperforms many existing feature selection algo-

rithms in different criteria. The QPFS algorithm selects non-correlated features, which are

relevant to the target vector ν for the linear regression problem with r = 1

‖ν −Xθ‖22 → min
θ∈Rn

. (13)

The authors of the original QPFS paper [15] suggested the way to select α for (1) and

make Sim(X) and Rel(X,ν) impacts the same:

α =
Q

Q + b
, (14)

where Q, b are the mean values of Q and b respectively. The QPFS parameters are defined
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as follows:

Q =
[
sim(χi,χj)

]n
i,j=1

, b = [sim(χi,ν)]ni=1 . (15)

Here the function sim(·, ·) is a similarity measure. The common ways to define this function

are the absolute value of sample Pearson correlation coefficient

sim(χ,ν) = |corr(χ,ν)| =
∣∣∣∣∣

∑m
i=1(χi − χ)(νi − ν)√∑m

i=1(χi − χ)2
∑m

i=1(νi − ν)2

∣∣∣∣∣ , (16)

or the sample mutual information coefficient

sim(χ,ν) = I(χ,ν) =

∫ ∫
p(χ,ν) log(

p(χ,ν)

p(χ)p(ν)
)dχdν. (17)

We use the correlation coefficient (16) as a similarity measure sim(·, ·). The other ways to

define Q and b are considered in [16].

The problem (1) is convex if the matrix Q is positive semidefinite. In general it is not

always true. To satisfy this condition, the matrix Q spectrum is shifted and the matrix Q

is replaced by Q − λminI, where λmin is a minimal eigenvalue of Q. The original paper [15]

suggests the way to solve the quadratic problem (1) efficiently. In [18] the sequential minimal

optimization framework is proposed for solving (1).

9



3. PARTIAL LEAST SQUARES REGRESSION

The pseudocode of the PLS regression algorithm is given in the Algorithm 1. In each of the l

steps the algorithm iteratively calculates columns tk, uk, pk, qk of the matrices T, U, P, Q,

respectively. After the computation of the next set of vectors, the one-rank approximations

are subtracted from the matrices X, Y. This step is called a matrix deflation. In the first

step one has to normalize the columns of the original matrices (subtract the mean and divide

by the standard deviation). During the test mode we need to normalize test data, compute

the model prediction (2), and then perform the reverse normalization.

Algorithm 1 PLSR algorithm
Require: X,Y, l;
Ensure: T,P,Q;
1: normalize matrices X и Y by columns
2: initialize u0 (the first column of Y)
3: X1 = X; Y1 = Y
4: for k = 1, . . . , l do
5: repeat
6: wk := XT

kuk−1/(u
T
k−1uk−1); wk := wk

‖wk‖
7: tk := Xkwk

8: ck := YT
k tk/(t

T
k tk); ck := ck

‖ck‖
9: uk := Ykck

10: until tk stabilizes
11: pk := XT

k tk/(t
T
k tk), qk := YT

kuk/(u
T
kuk)

12: Xk+1 := Xk − tkp
T
k

13: Yk+1 := Yk − ukq
T
k ≈ Yk − tk ·

(
YTtk
tTktk

)T
The vectors tk and uk from the inner loop of the algorithm 1 contain information about

the design matrix X and the target matrix Y, respectively. The blocks of steps (6)–(7)

and (8)-(9) are analogues of the PCA algorithm for the matrices X and Y [19]. Sequential

repetition of the blocks takes into account the interaction between the matrices X and Y.

The theoretical explanation of the PLS algorithm follows from the statements.

Proposition 1. The best description of the matrices X and Y taking into account their

interrelation is achieved by maximization of the covariance between the vectors tk and uk.

The statement follows from the equation

cov(tk,uk) = corr(tk,uk) ·
√

var(tk) ·
√

var(uk). (18)
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Maximization of the vectors tk and uk variances corresponds to keeping information about

original matrices, the correlation of these vectors corresponds to interrelation between X

and Y. �

In the inner loop of the Algorithm 1 the normalized weight vectors wk and ck are calcu-

lated. These vectors construct the matrices W and C, respectively.

