# Комбинаторная теория надёжности обучения по прецедентам

Воронцов Константин Вячеславович

Диссертация на соискание ученой степени доктора физико-математических наук 05.13.17 — теоретические основы информатики

Научный консультант — чл.-корр РАН К. В. Рудаков

ВЦ РАН, 22 апреля 2010

#### Содержание

- Проблема переобучения
  - Задача оценивания вероятности переобучения
  - Проблема завышенности оценок
  - Комбинаторно-дискретная постановка задачи
- Эксперименты: анализ факторов завышенности
  - Измерение факторов завышенности
    - Эксперименты с цепочками алгоритмов
- Оценки вероятности переобучения
  - Простые частные случаи
  - Порождающие и запрещающие множества
  - Модельные семейства алгоритмов
  - Рекуррентное вычисление вероятности переобучения
- Оценки полного скользящего контроля
  - Функционал полного скользящего контроля
  - Метод ближайшего соседа
  - Монотонные алгоритмы классификации

# Задача обучения по прецедентам

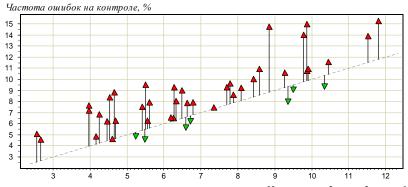
$$X = \{x_1, \dots, x_\ell\} \subset \mathbb{X}$$
 — обучающая выборка объектов;  $A$  — множество (семейство, модель) алгоритмов;  $\mu \colon \mathbb{X}^\ell \to A$  — метод обучения;  $a = \mu X$  — алгоритм, построенный методом  $\mu$  по выборке  $X$ ;  $\nu(a,X)$  — частота ошибок алгоритма  $a$  на выборке  $X$ ;  $\bar{X} = \{x_1', \dots, x_k'\} \subset \mathbb{X}$  — контрольная выборка;  $\nu(a,\bar{X})$  — частота ошибок алгоритма  $a$  на выборке  $\bar{X}$ ;

# Проблема переобучения («переподгонки», overfitting)

На практике  $\nu(a, \bar{X})$ , как правило, превышает  $\nu(a, X)$ .

# Проблема переобучения (пример)

Зависимость  $\nu(\mu X, \bar{X})$  от  $\nu(\mu X, X)$  при различных  $\mu$ .



Частота ошибок на обучении. %

График построен по реальным данным (задача прогнозирования отдалённых результатов хирургического лечения атеросклероза).

# Задача оценивания вероятности переобучения

# Дано:

- наблюдаемая обучающая выборка  $X \subset \mathbb{X}$ ;
- $\bullet$  семейство алгоритмов A;
- $\bullet$  метод обучения  $\mu \colon \mathbb{X}^{\ell} \to A$ .

#### Требуется:

- ullet оценить  $u(\mu X, \bar{X})$  на скрытой контрольной выборке  $\bar{X} \subset \mathbb{X}$ ;
- для этого достаточно оценить вероятность переобучения:

$$Q_{\varepsilon} = \mathsf{P}_{X,\bar{X}} \Big[ \underbrace{\nu(\mu X, \bar{X}) - \nu(\mu X, X)}_{\delta_{\mu}(X,\bar{X})} \geqslant \varepsilon \Big].$$

Oпр.  $\delta_{\mu}(X,\bar{X})$  — переобученность алгоритма  $\mu X$  на  $(X,\bar{X})$ .

# Теория восстановления зависимостей по эмпирическим данным

#### Теорема (Вапник и Червоненкис, 1971)

Для любой меры  $\mathsf{P}$ , метода  $\mu$ , конечного  $\mathsf{A}$  и  $\varepsilon \in (0,1)$ 

$$\begin{aligned} Q_{\varepsilon} &= \mathsf{P} \big[ \nu \big( \mu X, \bar{X} \big) - \nu \big( \mu X, X \big) \geqslant \varepsilon \big] \leqslant \\ &\stackrel{\text{(1)}}{\leqslant} \mathsf{P} \Big[ \max_{a \in A} \big( \nu \big( a, \bar{X} \big) - \nu \big( a, X \big) \big) \geqslant \varepsilon \Big] \leqslant \\ &\stackrel{\text{(2)}}{\leqslant} |A| \cdot \mathsf{P} \big[ \nu \big( a, \bar{X} \big) - \nu \big( a, X \big) \geqslant \varepsilon \big] \stackrel{\text{(3)}}{\leqslant} |A| \cdot \frac{3}{2} e^{-\varepsilon \ell^2}. \end{aligned}$$

- (1) принцип равномерной сходимости;
- (2) неравенство Буля (union bound);
- (3) неравенство Хёффдинга (концентрация вероятностной меры).

# Проблема завышенности VC-оценки

#### Анализ шагов доказательства:

- 🚺 оценка равномерной сходимости сильно завышена, когда в A есть мало «хороших» и много «плохих» алгоритмов;
- неравенство Буля сильно завышено, когда в A есть много схожих алгоритмов;
- неравенство Хёффдинга завышено в несколько раз.

#### Анализ того, какая информация используется:

- оценка зависит только от |A| и  $\ell$ ;
- не учтены свойства конкретного метода обучения  $\mu$ ;
- не учтены свойства конкретной выборки X;

Вывод: VC-оценка — это оценка «худшего случая».

