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J(ﬂ-9> = E7—~7r9 Z fYtrt

t=0
log-likelihood baseline
/s = N K—JH
Vo(m9) ~ By, Y, Vologmo(a: | se) (Q(se, ac) — V™(st))
>0 - N _
—— AT (st, at)
data generated by 7y critic estimation

(sample pairs s, a from trajectories T ~ 7p)

Everything is great except it is on-policy!
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More efficient Policy Gradient?

1
VQJ(WQ) = ﬁ . 5~dw€(S)Ea~W9(a|53 \Y Iog 7r9(a ‘ S)AWQ (5, a)

~
data generated by 7y

Suppose we:

e want to optimize 7y (compute gradient for current 6);

e have data (trajectory samples) from policy 7°';

o i.e. we can estimate Eq_g ,(s) and E, _ oa(y5);

® i.e. we can train V™" (s) and thus estimate A™" (s, a);

Y TRPO: use more efficient optimization procedure than SGD!
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Relative Performance Identity

old critic!
(good: can train it!)

old 1 rold
J(ﬂ'g) — J<7T ) = —7E5~dﬂ9(S)Ea~M(B|S) A (S, a)

/

N
collect data with my
(wrong! we don't have it!)

: We performed reward shaping us-
v ing another policy’s value function!
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Surrogate objective

Introduce surrogate objective:

importance sampling

correction
—_—
J(mg) — I ~ Looa(8) = LEM 0 E oot To(a]s) e (5.2)
™ 1_ qold g s J’]'('Old(a | S)
data generated by 7°!d do not re.cu-Jire
fresh critic

® we can work with it;
e directs to policy improvement of 7ol

e optimizing 6 with fixed 74 will learn argmax A™" (s, a)
e optimizing 6 with fixed data will learn my(a|s) = 1 if A(s,a) > 0,
me(a | s) = 0 otherwise,



Minorization-maximization algorithm

We discovered a variational lower bound for our objective:

J(mp) — J(7°Y) = Lroa (6) — C KL™(7°M || mp)



Minorization-maximization algorithm

We discovered a variational lower bound for our objective:

J(mp) — J(7°Y) = Lroa (6) — C KL™(7°M || mp)

_ J(ﬂ—"ld)

e Minorization: construct a new

lower bound; in our case simply

use 74 — 7p.

(6) — CKL(n*' || mp)




Minorization-maximization algorithm

We discovered a variational lower bound for our objective:

J(mp) — J(7°Y) = Lroa (6) — C KL™(7°M || mp)

e Minorization: construct a new

_ J(ﬂ—"ld)
lower bound; in our case simply

use 74 — 7p.

(6) — CKL(n*' || mp)

e Maximization: optimize lower

bound (as long as you want).



Minorization-maximization algorithm

We discovered a variational lower bound for our objective:

J(mp) — J(7°Y) = Lroa (6) — C KL™(7°M || mp)

e Minorization: construct a new

_ J(ﬂ—"ld)
lower bound; in our case simply

use 74 — 7p.

(6) — CKL(n*' || mp)

e Maximization: optimize lower

bound (as long as you want).

I guarantees monotonic improvement!
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Trust Region Policy Optimization (TRPO)

KL(7M || 7) < §

Lﬂ-old (9) i méax i

KL(x% || m9) < 6

x critic and actor can't share backbone;

x computationally costly;

u x complicated :(
v’ robust: prevents large changes;
S6D sS6D _, S6D 56D
' 5,6 3§ step | s,a )} step | 5,4 | step | s,a ) step )
J 50 |]—> | s,al—> | sal—>[s,al—>sa | —>T
5,0 5,0 ] ,a 5,a_] a
Constrained

optimization

A 4

v [TrPO] -
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Proximal Policy Optimization (PPO): Pipeline

mg(a|s)

mold old
Eswdﬂold (S)Ea~ﬂ'°1d(a‘s)WA (S, a) - C KL(ﬂ' || 71'9) — mé’:lx

Several — Several
5,0 56D steps 5,0 56D steps 5,0
X | 8,0 ) ———— T | 5,8 | ——p—3—> T [ 50 | —>—>—>
s,a ' s,a ) ¢ LS50
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Esd_oia(s)Eanmoaals) (2 [ 5)