Proposition 2. The vector wk and ck are eigenvectors of the matrices XT
kYkY

T
kXk and

YT
kXkX

T
kYk, corresponding to the maximum eigenvalues.

wk ∝ XT
kuk−1 ∝ XT

kYkck−1 ∝ XT
kYkY

T
k tk−1 ∝ XT

kYkY
T
kXkwk−1, (19)

ck ∝ YT
k tk ∝ YT

kXkwk ∝ YT
kXkX

T
kuk−1 ∝ YT

kXkX
T
kYkck−1, (20)

where the ∝ symbol means equality up to a multiplicative constant.

The statement follows from the fact that the update rule for vectors wk, ck coincides

with the iteration of the power method for the maximum eigenvalue.

We formulate the power method as follows. Let a matrix A be diagonalizable, x be some

vector, then

lim
k→∞

Akx = λmax(A) · vmax, (21)

where vmax is the eigenvector A, corresponding to the maximum eigenvalue λmax(A). �

Proposition 3. The update rule for the vectors in steps (6)–(9) of the algorithm 1 corre-

sponds to the maximization of the covariance between the vectors tk and uk.

The maximum covariance between the vectors tk and uk is equal to the maximum eigen-

value of the matrix XT
kYkY

T
kXk:

max
tk,uk

cov(tk,uk)
2 = max

‖wk‖=1
‖ck‖=1

cov (Xkwk,Ykck)
2 = max

‖wk‖=1
‖ck‖=1

cov
(
cT
kYT

kXkwk

)2
=

= max
‖wk‖=1

cov
∥∥YT

kXkwk

∥∥2 = max
‖wk‖=1

wT
kXT

kYkY
T
kXkwk =

= λmax

(
XT
kYkY

T
kXk

)
, (22)

where λmax(A) is the maximum eigenvalue of A. Using the statement 2, we obtain the

required result. �
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After the inner loop the following step (11:) is to compute vectors pk, qk by projection of

the matrices Xk and Yk columns to the vector tk. Before proceeding with the next iteration

one has to deflate the matrices Xk and Yk by the one-rank approximations tkp
T
k and tkq

T
k

Xk+1 = Xk − tkp
T
k = X−

∑
k

tkp
T
k , (23)

Yk+1 = Yk − tkq
T
k = Y −

∑
k

tkq
T
k . (24)

Each next vector tk+1 turns out to be orthogonal to all vectors ti, i = 1, . . . , k.

Let assume that the dimension of the input, the target, and the latent spaces are equal to 2

(n = r = l = 2). Figure 1 shows the result of the PLS algorithm in this case. Blue and green

dots represent the rows of the matrices X and Y, respectively. The dots were generated from

a normal distribution with zero mean. Contours of the distribution for covariance matrices

are shown in red. Black contours are unit circles. Red arrows correspond to principal

components for this set of points. Black arrows correspond to the vectors of the matrices W

and C from the PLS algorithm. The vectors tk and uk are equal to the projected matrices Xk

and Yk to the vectors wk and ck, respectively, and are denoted by black pluses. Taking into

account the interaction between the matrices X and Y the vectors wk and ck deviate from

the principal components directions. The deviation of the vectors wk is insignificant. In

the first iteration, c1 is close to the principal component pc1, but the vectors ck in the next

iterations could strongly correlate. The difference in the vectors wk and ck the behaviour

is associated with the assymmetric deflation process (23), (24). In particular, we subtract

from Y the one-rank approximation found in the space of the design matrix X.

To obtain the model prediction and find the model parameters, multiply the both hand

sides of (6) by the matrix W. Since the residual matrix E rows are orthogonal to the columns

of W, we have

XW = TPTW. (25)

The linear transformation between objects in the input and latent spaces is the following

T = XW∗, where W∗ = W(PTW)−1. (26)

The matrix of the model parameters (2) could be found from equations (7), (26)

Y = UQT + E ≈ TBQT + E = XW∗BQT + E = XΘ + E. (27)

12
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Figure 1: PLS algorithm example for the case n = r = l = 2
.