# Оценки полного скользящего контроля Проблема завышенности VC-оценки

Зависимость достаточной длины обучения  $\ell$  от ёмкости h,  $|A|=\frac{3}{2}\frac{(2\ell)^h}{h!}$ , точности  $\varepsilon$  и надёжности  $\eta$ :

|     | η                    | 0.01  |       | $\eta=1$             |       |       |  |
|-----|----------------------|-------|-------|----------------------|-------|-------|--|
| h   | $\varepsilon = 0.05$ | 0.1   | 0.2   | $\varepsilon = 0.05$ | 0.1   | 0.2   |  |
| 0   | 2404                 | 601   | 150   | 562                  | 140   | 35    |  |
| 2   | 9012                 | 1946  | 408   | 6963                 | 1423  | 273   |  |
| 5   | 19884                | 4192  | 848   | 17823                | 3664  | 711   |  |
| 10  | 38160                | 7974  | 1589  | 36095                | 7444  | 1452  |  |
| 20  | 74855                | 15572 | 3082  | 72789                | 15043 | 2944  |  |
| 50  | 185193               | 38433 | 7575  | 183127               | 37903 | 7437  |  |
| 100 | 369275               | 76581 | 15075 | 367208               | 76051 | 14937 |  |

На практике, как правило, достаточно существенно меньшей  $\ell$ .

**Вывод:** случаи малых выборок и сложных семейств лежат за границами применимости VC-теории.

# Развитие теории статистического обучения, 1968-2009

- Теория равномерной сходимости [Вапник, Червоненкис, 1968]
- Корректные алгебры ограниченной ёмкости [Матросов, 1980]
- Theory of learnable (PAC-learning) [Valiant, 1982]
- Data-dependent bounds [Haussler, 1992]
- Connected function classes [Sill, 1995]
- Similar classifiers VC bounds [Bax, 1997]
- Margin based bounds [Bartlett, 1998]
- Self-bounding learning algorithms [Freund, 1998]
- Rademacher complexity [Koltchinskii, 1998]
- Adaptive microchoice bounds [Langford, Blum, 2001]
- Algorithmic stability [Bousquet, Elisseeff, 2002]
- Algorithmic luckiness [Herbrich, Williamson, 2002]
- Shell bounds [Langford, 2002]
- PAC-Bayes bounds [McAllester, 1999; Langford, 2005]

#### Актуальность данного исследования

- Ни один из известных подходов
  - не устраняет *всех* причин завышенности;
  - не даёт *точных* оценок вероятности переобучения;
- Большинство подходов используют принцип равномерной сходимости.
- Многие подходы используют неравенство Буля.
- Все подходы используют завышенные или асимптотические неравенства концентрации вероятностной меры (Хёффдинга, Чернова, МакДиармида, Талаграна, и т.п.).
- Незначительные улучшения оценок достигаются путём значительного усложнения математического аппарата.

Вывод: в теории статистического обучения необходимы новые подходы и методы.

#### Цели и методы исследования

#### Основная цель диссертационной работы

Создание нового математического аппарата для получения точных оценок вероятности переобучения.

#### Основные этапы исследования

- Экспериментальное измерение факторов завышенности и понимание причин завышенности VC-оценок (Глава 3).
- Разработка общих методов получения точных оценок и исследование модельных частных случаев (Глава 4).
- **③** Применение создание новых методов обучения (Глава 5).

# Матрица ошибок множества алгоритмов на выборке

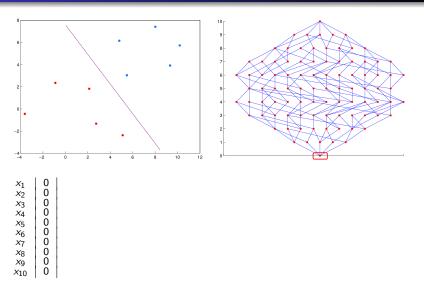
$$\mathbb{X} = \{x_1, \dots, x_L\}$$
 — конечное множество объектов;  $A = \{a_1, \dots, a_D\}$  — конечное множество алгоритмов;  $I(a, x) = [$ алгоритм  $a$  ошибается на объекте  $x ]$ ;

 $L \times D$ -матрица ошибок с попарно различными столбцами:

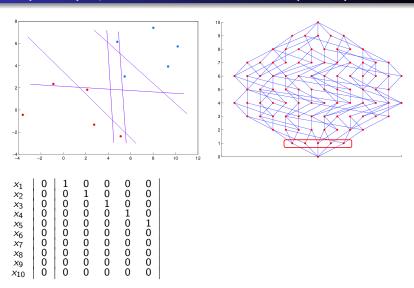
|                       | $a_1$ | <b>a</b> <sub>2</sub> | <b>a</b> <sub>3</sub> | $a_4$ | $a_5$ | $a_6$ | <br>$a_D$ |                       |
|-----------------------|-------|-----------------------|-----------------------|-------|-------|-------|-----------|-----------------------|
| <i>x</i> <sub>1</sub> | 1     | 1                     | 0                     | 0     | 0     | 1     | <br>1     | X — наблюдаемая       |
|                       | 0     | 0                     | 0                     | 0     | 1     | 1     | <br>1     | (обучающая) выборка   |
| $x_\ell$              | 0     | 0                     | 1                     | 0     | 0     | 0     | <br>0     | длины $\ell$          |
| $x_{\ell+1}$          | 0     | 0                     | 0                     | 1     | 1     | 1     | <br>0     | $ar{X}$ — скрытая     |
|                       | 0     | 0                     | 0                     | 1     | 0     | 0     | <br>1     | (контрольная) выборка |
| $x_L$                 | 0     | 1                     | 1                     | 1     | 1     | 1     | <br>0     | длины $k = L - \ell$  |

$$n(a,X)$$
 — число ошибок алгоритма  $a$  на выборке  $X\subset \mathbb{X};$   $u(a,X)=n(a,X)/|X|$  — частота ошибок  $a$  на выборке  $X\subset \mathbb{X};$ 

# Пример. Матрица ошибок линейных классификаторов

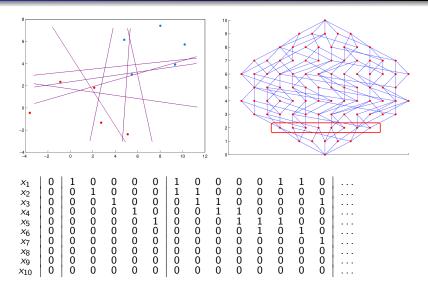


# Пример. Матрица ошибок линейных классификаторов



Задача оценивания вероятности переобучения Проблема завышенности оценок Комбинаторно-дискретная постановка задачи

# Пример. Матрица ошибок линейных классификаторов



#### Единственное вероятностное допущение

Пусть  $\mathbb{X} = \{x_1, \dots, x_L\}$  — конечное множество объектов.