X

v/ pPo ]

Proximal Policy Optimization (PPO): Pipeline

mo(als) Aﬂold (s,3) = C KL(TFOld || me) — méax

Several —_— Several
5,0 56D steps 5,0 56D steps 5,0
| 8,0 ) ———— T | 5,8 | ——p—3—> T [ 50 | —>—>—>
s,a y Lsa ) o LS5a
] 1
71_old N 7]_old . 71_old

50 Several epochs
5,a of 56D optimization
—_— > 7T
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Clipping Objective

Lﬂ—old (9) - CKL(WOld H 7T9) - meax

Default surrogate function: Clipped surrogate function:

pl0) = Tl §2(6) i= clip(p(6), 1~ .1 + )

LR () = Eq op™ P (0) AT (s, a)

old
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Clipping Objective

Lyoa(6) — CKL(7°M || mg) — max

Default surrogate function: it crmEmsie s
m(als) olip /gy . _

0) = —3—> 0) = cli 0),1—¢1+¢

p(®) 7ol (3 ] s) PP (6) p(p(0) )

N Lcl(i)p( 9) = E clip 0 Aﬂ_old 58

Lo (09) = Es,ap<9>Aﬂ i (s, a) ™ a (6) s,af ) (s,a)
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—_—
—
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—
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Given rollout s,r,s', r',s” r"...s(M) from policy m and approximation of V™ (s)
perform credit assignment for state-action pair s, a (was this decision good or bad?)

For Actor: For Critic:
V = p(6)Vslogme(a | 5) (s, 3) Yo i=W(s,a)+Vr(s)
—— —
advantage target
estimator for regression
V(s, a) Bias Variance
Monte Carlo Viw)(s,3) i=r+yr' + 2" +--- = V7(s) 0 high

N-step Viny(s,a) =r+yr' +-+ 4NV (sV)) — V™(s) | intermediate | intermediate
1-step Vyy(s,a) = r+yV7(s') — V7(s) high low

Problem: hard to choose N.
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Backward view: idea

N-step update:

Vi
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How to turn 1-step update into 2-step? 7, ~%”'
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-
Yoy ¥
V(1) (s,a) YWy (s',a")

VT(s) « V™ (s) + a(r+yV™(s) = V7(s)) + a(yr' + V7 (s") =V (s)) =
= V7 (s) + aV (s, a)
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Backward view: idea

N-step update:

¥ (w)
V7(s) « V™(s) + aW(w)(s, a) ( *
How to turn 1-step update into 2-step?
3 ! "
N-step error is a sum of l-step errors S s
N " (D U W R W W)
W) (s, 2) Z Wy (s, a) Ty ¥y
V() (s,a) YW (1) (s',a")

VT(s) « V™ (s) + a(r+yV™(s) = V7(s)) + a(yr' + V7 (s") =V (s)) =
= V7 (s) + aV (s, a)
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Eligibility Traces
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= R P~ Use 1-step TD-error to up-
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Eligibility Traces

@ Use 1-step TD-error to up-
Y date V™ (s) for all states
— Define eligibility trace e(s) as a coefficient of
% update:

& } ‘Il(l) Vs: VT(s) < V7(s) + ae(s)V¥(y)

: Vi, | Gaakn,
¢ |
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P Define eligibility trace e(s) as a coefficient of
'@9’ update:
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’»_-. “E ® Vs: e(s) := 0 at the start of each episode

e ¢(s) < e(s) + 1 after visiting s
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Eligibility Traces