Thus, the model parameters (2) are equal to

Θ = W(PTW)−1BQT. (28)

The final model (27) is a linear model which are low-dimensional in the latent space. It

reduces the data redundancy and increases the model stability.
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4. MULTIVARIATE QPFS

We are aimed to propose the algorithms which suitable for feature selection in multivariate

case. If the target space is multidimensional it prone to redundancy and correlations between

the targets. In this section we consider the algorithms that take into account the probable

dependencies in both input and target spaces.

4.1. Relevance aggregation (RelAgg).

First approach to apply the QPFS algorithm to the multivariate case (r > 1) is to aggregate

feature relevances through all r components. The term Sim(X) is still the same, the matrix

Q is defined by (15). The vector b is aggregated across all targets and is defined by

b =

[
r∑

k=1

sim(χi,νk)

]n
i=1

. (29)

The drawback of this approach is its insensitivity to the dependencies in the columns

of Y. Observe the following example:

X = [χ1,χ2,χ3], Y = [ν1,ν1, . . . ,ν1︸ ︷︷ ︸
r−1

,ν2], (30)

We have three features and r targets, where first r − 1 targets are identical. The pairwise

features similarities are given by the matrix Q. The matrix B entries show pairwise features

relevances to the targets. The vector b is obtained by summation of the matrix B over

columns.

Q =


1 0 0

0 1 0.8

0 0.8 1

 , B =


0.4 . . . 0.4 0

0.5 . . . 0.5 0.8

︸ ︷︷ ︸
r − 1

0.8 . . . 0.8 0.1

 , b =


(r − 1) · 0.4 + 0

(r − 1) · 0.5 + 0.8

(r − 1) · 0.8 + 0.1.

 (31)

We would like to select only two features. For such configuration the best feature sub-

set is [χ1,χ2]. The feature χ2 predicts the second target ν2 and the combination of fea-

tures χ1,χ2 predicts the first component. The QPFS algorithm for r = 2 gives the solu-

tion z = [0.37, 0.61, 0.02]. It coincides with our knowledge. However, if we add the collinear

columns to the matrix Y and increase r to 5, the QPFS solution will be z = [0.40, 0.17, 0.43].

14



Here we lose the relevant feature χ2 and select the redundant feature χ3. The following sub-

sections propose the extension of the QPFS algorithm which are overcome the challenge of

this example.

4.2. Symmetric importances (SymImp).

To take into account the dependencies in the columns of the matrix Y we extend the

QPFS function (1) to the multivariate case. We add the term Sim(Y) and modify the

term Rel(X,Y) as follows

α1 · zT
xQxzx︸ ︷︷ ︸
Sim(X)

−α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

+α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

→ min
zx≥0n,1T

nzx=1

zy≥0r,1T
r zy=1

. (32)

Determine the entries of matrices Qx ∈ Rn×n, Qy ∈ Rr×r, B ∈ Rn×r in the following way

Qx =
[
sim(χi,χj)

]n
i,j=1

, Qy = [sim(νi,νj)]
r
i,j=1 , B = [sim(χi,νj)]i=1,...,n

j=1,...,r
. (33)

The vector zx shows the features importances, while zy is a vector with the targets impor-

tances. The correlated targets will be penalized by Sim(Y) and have the lower importances.

The coefficients α1, α2, and α3 control the influence of each term on the function (32)

and satisfy the conditions:

α1 + α2 + α3 = 1, αi ≥ 0, i = 1, 2, 3. (34)

Proposition 4. The balance between the terms Sim(X), Rel(X,Y), and Sim(Y) for the

problem (32) is achieved by the following coefficients:

α1 =
QyB

QyB + QxQy + QxB
; (35)

α2 =
QxQy

QyB + QxQy + QxB
; (36)

α3 =
QxB

QyB + QxQy + QxB
. (37)

Here Qx, B, Qy are mean values of Qx, B, and Qy, respectively.