#### Аксиома

 $Bce\ C_{\iota}^{\ell}$  разбиений  $X\sqcup ar{X}=\mathbb{X}$  равновероятны, где

X — наблюдаемая обучающая выборка,  $|X|=\ell$ ;

 $ar{X}$  — скрытая контрольная выборка,  $|ar{X}| = k = \mathsf{L} - \ell$ ;

Вероятность определяется как доля разбиений выборки:

$$Q_{\varepsilon} = \mathsf{P}\big[\delta_{\mu}(X,\bar{X}) \geqslant \varepsilon\big] = \frac{1}{C_{L}^{\ell}} \sum_{\substack{X,\bar{X} \\ X \mid \bar{X} = \mathbb{X}}} \big[\delta_{\mu}(X,\bar{X}) \geqslant \varepsilon\big].$$

Это аналог стандартной гипотезы о независимости наблюдений. Теория меры и предельный переход  $|\mathbb{X}| \to \infty$  не используются.

# Преимущества комбинаторно-дискретной постановки задачи

- Легко измерить факторы завышенности VC-оценки экспериментально, по конечной выборке  $\mathbb{X} = \{x_1, \dots, x_L\}$ .
- Комбинаторные методы позволяют получать точные оценки вероятности переобучения.
- Появляется возможность исследовать и учитывать в оценках структуру графа расслоения и связности семейства алгоритмов.

# Экспериментальное измерение факторов завышенности

Несмещённая оценка вероятности переобучения по случайному подмножеству разбиений  $X_n \sqcup \bar{X}_n = \mathbb{X}, \ n = 1, \dots, N$ :

$$\hat{Q}_{\varepsilon} = \frac{1}{N} \sum_{n=1}^{N} \left[ \delta_{\mu}(X_n, \bar{X}_n) \geqslant \varepsilon \right] \;\; pprox \;\; Q_{\varepsilon} \leqslant |A| \cdot \frac{3}{2} e^{-\varepsilon \ell^2}.$$

Измерение  $\hat{Q}_{arepsilon}$  позволяет также оценить:

ullet эффективный локальный коэффициент разнообразия— значение  $\Delta = |A|$ , при котором оценка не завышена:

$$\hat{Q}_{arepsilon} = \hat{\Delta} \cdot rac{3}{2} e^{-arepsilon \ell^2} \ \Rightarrow \ \hat{\Delta} = rac{\hat{Q}_{arepsilon}}{rac{3}{2} e^{-arepsilon \ell^2}}.$$

2 все три фактора завышенности:

$$\hat{Q}_{\varepsilon} \cdot r_1 \cdot r_2 \cdot r_3 = |A| \cdot \frac{3}{2} e^{-\varepsilon \ell^2}.$$

# Результаты эксперимента на 6 задачах классификации

Факторы завышенности  $r_1$ ,  $r_2$ ,  $r_3$  и оценка  $\hat{\Delta}$  с доверительным интервалом  $[\hat{\Delta}_1;\hat{\Delta}_2]$ :

| Задача      | класс у | <i>r</i> <sub>1</sub> | <i>r</i> <sub>2</sub> | <i>r</i> <sub>3</sub> | Â   | $[\hat{\Delta}_1;\hat{\Delta}_2]$ |
|-------------|---------|-----------------------|-----------------------|-----------------------|-----|-----------------------------------|
| crx         | 0       | 2 7 5 9               | 680                   | 32.6                  | 24  | [10; 41]                          |
|             | 1       | 1 104                 | 1700                  | 11.6                  | 12  | [11; 180]                         |
| german      | 1       | 15 215                | 1500                  | 10.9                  | 54  | [38; 530]                         |
|             | 2       | 44 400                | 9000                  | 9.9                   | 1.9 | [1.0; 2.2]                        |
| hepatitis   | 0       | 308                   | 280                   | 9.5                   | 83  | [11; 148]                         |
|             | 1       | 132                   | 680                   | 22.5                  | 15  | [12; 27]                          |
| horse-colic | 1       | 151                   | 4500                  | 7.2                   | 7   | [2; 9]                            |
|             | 2       | 504                   | 3400                  | 7.3                   | 6   | [3; 6]                            |
| hypothyroid | 0       | 1 964 200             | 400                   | 16.5                  | 21  | [3; 220]                          |
|             | 1       | 581 400               | 460                   | 28.7                  | 30  | [2; 44]                           |
| promoters   | 0       | 555                   | 340                   | 9.8                   | 72  | [36; 230]                         |
|             | 1       | 510                   | 790                   | 6.9                   | 18  | [9; 22]                           |

# Выводы из экспериментов

- $r_1=10^2\dots 10^5$  существенный фактор, не учитывается расслоение множества алгоритмов: чем выше  $\nu(a,\mathbb{X})$ , тем меньше  $P[\mu X=a]$ ; эффективное число алгоритмов  $\hat{\Delta}\sim 10^1\dots 10^2$ .
- $r_2 = 10^3 \dots 10^4$  существенный фактор, не учитывается *сходство* алгоритмов.
- $r_3 = 10^1 \dots 10^2$  несущественный фактор.

 $\mathsf{Используемые}$  на практике множества A, как правило,

- расслоены, т.к. предназначены для решения многих задач, следовательно, содержат много алгоритмов, «плохих» для данной задачи;
- связны, т.к. непрерывны по параметрам.