Use 1-step TD-error to up-

Y date V™ (s) for all states
P Define eligibility trace e(s) as a coefficient of
'@9’ update:
,” }‘Il(l) Vs: VT(s) < V7(s) + ae(s)V¥(y)
Nz | Gawe Online «Monte-Carlo» updates:
’»_-. “E ® Vs: e(s) := 0 at the start of each episode

e ¢(s) < e(s) + 1 after visiting s

e Vs: e(s) « ve(s) after each step

15



TD(1) and TD(0)

TD (1)
Input: policy 7
Initialize V™ (s) arbitrarily
Initialize e(s) = 0

observe sy

for k=0,1,2...

e take action ay ~ 7, observe ry, sk i1
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TD(1) and TD(0)

TD (1)
Input: policy 7
Initialize V™ (s) arbitrarily
Initialize e(s) = 0

observe sy
for k=0,1,2...

e take action ay ~ 7, observe ry, sk i1

[} \U(l) = + ’}/VW(Sk_;,_l) = Vﬂ(Sk)
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TD(1) and TD(0)

TD (1)
Input: policy 7
Initialize V™ (s) arbitrarily
Initialize e(s) = 0

observe sy
for k=0,1,2...

e take action ay ~ 7, observe ry, sk i1
[ \U(l) = I + ’}/VW(Sk_;,_l) = Vﬂ(Sk)
® e(sc) —e(sq)+1
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TD(1) and TD(0)

TD (1)
Input: policy 7
Initialize V™ (s) arbitrarily
Initialize e(s) = 0

observe sy
for k=0,1,2...

e take action ay ~ 7, observe ry, sk i1
o Vi) :=r +yV7(sks1) — V7™ (sk)
® e(sc) —e(sq)+1

o Vs: V7(s) «— V7(s) + ae(s)¥)
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TD(1) and TD(0)

TD (1)
Input: policy 7
Initialize V™ (s) arbitrarily
Initialize e(s) = 0

observe sy
for k=0,1,2...

e take action ay ~ 7, observe ry, sk i1
o Vi) :=r +yV7(sks1) — V7™ (sk)
® e(sc) —e(sq)+1

Vs: V™ (s) < V7(s) + ae(s)V(y
Vs: e(s) < ve(s)
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TD(1) and TD(0)

TD (1) ‘ TD (0)

Input: policy = Input: policy 7
Initialize V" (s) arbitrarily Initialize V™ (s) arbitrarily
Initialize e(s) =0 Initialize e(s) = 0

observe s observe sy

z7 =042 for k=0,1,2...
e take action a, ~ 7, observe ry, si41 e take action ax ~ 7, observe ry, Ski1
o Wiy = r + 7V (sky1) — V7 (sk) o Vi ==rc + 7V (skq1) — V™ (sk)
o e(sy) «—e(sy) +1 ® e(sy) «— e(sq) +1
o Vs: V7(s) «— V7(s) + ae(s)¥) o Vs: V7(s) — V7(s) + ae(s)V(q)

Vs: e(s) < ve(s)

Vs: e(s) < 0-ye(s)
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e(s)
0 >
Time
1 .... ‘ ff(S)
0 >
Time
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1 ..... TD ()\)
e(s)
TD(1) Input: policy =
0 > Initialize V7 (s) arbitrarily
Time Initialize e(s) = 0
Lo e(s) observe s
TD(A)  fork=012...
0 ). e take action ay ~ 7, observe ry, sk 11
Time ® Vi) = rc + 7V (sks1) — V™ (sk)
il caoac e(s) ® e(sk) —e(sk)+1
TD(0) o Vs: V7(s) «— V™(s) + ae(s)V¥ )
0 > o Vs: e(s) « Aye(s)
Time
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Backward view vs Forward view

Forward View
Give credit to present from known future

«is this decision good or bad based on the

outcome?»
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Backward view vs Forward view

Forward View
Give credit to present from known future

«is this decision good or bad based on the

outcome?»