15



0.0 0.2 0.4 0.6 0.8 1.0
α3

0.0

0.2

0.4

0.6

0.8

1.0

zx,1 zx,2 zx,3

0.0 0.2 0.4 0.6 0.8 1.0
α3

zy,1 zy,2 zy,3 zy,4 zy,5

Figure 2: Feature importances zx and zy w.r.t. α3 for the considered example

Proof. The desired values of α1, α2, and α3 are given by solving of the following equations

α1 + α2 + α3 = 1; (38)

α1Qx = α2B = α3Qy. (39)

Here, the mean values Qx, B, Qy of the corresponding matrices Qx, B, and Qy are the

mean values of the terms Sim(X), Rel(X,Y), and Sim(Y).

To investigate the impact of the term Sim(Y) on the function (32), we balance the terms

Sim(X) and Rel(X,Y) by fixing the proportion between α1 and α2:

α1 =
(1− α3)B

Qx + B
; α2 =

(1− α3)Qx

Qx + B
; α3 ∈ [0, 1]. (40)

We apply the proposed algorithm to the discussed example (31). The given matrix Q cor-

responds to the matrix Qx. We additionally define the matrix Qy by setting corr(ν1,ν2) =

0.2 and all others entries to one. Figure 2 shows the importances of features zx and tar-

gets zy with respect to α3 coefficient. If α3 is small, the impact of all targets are almost

identical and the feature χ3 dominates the feature χ2. When α3 becomes larger than 0.2,

the importance zy,5 of the target ν5 grows up along with the importance of the feature χ2.

4.3. Minimax QPFS (MinMax and MaxMin).

The function (32) is symmetric with respect to zx and zy. It penalizes the features that are

correlated and are not relevant to the targets. At the same time it penalizes the targets that

are correlated and are not sufficiently explained by the features. It leads to small importances

for the targets which are difficult to predict by the features and large importances for the
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targets which are strongly correlated with the features. It contradicts with the intuition.

Our goal is to predict all targets, especially which are difficult to explain, by selected relevant

and non-correlated the features. We express this into two related problems:

α1 · zT
xQxzx︸ ︷︷ ︸
Sim(X)

−α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

→ min
zx≥0n,
1T
nzx=1

; (41)

α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

+α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

→ min
zy≥0r,

1T
r zy=1

. (42)

The difference between (41) and (42) is the sign of Rel. In feature space the non-relevant

components should have smaller importances. Meanwhile, the targets that are not relevant

to the features should have larger importances. The problems (41) and (42) are merged into

the joint min-max or max-min formulation

min
zx≥0n

1T
nzx=1

max
zy≥0r

1T
r zy=1

f(zx, zy),

or max
zy≥0r

1T
r zy=1

min
zx≥0n

1T
nzx=1

f(zx, zy)

 , (43)

where

f(zx, zy) = α1 · zT
xQxzx︸ ︷︷ ︸
Sim(X)

−α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

−α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

. (44)

Theorem 1. For positive definite matrices Qx and Qy the max-min and min-max prob-

lems (43) have the same optimal value.

Proof. Denote

Cn = {z : z ≥ 0n, 1T
nz = 1}, Cr = {z : z ≥ 0r, 1T

r z = 1}. (45)

The sets Cn and Cr are compact and convex. The function f : Cn×Cr → R is a continuous

function. If Qx and Qy are positive definite matrices, the function f is convex-concave, i.e.

f(·, zy) : Cn → R is convex for fixed zy, and f(zx, ·) : Cr → R is concave for fixed zx. In this

case Neumann’s minimax theorem states

min
zx∈Cn

max
zy∈Cr

f(zx, zy) = max
zy∈Cr

min
zx∈Cn

f(zx, zy). (46)