# Эксперимент с монотонной цепочкой алгоритмов

**Цель эксперимента:** понять, как *связность* и *расслоение* влияют на вероятность переобучения.

#### Монотонная цепочка:

#### 

#### Цепочка без расслоения:

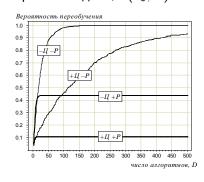
| •                     |            |            |            | •          |            |                          |            |
|-----------------------|------------|------------|------------|------------|------------|--------------------------|------------|
|                       | <b>a</b> 0 | $a_1$      | <b>a</b> 2 | <b>a</b> 3 | <b>a</b> 4 |                          | $a_D$      |
| $x_1$                 | 1          | 1 -        | → 0        | 0          | 0          | 0<br>0<br>1-<br>→ 1<br>0 | 0          |
| <i>X</i> <sub>2</sub> | 0 –        | → <b>1</b> | 1          | 1 –        | → <b>0</b> | 0                        | 0          |
| <i>X</i> 3            | 0          | 0          | 0 –        | → <b>1</b> | 1          | 1 –                      | → <b>0</b> |
| <i>X</i> 4            | 0          | 0          | 0          | 0          | 0 –        | → 1                      | 1          |
| <i>X</i> 5            | 0          | 0          | 0          | 0          | 0          | 0                        | 0          |
| <i>X</i> <sub>6</sub> | 0          | 0          | 0          | 0          | 0          | 0                        | 0          |
|                       |            |            |            |            |            |                          |            |

Для каждой цепочки генерируется не-цепочка путём случайной перестановки единиц в каждом столбце.

Итого имеем 4 модельных семейства.

#### Эксперимент: зависимость $Q_{\varepsilon}$ от D при $\ell=k=100,\ \varepsilon=0.05$

# Простая задача, $n(a_0, X) = 10$



#### Трудная задача, $n(a_0, X) = 50$



#### Выводы

- *Связность* приводит к замедлению роста  $Q_{\varepsilon}(D)$ .
- Расслоение понижает уровень горизонтальной асимптоты.

# Эксперимент с монотонной цепочкой алгоритмов

#### Основные выводы

- Монотонная цепочка почти не переобучается, причём лишь нижние 5–6 алгоритмов дают вклад в переобучение.
- Без расслоения или без связности переобучение  $(Q_{\varepsilon} = \frac{1}{2})$  наступает при |A| порядка нескольких десятков.
- Поэтому «хорошие» семейства обязаны быть и *расслоенными*, и *связными* (или обладать какой-либо иной структурой сходства алгоритмов).

Простые частные случаи
Порождающие и запрещающие множества
Модельные семейтева алгоритмов
Рекуррентное вычисление вероятности переобучения

# Комбинаторные оценки вероятности переобучения

- **①** Один алгоритм,  $A = \{a\}$  (точная оценка);
- ② Два алгоритма,  $A = \{a_1, a_2\}$  (точная оценка);
- Метод порождающих и запрещающих множеств (теоремы для получения точных оценок);
- Монотонная цепочка алгоритмов (точная оценка);
- **5** Рекуррентный метод (алгоритм вычисления сходящихся верхних и нижних оценок);
- Оценка через граф расслоения и связности (слабо завышенная верхняя оценка).

#### Один алгоритм — аналог закона больших чисел

Пусть 
$$|A| = 1$$
,  $\mu X = a$  для всех  $X \subset \mathbb{X}$ . Обозначим  $m = n(a, \mathbb{X})$ ,  $s = n(a, X)$ .

#### Теорема (точная оценка)

Вероятность большого уклонения частот описывается функцией гипергеометрического распределения (ГГР):

$$Q_{\varepsilon} = H_L^{\ell,m}\left(\frac{\ell}{L}(m-\varepsilon k)\right),$$

где 
$$H_L^{\ell,m}(z)=\sum_{s=0}^{\lfloor z\rfloor} \frac{C_m^s C_{L-m}^{\ell-s}}{C_L^\ell}$$
 — левый «хвост» ГГР.

**Вывод:** основная аксиома обеспечивает возможность предсказания скрытого  $n(a, \bar{X})$  по наблюдаемому n(a, X).

Простые частные случаи
Порождающие и запрещающие множества
Модельные семейства алгоритмов
Рекуррентное вычисление вероятности переобучения

# Двухэлементное множество алгоритмов

Пусть алгоритмы  $a_1$ ,  $a_2$  допускают  $m_1$ ,  $m_2$  ошибок на  $X^L$ :

# Теорема (точная оценка вероятности переобучения)

$$\begin{split} Q_{\varepsilon} &= \sum_{s_0=0}^{m_0} \sum_{s_1=0}^{m_1} \sum_{s_2=0}^{m_2} \frac{C_{m_0}^{s_0} C_{m_1}^{s_1} C_{m_2}^{s_2} C_{L-m_0-m_1-m_2}^{\ell-s_0-s_1-s_2}}{C_L^{\ell}} \times \\ &\times \Big( \big[ s_1 < s_2 \big] \big[ s_0 + s_1 \leqslant \frac{\ell}{L} \big( m_0 + m_1 - \varepsilon k \big) \big] + \\ &+ \big[ s_1 \geqslant s_2 \big] \big[ s_0 + s_2 \leqslant \frac{\ell}{L} \big( m_0 + m_2 - \varepsilon k \big) \big] \Big). \end{split}$$

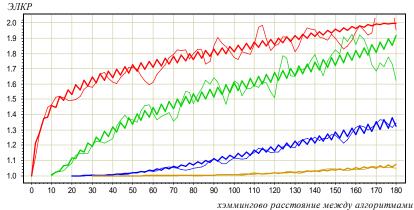
Простые частные случаи

Порождающие и запрещающие множества

Рекуррентное вычисление вероятности переобучения

# Эффекты сходства и расслоения для пары алгоритмов

$$\ell = k = 100$$
;  $\varepsilon = 0.05$ ;  $m_0 = 20$ ;  $d \equiv m_2 - m_1 = 0, 10, 20, 30$ 



хэммингово расстояние между алгоритмами
— d=10 — d=20 — d=30

d=0

Простые частные случаи
Порождающие и запрещающие множества
Модельные семейства алгоритмов
Рекуррентное вычисление вероятности переобучения

# Двухэлементное множество алгоритмов

#### Выводы

- Оптимизация при неполной информации ведёт к переобучению, даже если вариантов выбора только два.
- Если варианты почти одинаковы,
   то переобучения почти нет (эффект сходства).
- Если один из вариантов явно хуже,
   то переобучения почти нет (эффект расслоения).