Backward View

Update past credits with present information

«which decisions in the past to blame?»

18



Forward view for TD()\)

Step Update \U(l) (5, a) \U(z) (S7 a) \U(3) (5, a) 0o \Io'(N) (S, a)
0 V(s a) 1 0 0 0

19



Forward view for TD()\)

Step Update \U(l)(s, a) \Il(z)(s, a) \U(3) (5, a) fe W(N) (s7 a)
0 Vi (s,a) 1 0 0 0
1 V(s,a) + 7AW (q)(s', a) 1—)\ A 0 0
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Forward view for TD()\)

Step Update \U(l)(s, a) \U(z) (S7 a) \U(3) (5, a) 0o \Io'(/\/) (S, a)
0 Wy (s, a) 1 0 0 0
1 Vi (s,a) + AV (4 (s, d) 1-) A 0 0
Vi (s,a) + YAV (s, a)+
2 | Ywlsa T Wa(s, &) 1-x | @—AA] 2 0
+(YA)W () (s”, ")
N | SN () Wy (5@, a®) 1—XA [ (IT=XMA| (1=A)A2 AN

Equivalent forms of TD()\) updates

(YN W (g (s, a0 =
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Forward view for TD()\)

Step Update \U(l)(s, a) \U(z) (S7 a) \U(3) (5, a) 0o \Io'(/\/) (S, a)
0 Wy (s, a) 1 0 0 0
1 Vi (s,a) + AV (4 (s, d) 1-) A 0 0
Vi (s,a) + YAV (s, a)+
o | VoEA TNl HT | e 0
+(YA)W () (s”, ")
N | SN () Wy (5@, a®) 1—XA [ (IT=XMA| (1=A)A2 AN

Equivalent forms of TD()\) updates

(A Wy (s@,a) = (1=2) D] AV W) (s, a)
N=1

18

i
o

19



Generalized Advantage Estimation (GAE)

TD())

What if for some pair s, a we do not know our

]

future until the end of episode, but only T

=

steps ahead?
St+1 R

St+2 Riyo

~—O—e—0O——0

[ ] Az+2

T
!
T
!
T
!

(1 -2 Ar_q

2:1 o, [ Sr Br

/\T—t—l

20



Generalized Advantage Estimation (GAE)

TD())

What if for some pair s, a we do not know our

St
? ? ? ? B future until the end of episode, but only T
I I I I ' steps ahead?
O ? (i) ? St+1 R
L A1 wGAE ¢ A \U (t) (t)
! ! ! =2, (VW (s®,a)
O ? ? Set2 Riyo t=0
(1 - /\)/\ I [ ) Az+2
3 .
(1 -2 Ar_q
Z =1 O 57 Rr
/\T—! 1
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Generalized Advantage Estimation (GAE)

TD(\)
s, What if for some pair s, a we do not know our
? ? ? ? B future until the end of episode, but only T
I I I I l steps ahead?
O ? (i) ? St+1 R
=3 M v
I I I 141 GAE Z '7/\ \U( 1 S(t) a(t))
O ? ? St+2 Riyo t=0
(1 - /\)/\ [ ] Az+2
CI) . Equation used in practice:
(11— Ar_y WEAE (5, a,) = V(1) (s, ar) +
Yy -1 . BOSrRe + Ay(1 — done ;1 )WCAE (s, 11, a:11)



Generalized Advantage Estimation (GAE)

TD(\)
s, What if for some pair s, a we do not know our
? ? ? ? B future until the end of episode, but only T
I I I I l steps ahead?
O ? (i) ? St+1 R
=3 M v
I I I 41 GAE Z A) \U( 1 S(f) a(f))
O ? ? St+2 Riyo t=0
(1 - /\)/\ [ ] Az+2
CI) . Equation used in practice:
CEPIRY Ap_q WEAE (5, a,) = V(1) (s, ar)+
Yy -1 . BOSrRe + Ay(1 — done ;1 )WCAE (s, 11, a:11)
/\T—! 1
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GAE in Advantage Actor-Critic

\&/ Longer rollouts produce richer GAE ensemble.