To solve the min-max problem (43), fix some zx ∈ Cn. For fixed vector zx we solve the
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problem

max
zy∈Cr

f(zx, zy) = max
zy≥0r

1T
r zy=1

[
α1 · zT

xQxzx − α2 · zT
xBzy − α3 · zT

yQyzy
]
. (47)

The Lagrangian for this problem is

L(zx, zy, λ,µ) = α1 · zT
xQxzx − α2 · zT

xBzy − α3 · zT
yQyzy + λ · (1T

r zy − 1) + µTzy. (48)

Here the Lagrange multipliers µ, corresponding to the inequality constraints zy ≥ 0r, are

restricted to be non-negative. The dual problem is

min
λ,µ≥0r

g(zx, λ,µ) = min
λ,µ≥0r

[
max
zy∈Rr

L(zx, zy, λ,µ)

]
. (49)

The strong duality holds for quadratic problem (47) with positive definite matrices Qx

and Qy. Therefore, the optimal value for (47) equals the optimal value for (49). It allows to

solve the problem

min
zx∈Cn, λ,µ≥0r

g(zy, λ,µ) (50)

instead of (43).

Setting the gradient of the Langrangian ∇zyL(zx, zy, λ,µ) to zero, we obtain an optimal

value zy:

zy =
1

2α3

Q−1y
(
−α2 ·BTzx + λ · 1r + µ

)
. (51)

The dual function is equal to

g(zx, λ,µ) = max
zy∈Rr

L(zx, zy, λ,µ) = zT
x

(
− α2

2

4α3

·BQ−1y BT − α1 ·Qx

)
zx

− 1

4α3

λ2 · 1T
r Q−1y 1r −

1

4α3

· µTQ−1y µ+
α2

2α3

λ · 1T
r Q−1y BTzx

− 1

2α3

λ · 1T
r Q−1y µ+

α2

2α3

· µTQ−1y BTzx + λ. (52)

It brings to the quadratic problem (50) with n+ r + 1 variables.

4.4. Minimax Relevances (MaxRel).

The problem (50) is not convex. If we shift the spectrum for the matrix of quadratic

form (52), the optimality is lost and the solutions obtained by min-max and max-min prob-

lems are not the same. To overcome this problem, we suggest to drop the term Sim(Y). It

brings to the following min-max problem
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min
zx≥0n

1T
nzx=1

max
zy≥0r

1T
r zy=1

[
(1− α) · zT

xQxzx − α · zT
xBzy

]
. (53)

The Lagrangian for the problem (53) with the fixed vector zx is

L(zx, zy, λ,µ) = (1− α) · zT
xQxzx − α · zT

xBzy + λ · (1T
r zy − 1) + µTzy. (54)

Setting the gradient of the Langrangian ∇zyL(zx, zy, λ,µ) to zero, we obtain:

α ·BTzx = λ · 1r + µ. (55)

The dual function is equal to

g(zx, λ,µ) =

(1− α) · zT
xQxzx − λ, α ·BTzx = λ · 1r + µ;

+∞, otherwise.
(56)

In this case the feature importances are the solution of (50), which is expressed as follows

min
zx∈Cn, λ,µ≥0r

α·BTzx=λ·1r+µ

[
(1− α) · zT

xQxzx − λ
]
. (57)

This quadratic problem is convex for the positive definite matrix Qx.

4.5. Asymmetric Importance (AsymImp)

Another way to overcome the problem of SymImp strategy is to add penalty for targets,

which are well-explained by the features. We add the term bTzy to the term Rel(X,Y):

α1 · zT
xQxzx︸ ︷︷ ︸
Sim(X)

−α2 ·
(
zT
xBzy − bTzy

)︸ ︷︷ ︸
Rel(X,Y)

+α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

→ min
zx≥0n,1T

nzx=1

zy≥0r,1T
r zy=1

. (58)

Proposition 5. Let the vector b equal

bj = max
i=1,...n

[B]i,j. (59)

Then the importances coefficients for the vector zy will be nonnegative in term Rel(X,Y) for

the problem (58).
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Proof. The proposition follows from the fact

n∑
i=1

zibij ≤
(

n∑
i=1

zi

)
max
i=1,...n

bij = max
i=1,...n

bij,

where zi ≥ 0 and
∑n

i=1 zi = 1.