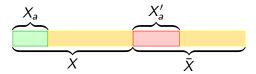
Простые частные случаи
Порождающие и запрещающие множества
Модельные семейства алгоритмов
Рекуррентное вычисление вероятности переобучения

#### Гипотеза о порождающих и запрещающих объектах

#### Гипотеза (1)

Для каждого  $a \in A$  можно указать пару непересекающихся подмножеств объектов  $X_a \subset \mathbb{X}, \ X_a' \subset \mathbb{X}$  такую, что:

$$(\mu X = a) \Leftrightarrow (X_a \subseteq X) \text{ } u \text{ } (X'_a \subseteq \bar{X}), \quad \forall X \subset \mathbb{X}.$$



**Опр.**  $X_a$  — множество объектов, *порождающих* алгоритм a.

**Опр.**  $X'_a$  — множество объектов, запрещающих алгоритм a.

**Опр.**  $\mathbb{X}\setminus (X_a\cup X_a')$  — множество объектов, нейтральных для a.

Простые частные случаи Порождающие и запрещающие множества Модельные семейства алгоритмов Рекуррентное вычисление вероятности переобучения

#### Обозначения и основная лемма

Введём для каждого  $a \in A$  следующие обозначения:

$$L_a = L - |X_a| - |X_a'|$$
 — число нейтральных объектов;  $\ell_a = \ell - |X_a|$  — число нейтральных обучающих объектов;

# Лемма (о вероятности получения алгоритма)

Если гипотеза (1) справедлива, то вероятность получить в результате обучения алгоритм а равна доле разбиений, при которых объекты из  $X_a$  и  $X_a'$  остаются на своих местах:

$$P_a = P[\mu X = a] = \frac{C_{L_a}^{\ell_a}}{C_{\ell}^{\ell}}.$$

Простые частные случаи Порождающие и запрещающие множества Модельные семейства алгоритмов Рекуррентное вычисление вероятности переобучения

#### Ещё обозначения и основная теорема

$$m_a = n(a, \mathbb{X}) - n(a, X_a) - n(a, X'_a)$$

— число ошибок алгоритма а на нейтральных объектах;

$$s_a(\varepsilon) = \frac{\ell}{L}(n(a, \mathbb{X}) - \varepsilon k) - n(a, X_a)$$

— наибольшее число ошибок переобученного алгоритма a на нейтральных обучающих объектах  $X \setminus X_a$ .

# Теорема (точная оценка вероятности переобучения)

Если гипотеза (1) справедлива, то

$$\mathsf{P}\big[\delta_{\mu}(X)\geqslant\varepsilon\big]=\sum_{\mathsf{a}\in\mathsf{A}}\mathsf{P}_{\mathsf{a}}\mathsf{H}_{\mathsf{L}_{\mathsf{a}}}^{\ell_{\mathsf{a}},m_{\mathsf{a}}}\left(\mathsf{s}_{\mathsf{a}}(\varepsilon)\right).$$

Простые частные случаи Порождающие и запрещающие множества Модельные семейства алгоритмов Рекуррентное вычисление вероятности переобучения

# Обобщение основной гипотезы

# Гипотеза (2)

Для каждого  $a \in A$  можно указать такой набор пар непересекающихся подмножеств объектов  $X_{av}, X'_{av} \subset \mathbb{X}, \ v \in V_a$  и такой коэффициент  $c_{av} \in \mathbb{R}$ , что

$$[\mu X = a] = \sum_{\mathbf{v} \in \mathbf{V}_{\mathbf{a}}} c_{\mathbf{a}\mathbf{v}} [X_{\mathbf{a}\mathbf{v}} \subseteq X] [X_{\mathbf{a}\mathbf{v}}' \subseteq \bar{X}].$$

Обозначения: для каждого  $a \in A$  и каждого  $v \in V_a$ 

$$\begin{split} L_{av} &= L - |X_{av}| - |X_{av}'|; \\ \ell_{av} &= \ell - |X_{av}|; \\ m_{av} &= n(a, \mathbb{X}) - n(a, X_{av}) - n(a, X_{av}'); \\ s_{av}(\varepsilon) &= \frac{\ell}{L} (n(a, \mathbb{X}) - \varepsilon k) - n(a, X_{av}). \end{split}$$

Простые частные случаи
Порождающие и запрещающие множества
Модельные семейства алгоритмов
Рекуррентное вычисление вероятности переобучения

# Обобщение: лемма и основная теорема

#### Лемма (о вероятностях получения алгоритмов)

Если гипотеза (2) справедлива, то вероятность получить в результате обучения алгоритм с вектором ошибок а

$$P[\mu X = a] = \sum_{v \in V_a} c_{av} P_{av}; \qquad P_{av} = \frac{C_{Lav}^{t_{av}}}{C_L^{\ell}}.$$

# Теорема (точная оценка вероятности переобучения)

Если гипотеза (2) справедлива, то

$$Q_{\varepsilon} = \sum_{\mathbf{a} \in A} \sum_{\mathbf{v} \in V_{\mathbf{a}}} c_{\mathbf{a}\mathbf{v}} P_{\mathbf{a}\mathbf{v}} H_{L_{\mathbf{a}\mathbf{v}}}^{\ell_{\mathbf{a}\mathbf{v}}, m_{\mathbf{a}\mathbf{v}}} \left( s_{\mathbf{a}\mathbf{v}}(\varepsilon) \right).$$

# Сильное ли ограничение накладывает гипотеза (2)?

Оказывается, почти не накладывает. Это общий случай!