Hence, the function (58) encourages the features which are relevant to the targets and

encourages the targets that are not sufficiently correlated with the features.

Proposition 6. The balance between the terms Sim(X), Rel(X,Y), and Rel(X,Y) for the

problem (58) is achieved by the following coefficients:

α1 =
Qy

(
b−B

)
Qy

(
b−B

)
+ QxQy + QxB

; (60)

α2 =
QxQy

Qy

(
b−B

)
+ QxQy + QxB

; (61)

α3 =
QxB

Qy

(
b−B

)
+ QxQy + QxB

. (62)

Proof. The desired values of α1, α2, and α3 are given by solution of the following equations

α1 + α2 + α3 = 1; (63)

α1Qx = α2B; (64)

α2

(
b−B

)
= α3Qy. (65)

Here we balance Sim(X) with the first term of Rel(X,Y) by (64) and Sim(Y) with the

full Rel(X,Y) by (65).

Proposition 7. For the case r = 1 the proposed functions (32), (43), (53), and (58)

coincide with the original QPFS algorithm (1).

Proof. If r is equal to 1, then Qy = qy is a scalar, zy = 1, B = b. It reduces the prob-

lems (??), (43), and (53) to

α1 · zT
xQxzx − α2 · zT

xb→ min
zx≥0n,1T

nzx=1
. (66)

Setting α = α2

α1+α2
brings to the original QPFS problem (1).

To summarize all proposed strategies for multivariate feature selection, Table 1 shows the

core ideas and error functions for each method. RelAgg is the baseline strategy, which does
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Algorithm Idea Error function S(a|X,Y)

RelAgg min
[
Sim(X)− Rel(X,Y)

]
min
zx

[
(1− α) · zTxQxzx − α · zTxB1r

]
SymImp

min
[
Sim(X)− Rel(X,Y)

+ Sim(Y)
] min

zx, zy

[
α1 · zTxQxzx − α2 · zTxBzy + α3 · zTyQyzy

]
MinMax

min
[
Sim(X)− Rel(X,Y)

]
max

[
Rel(X,Y) + Sim(Y)

] min
zx

max
zy

[
α1 · zTxQxzx − α2 · zTxBzy − α3 · zTyQyzy

]

MaxRel
min

[
Sim(X)− Rel(X,Y)

]
max

[
Rel(X,Y)

] min
zx

max
zy

[
(1− α) · zTxQxzx − α · zTxBzy

]
AsymImp

min
[
Sim(X)− Rel(X,Y)

]
max

[
Rel(X,Y) + Sim(Y)

] min
zx,zy

[
α1 · zTxQxzx − α2 ·

(
zTxBzy − bTzy

)
+ α3 · zTyQyzy

]
Table 1: Overview of the proposed multivariate QPFS algorithms

not consider the target space correlations. SymImp penalizes the pairwise target correlations.

MinMax more sensitive to the targets which are difficult for prediction. MaxRel strategy

use the minimax approach, but drop the term with pairwise target similarities. AsymImp

strategy add the term to the SymImp function to make the features and targets influence

asymmetric. The ideas in MinMax and AsymImp approaches are the same.
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5. EXPERIMENT

We carried out computational experiment with ECoG data from the NeuroTycho project.

The input data consists of brain voltage signals recorded from 32 channels. The goal is

to predict 3D hand position in the next moments given the input signal. The example of

input signals and the 3D wrist coordinates are shown in Figure 3. The initial voltage signals

are transformed to the spatial-temporal representation using wavelet transformation with

Morlet mother wavelet. The procedure of extracting feature representation from the raw

data are described in details in [20, 21]. We unfold the data and feature description at each

time moment has dimension equals to 32 (channels) × 27 (frequencies) = 864. Each object

is the representation of local history time segment with duration ∆t = 1s. The time step

between objects is δt = 0.05s. The final matrices are X ∈ R18900×864 and Y ∈ R18900×3k,

where k is a number of timestamps that we predict. We split our data into train and test

parts with the ratio 0.67.