#### Теорема

Пусть векторы ошибок алгоритмов  ${\sf a}_1,\dots,{\sf a}_D$  попарно различны и метод  $\mu$  минимизирует эмпирический риск.

Тогда справедлива гипотеза (2), причём  $c_{\mathsf{av}} = 1$ .

Доказательство конструктивно, но «тавтологично» — строится система подмножеств  $(X_{av}, X'_{av})_{v \in V_a} \equiv (X, \bar{X})_{\mu X=a}$ , что приводит к вычислительно неэффективным оценкам.

В общем случае система подмножеств не единственна.

# Открытая проблема

Как искать системы подмножеств с наименьшими  $|X_{av}|$ ,  $|X_{av}'|$ ?

#### Монотонная цепочка алгоритмов

|                       | <b>a</b> <sub>0</sub> | $a_1$             | $a_2$          | $a_3$       | • • • | $a_D$                |
|-----------------------|-----------------------|-------------------|----------------|-------------|-------|----------------------|
| <i>x</i> <sub>1</sub> | 0                     | 1                 | 1              | 1           | 1     | 1                    |
| <i>X</i> <sub>2</sub> | 0                     | 0                 | 1              | 1           | 1     | 1                    |
| <i>X</i> <sub>3</sub> | 0                     | 0                 | 0              | 1           | 1     | 1                    |
| <i>X</i> <sub>4</sub> | 0                     | 0                 | 0              | 0           | 1     | 1                    |
|                       | 0                     | 0                 | 0              | 0           | 0     | 1                    |
|                       | 0                     | 0                 | 0              | 0           | 0     | 0                    |
|                       | 0                     | 0                 | 0              | 0           | 0     | 0                    |
|                       | 1                     | 1                 | 1              | 1           | 1     | 1                    |
| $x_L$                 | 1                     | 1                 | 1              | 1           | 1     | 1                    |
| (μ <b>X</b> =         | $=a_d$                | $\Leftrightarrow$ | $(x_{\alpha})$ | $_{d+1}\in$ | (X    | и (x <sub>1</sub> ,. |

$$(\mu X = a_d) \Leftrightarrow (x_{d+1} \in X)$$
 и  $(\mathbf{x_1}, \dots, \mathbf{x_d} \in \bar{X})$ , при  $d \leqslant k$ ;  $(\mu X = a_d)$  невозможно, при  $d > k$ .

Таким образом, справедлива Гипотеза (1).

Простые частные случаи
Порождающие и запрещающие множества
Модельные семейства алгоритмов
Рекуррентное вычисление вероятности переобучения

# Вероятность переобучения монотонной цепочки

Пусть  $\mu$  — пессимистичная минимизация эмпирического риска (выбор алгоритма по принципу «худший из лучших»):

$$A(X) = \operatorname{Arg\,min}_{a \in A} n(a, X); \quad \mu X = \operatorname{arg\,max}_{a \in A(X)} n(a, \bar{X}).$$

# Теорема (точная оценка вероятности переобучения)

Пусть  $a_0, a_1, \ldots, a_D$  — монотонная цепочка,  $n(a_0, \mathbb{X}) = m$ ,  $k \leq D \leq L - m$ . Тогда

$$P_d = P[\mu X = a_d] = \frac{C_{L-d-1}^{\ell-1}}{C_l^{\ell}};$$

$$Q_{\varepsilon}(\mu,\mathbb{X}) = \sum_{d=0}^{k} P_{d} H_{L-d-1}^{\ell-1,m} \left( \frac{\ell}{L} (m+d-\varepsilon k) \right).$$

## Другие модельные семейства алгоритмов

Точные оценки, полученные в данной работе:

- единичная окрестность лучшего алгоритма;
- унимодальная цепочка алгоритмов;
- слой булева куба;
- интервал булева куба;
- d нижних слоёв интервала булева куба.

## Оценки, полученные другими авторами:

- связные семейства [Д. Кочедыков, И. Решетняк].
- монотонные и унимодальные h-мерные сетки [П. Ботов];
- симметричные семейства алгоритмов [А. Фрей];
- пучок монотонных цепочек [А. Фрей];
- хэммингов шар, слои хэммингова шара [И. Толстихин];

# Постановка задачи рекуррентного вычисления $Q_{arepsilon}$

 $\mathfrak{I}(a)=\langle X_{av},X'_{av},c_{av} \rangle_{v\in V_a}$  — информация об алгоритме  $a\in A$ , необходимая для вычисления вероятности переобучения  $Q_{\varepsilon}$ .

Расслоение:  $n(a_0, \mathbb{X}) \leqslant n(a_1, \mathbb{X}) \leqslant \cdots \leqslant n(a_D, \mathbb{X})$ .

Дополнительное предположение:  $n(a_0, X) = 0$ .

Пусть  $\mu_d$  — пессимистичный метод обучения, выбирающий алгоритмы только из подмножества  $A_d = \{a_0, \dots, a_d\}$ .

## Задача (пересчёт $Q_arepsilon$ при добавлении алгоритма $a_d$ )

**Известна** информация  $\Im(a_t)$  относительно метода  $\mu_{d-1}$  для всех алгоритмов  $a_t$ ,  $t \leqslant d-1$ .

**Вычислить** информацию  $\mathfrak{I}(a_t)$  относительно метода  $\mu_d$  для всех алгоритмов  $a_t$ ,  $t \leqslant d$ .

# Теоремы о рекуррентном вычислении $Q_{\varepsilon}$

## Теорема (о добавляемом алгоритме $a_d$ )

Порождающее множество:  $X_d = \emptyset$ . Запрещающее множество:  $X_d' = \{x_i \in \mathbb{X} : I(a_d, x_i) = 1\}$ .