5.1. Metrics

To evaluate the selected feature subset we introduce criteria that estimate the quality of fea-

ture selection. We measure multicorrelation by mean value of miltiple correlation coefficient

as follows

R2 =
1

r
tr
(
CTR−1C

)
; where C = [corr(χi,νj)]i=1,...,n

j=1,...,r
, R = [corr(χi,χj)]

n
i,j=1. (67)

This coefficient lies between 0 and 1. The bigger R2 means the better feature subset we

have.

The model stability is given by the logarithmic ratio between minimal eigenvalue λmin

and maximum eigenvalue λmax of the matrix XTX:

Stability = ln
λmin

λmax

. (68)

A smaller value of Stability indicates less multicollinearity in the matrix X.

The scaled Root Mean Squared Error (sRMSE) shows the quality of the model prediction.

We estimate sRMSE on train and test data.

sRMSE(Y, Ŷa) =

√
MSE(Y, Ŷa)

MSE(Y,Y)
=
‖Y − Ŷa‖2
‖Y −Y‖2

. (69)
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Figure 3: Brain signals (left plot) and 3D hand coordinates (right plot)

Here Ŷa = XaΘ
T
a is a model prediction and Y is a constant prediction obtained by averaging

the targets across all objects. The error on the test set should be as minimal as possible.

Bayesian Information Criteria (BIC) is a trade-off between prediction quality and the

size of selected subset ‖a‖0:

BIC = m ln
(
MSE(Y, Ŷa)

)
+ ‖a‖0 · lnm, (70)

where ‖a‖0 = #{j : aj 6= 0} =
∑n

j=1 aj. The less value of BIC means the better feature

subset.

5.2. Results

To show the redundancy in the data representation we solve the QPFS problem for our

data. Figures 4 and 5 show the result, where we use the Relevance Aggregation strategy and

k = 1. QPFS importances zx decrease sharply. It allows to use the elbow rule to choose the

threshold value τ . In our experiments we set τ = 10−4. Only about one hundred features

have importances significantly greater than zero. Starting from this amount of features, the

test error stops to decrease.

Figure 6 shows the dependencies in the matrices X and Y. Frequencies in the matrix X

are highly correlated. The frequencies are choosen in logarithmic scale, the closer the fre-

quencies are the higher the correlations. In the target matrix Y the correlations between

axes are not significant in comparison with the correlations between consequent moments

and these correlations decay with time.

We apply the QPFS algorithm with SymImp strategy for different values of α3 coefficient

according to formulas (40). The dependence between target importances zy with respect

to α3 for different values of k is shown in Figure 7. If we predict wrist coordinates only
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for one timestamp k = 1, targets importances are almost the same. It tells about the

independence between x, y, and z coordinates. For k = 2 and k = 3 the importances of

some targets become zero when α3 increases. The vertical lines correspond to the optimal

value of coefficient α3 obtained by (37). The importances zy for this value of α3 are similar.

It means that the algorithm does not distinguish the targets for k = 1, 2, 3.

We compare the proposed strategies of multivariate QPFS that are given in Table 1 for

the ECoG dataset. Firstly, we apply all methods to get feature importances. Then we fit

linear regression model with increasing number of features. For each method the features

are sorted by the obtained importances. We show how the described metrics are changed

with the increasing feature set size. Figure 8 illustrates the results for prediction of k = 30

timestamps. Here the feature importances threshold τ are shown by colored ticks. These

thresholds are larger for the proposed methods with comparison to the baseline RelAgg

strategy. The SymImp strategy has the largest threshold, it does not allow to get the small
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Figure 7: Target importances zy with respect to α3 for QPFS with Symmetric Importance

feature subset. However, this strategy shows the best performance in terms of sRMSE on

test data. The second value of performance is given by AsymImp, followed by MaxRel. All

proposed algorithms give the less test error compared to the RelAgg strategy. The Stability

criteria is also increased for the proposed algorithms. Here we consider the AsymImp strategy

as the best in terms of prediction quality and the size of selected feature subset.