## Теорема (о всех предыдущих алгоритмах $a_t$ , t < d)

Для каждого  $v \in V_t$  такого, что  $X_{tv} \cap X_d' = \varnothing$ 

- 1) если  $X'_d \setminus X'_{tv} = \{x_i\}$  одноэлементное множество, то присоединить  $x_i$  к  $X_{tv}$ ;
- 2) если  $|X'_d \setminus X'_{tv}| > 1$ , то добавить в  $V_t$  индекс w, положив  $c_{tw} = -c_{tv}$ ,  $X_{tw} = X_{tv}$ ,  $X'_{tw} = X'_{tv} \cup X'_d$ ;
- 3) если  $|X'_d \setminus X'_{tv}| = 0$ , то удалить из  $V_t$  индекс v.

## Упрощённое рекуррентное вычисление $Q_{\varepsilon}$

## Теорема (о верхних и нижних оценках)

Если иногда пропускать шаг 2) при  $c_{\rm tv}=1$ , то вычисляемое значение  $Q_{\varepsilon}$  может только увеличиться. Если иногда пропускать шаг 2) при  $c_{\rm tv}=-1$ , то вычисляемое значение  $Q_{\varepsilon}$  может только уменьшиться.

# Теорема (об упрощённом рекуррентном вычислении $Q_{\varepsilon}$ )

Если всегда пропускать шаг 2), то шаг 3) не будет выполняться никогда, и будет получена верхняя оценка  $Q_{\varepsilon}$ .

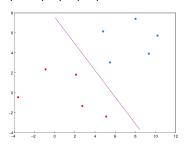
Рекуррентное вычисление  $Q_{\varepsilon}$  может занять время  $O(L2^D)$ . Упрощённое рекуррентное вычисление  $Q_{\varepsilon}$  занимает  $O(LD^2)$ . Его можно сократить до O(LD) и даже до O(L).

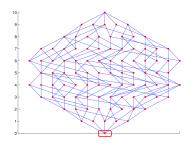
#### Расслоение и связность

Расслоение множества алгоритмов  $A = A_0 \sqcup \cdots \sqcup A_L$ , где  $A_m = \{a \in A: n(a, \mathbb{X}) = m\}$  — m-й слой множества алгоритмов.

Связность q(a) алгоритма  $a \in A$  — число алгоритмов  $a' \in A$  в следующем слое таких, что  $I(a,x) \leqslant I(a',x), \ \forall x \in \mathbb{X}$ .

#### Пример графа расслоения и связности:





## Оценка $Q_{\varepsilon}$ через профиль расслоения-связности

**Опр.** Профиль расслоения—связности  $\Delta_{mq}$  — это число алгоритмов в m-м слое со связностью q.

#### Теорема

Пусть векторы ошибок всех алгоритмов  $a \in A$  попарно различны, и в A есть корректный на  $\mathbb X$  алгоритм. Тогда справедлива верхняя оценка вероятности переобучения

$$Q_{\varepsilon} \leqslant \sum_{m=\lceil \varepsilon k \rceil}^{L} \sum_{q=0}^{\ell} \Delta_{mq} \frac{C_{L-m-q}^{\ell-q}}{C_{L}^{\ell}}.$$

# Оценка $Q_{\varepsilon}$ через профиль расслоения и профиль связности

#### Теорема

Пусть справедливы условия предыдущей теоремы и профиль расслоения—связности сепарабелен:

$$\Delta_{mq} \leqslant \Delta_m \lambda_q$$
.

Тогда справедлива верхняя оценка вероятности переобучения

$$Q_{arepsilon} \leqslant \underbrace{\sum_{m=\lceil arepsilon k 
ceil}^k \Delta_m rac{C_{L-m}^{\ell}}{C_L^{\ell}}}_{VC ext{-ovenka}} \underbrace{\sum_{q=0}^L \lambda_q igg(rac{\ell}{L-m}igg)^q}_{nonpagka \ na \ cgsshocmb}.$$

При известных  $\Delta_m$ ,  $\lambda_a$  вычисления  $Q_{\varepsilon}$  займут O(L).

#### Эксперименты и выводы

В экспериментах с линейными классификаторами:

- средняя связность = размерности пространства (с очень высокой точностью);
- гипотеза сепарабельности выполнялась (с достаточной точностью);

#### Выводы

- Учёт расслоения и связности существенно уточняет оценку (экспоненциально по размерности пространства).
- Оценка зависит не от одной скалярной характеристики сложности, а от «профиля», в отличие от VC-оценок.
- Как использовать эту оценку на практике? (пока открытый вопрос)

#### Функционал полного скользящего контроля

Выше рассматривалась только вероятность переобучения

$$Q_{arepsilon}(\mu,\mathbb{X}) = rac{1}{C_L^\ell} \sum_{(X,ar{X})} ig[ 
u(\mu X,ar{X}) - 
u(\mu X,X) \geqslant arepsilon ig].$$

В работе все результаты перенесены также на функционал

$$R_{arepsilon}(\mu,\mathbb{X}) = rac{1}{C_L^{\ell}} \sum_{(X,ar{X})} ig[
u(\mu X,ar{X}) \geqslant arepsilonig].$$

Однако для функционала полного скользящего контроля

$$\mathrm{CCV}(\mu, \mathbb{X}) = \frac{1}{C_L^{\ell}} \sum_{(X, \bar{X})} \nu(\mu X, \bar{X}).$$

техника получения оценок совсем другая.

**Недостаток ССV**: не учитывается дисперсия частоты ошибок.

## Метод ближайшего соседа

Пусть  $\rho(x,x')$  — функция расстояния на множестве  $\mathbb{X}$ .

$$a(x;X) = y(\arg\min_{x' \in X} \rho(x,x')).$$

## Определение (профиль компактности выборки Х)

доля объектов, у которых m-й сосед  $x_{im}$  лежит в другом классе:

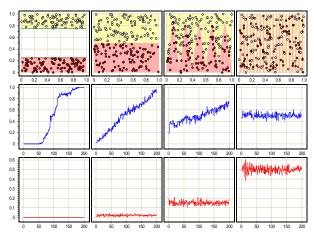
$$K(m, X) = \frac{1}{L} \sum_{i=1}^{L} [y(x_i) \neq y(x_{im})]; \quad m = 1, ..., L-1,$$

# Теорема (точная оценка для метода ближайшего соседа)

$$\mathrm{CCV}(\mu,\mathbb{X}) = \sum_{m=1}^k \frac{K(m,\mathbb{X})}{C_{L-1-m}^\ell} \frac{C_{L-1-m}^{\ell-1}}{C_{L-1}^\ell}.$$

## Профили компактности для серии модельных задач

средний ряд: профили компактности, нижний ряд: зависимость CCV от длины контроля  $k=|\bar{X}|$ .



# Свойства профиля компактности и оценки CCV Выводы

- Полученная оценка CCV является точной (не завышенной, не асимптотической).
- ССV практически не зависит от длины контроля k (всегда ли? — открытый вопрос).
- Для минимизации CCV важен только начальный участок профиля, т. к.  $\frac{C_{L-1-m}^{\ell-1}}{C_{L-1}^{\ell}} \to 0$  экспоненциально по m.
- Минимизация ССV приводит к эффективному отбору эталонных объектов, без переобучения [М. Иванов, 2009].

Замечание. VC-теория вообще не даёт содержательных оценок для метода ближайшего соседа, т.к. ёмкость данного семейства алгоритмов бесконечна.

## Монотонные алгоритмы классификации: определения

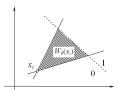
Задача классификации:  $\mathbb{X}$  — ч. у. множество,  $Y = \{0,1\}$ , A — множество монотонных отображений  $a \colon \mathbb{X} \to Y$ .

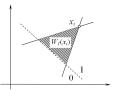
Опр. Степень немонотонности выборки Х:

$$\theta(\mathbb{X}) = \min_{a \in A} \nu(a, \mathbb{X}).$$

**Опр.** Верхний и нижний клин объекта  $x_i \in \mathbb{X}$ :

$$W_0(x_i) = \{x \in \mathbb{X} \colon x_i < x \text{ in } y(x) = 0\};$$
  
 $W_1(x_i) = \{x \in \mathbb{X} \colon x < x_i \text{ in } y(x) = 1\}.$ 





# Профиль монотонности выборки

### Определение (профиль монотонности выборки Х)

доля объектов  $x_i \in \mathbb{X}$  с клином мощности m:

$$M(m, \mathbb{X}) = \frac{1}{L} \sum_{i=1}^{L} [|W_{y(x_i)}(x_i)| = m]; \quad m = 0, \dots, L-1.$$

#### Теорема

Пусть  $\mu$  — метод минимизации эмпирического риска в классе всех монотонных функций,  $\theta$  — степень немонотонности выборки  $\mathbb X$ . Тогда

$$\mathrm{CCV}(\mu, \mathbb{X}) \leqslant \sum_{m=0}^{\theta L + k - 1} \underline{M(m, \mathbb{X})} \, H_{L-1}^{\ell, m}(\theta L) \,.$$

# Свойства профиля монотонности и оценки CCV Выводы

- Невырожденность:  $CCV(\mu, \mathbb{X}) \leq 1$ .
- Для минимизации ССV важен только начальный участок профиля, т. к.  $H_{L-1}^{\ell,m}\left(\theta L\right) \to 0$  по m при малых  $\theta$  .
- Минимизация ССУ приводит к повышению обобщающей способности алгоритмической композиции с монотонной корректирующей операцией [И. Гуз, 2008].

Замечание. VC-теория даёт сильно завышенные оценки для монотонных семейств алгоритмов (эффективная ёмкость определяется максимальной длиной антицепи).

### Основные публикации

- О Рудаков К. В., Воронцов К. В. О методах оптимизации и монотонной коррекции в алгебраическом подходе к проблеме распознавания // Доклады РАН. 1999. Т. 367, № 3. С. 314–317.
- Воронцов К. В. Оптимизационные методы линейной и монотонной коррекции в алгебраическом подходе к проблеме распознавания // ЖВМ и МФ. 2000. Т. 40, № 1. С. 166–176.
- Воронцов К. В. Комбинаторный подход к оценке качества обучаемых алгоритмов // Математические вопросы кибернетики / Под ред. О. Б. Лупанова. — М.: Физматлит, 2004. — Т. 13. — С. 5–36.
- Воронцов К. В. Комбинаторные обоснования обучаемых алгоритмов // ЖВМиМФ. — 2004. — Т. 44, № 11. — С. 2099–2112.
- Боронцов К. В. Комбинаторные оценки качества обучения по прецедентам // Доклады РАН. — 2004. — Т. 394, № 2. — С. 175–178.
- Vorontsov K. V. Combinatorial probability and the tightness of generalization bounds // Pattern Recognition and Image Analysis. — 2008. — Vol. 18, no. 2. — Pp. 243–259.
- Vorontsov K. V. Splitting and similarity phenomena in the sets of classifiers and their effect on the probability of overfitting // Pattern Recognition and Image Analysis. — 2009. — Vol. 19, no. 3. — Pp. 412–420.
- Воронцов К. В. Точные оценки вероятности переобучения // Доклады РАН. — 2009. — Т. 429, № 1. — С. 15–18.

#### Основные результаты, выносимые на защиту

- Метод измерения факторов завышенности VC-оценок.
- 2 Методы получения точных оценок вероятности переобучения:
  - метод порождающих и запрещающих множеств;
  - рекуррентный метод.
- Точные оценки вероятности переобучения для семи модельных семейств алгоритмов.
- Верхние оценки вероятности переобучения через профиль расслоения и связности.
- 5 Точные оценки полного скользящего контроля:
  - для множества алгоритмов ближайшего соседа;
  - для множества монотонных алгоритмов.