To compare the structure of the selected feature subsets and investigate the stability of

the selection procedure, we use bootstrap approach. First, the bootstrap data are generated.

Then solve the feature selection problem for each pair of the design and the target matri-

ces. The obtained feature importances are compared. We calculate the average pairwise

Spearman correlation coefficient and the `2 distance to obtain the measure of the algorithms

stability. Table 2 shows the average error, the size of the subset and the described statistics

for each method. The error was calculated by fitting the linear regression model on the

50 features with the largest importances. The MaxRel strategy shows the worst stability.

AsymImp gives the least error on the test data. The size of selected feature subsets are
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timestamps

Table 2: The stability of the selected feature subset

sRMSE ‖a‖0 Spearman ρ `2 dist
RelAgg 0.965 ± 0.002 26.8 ± 3.8 0.915 ± 0.016 0.145 ± 0.018
SymImp 0.961 ± 0.001 224.4 ± 9.0 0.910 ± 0.017 0.025 ± 0.002
MinMax 0.961 ± 0.002 101.0 ± 2.1 0.932 ± 0.009 0.059 ± 0.004
MaxRel 0.958 ± 0.003 41.2 ± 5.2 0.862 ± 0.027 0.178 ± 0.010
AsymImp 0.955 ± 0.001 85.8 ± 10.2 0.926 ± 0.011 0.078 ± 0.007

overestimated using the equal threshold τ = 10−4. The value of τ should be cross-validated

to get the optimal threshold and the feature subset size.

We fit the PLS regression model for the data to compare the dimensionality reduction

and feature selection. Figure 9 shows the example of the model prediction. Three solid lines

show 3D coordinates of the hand position and the dashed lines are the model predictions.

Figure 10 demonstrates the scaled RMSE on train and test data with respect to the

dimensionality of the latent space l. The test error achieves minimum value at hte point

l = 11. PLS regression is more flexible approach compared to the linear model built on the

subset of features. It leads to the less error, but the model are not sparse.

Figure 11 compares 3 models: linear regression and PLS regression built on 100 features

given by qpfs and PLS regression with all features. We do not include linear regression with
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Figure 9: Example of 3D hand position prediction by PLS regression

all features because its results are close to the constant prediction. We use the AsymImp

strategy for QPFS in this experiment. The number of PLS latent dimension is l = 15.

Here PLS regression are significantly better than linear regression with QPFS features. It

means that the latter model is not flexible enough. However, the best result is obtained

by combination of PLS regression model with QPFS features. This model is sparse since it

uses only 100 QPFS features. The ability of the PLS model to find the optimal latent data

representation allows to improve model performance.
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6. CONCLUSION

The study investigates the problem of signal decoding in relation to modelling Brain Com-

puter Interface. To build a stable edequate model, it was proposed to reduce dimensionality

of the problem using the dependencies in both input and target spaces. The partial least

squares regression is considered as linear model for dimensionality reduction. The algo-

rithm solves feature selection in a single quadratic programming optimization problem. The

quadratic programming approach is investigated as feature selection algorithm. The mul-

tivariate extensions for the QPFS algorithms are proposed. The resulting feature subset

includes non-correlated features which are relevant to the most difficult targets.

The computational experiments were carried out on the ECoG data. The resulting model

predicts the limb position of an exoskeleton by brain signals. The proposed algorithms

outperforms the baseline algorithm and reduce the problem dimension significantly. The

combination of feature selection for sparsifying the model and the dimensionality reduction

for increasing model stability give the best result.
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