21



GAE in Advantage Actor-Critic

v Longer rollouts produce richer GAE ensemble.

56D 56D 56D S6D
_ 5,0 3 step | 5.4 _} step | 5,4 | step | 5,2 ) step 20
J 3,0 3,a 3,a 5,a 0 |—> T
Ei, a E a_ | SZ a S, a ,
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GAE in Advantage Actor-Critic

v Longer rollouts produce richer GAE ensemble.

FORESIGHT o

56D 56D . S6D 56D _
- L 5, a step | _S,a | step | S, 4 step 3, a step 5,0
[a2c] [ S B S P SR i S
5,0 s,a s,a S, @ s, a

In A2C rollouts are usually short, so A = 1 is common choice.
(sometimes called max-trace estimation) 21



Combining all together




Proximal Policy Optimization: implementation matters

Other hacks:

] ization! ippi
v Clipped policy loss I Reward normalization* and clipping
e Observations normalization and clipping?

Key elements:

v" Clipped critic loss
e Orthogonal initialization of layers

v GAE
e ¢ (clipping parameter) annealing
Pipeline details: Standard tricks:
I Advantage normalization in mini-batches e Adam, learning rate annealing
e No KL regularization e Tanh activation functions
® Entropy loss I Gradient clipping

ldivided by running std of collected cumulative rewards
2can be critical in continuous control
22



Full Pipeline: pt.l

Proximal Policy Optimization (PPO) |
Initialize 7(a | s,0), V] (s);

23]
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for k=0,1,2...

e collect several rollouts sy, ao, ro, 51, doney, ay . .. sy, doney using w(a | s, 0);
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store probabilities of selected actions as 7°%(a; | s¢) == w(a: | st,0)

store critic output as V°!4(s;) := V7 (st)
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Full Pipeline: pt.l

Proximal Policy Optimization (PPO) ‘

Initialize 7(a | s,0), V] (s);

for k=0,1,2...
e collect several rollouts sy, ao, ro, 51, doney, ay . .. sy, doney using w(a | s, 0);
store probabilities of selected actions as 7°(a; | s;) := 7(a¢ | st,6)
store critic output as V°!4(s;) := V7 (st)
e compute 1-step errors: \U(l)(st, a)=r+y1- doneHl)Vg(sHl) — Vg(st)
e compute GAE advantage estimations: WEE (sy_q,ay_1) == W (1) (sy—1, an—1)
e for t from N — 2 to O:

° \IJGAE(St, ag) =
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Full Pipeline: pt.l

Proximal Policy Optimization (PPO) ‘
Initialize 7(a | s,0), V] (s);

for k=0,1,2...

e collect several rollouts sy, ao, ro, 51, doney, ay . .. sy, doney using w(a | s, 0);
store probabilities of selected actions as 7°(a; | s;) := 7(a¢ | st,6)
store critic output as V°!4(s;) := V7 (st)
e compute 1-step errors: W(y)(s;,a;) = rp + (1 — doneHl)Vg(sHl) — Vg(st)
e compute GAE advantage estimations: WEE (sy_q,ay_1) == W (1) (sy—1, an—1)
e for t from N — 2 to O:
o WOAB(s a0) i= W(q)(st,ar) + Ay(1 — donee 1) WEAF (sei1, ary1)

e compute critic targets: y(s;) := WEAE (s, a,) + V7 (st)
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Full Pipeline: pt.l

Proximal Policy Optimization (PPO)
Initialize 7(a | s,0), V] (s);

for k=0,1,2...

e collect several rollouts sy, ao, ro, 51, doney, ay . .. sy, doney using w(a | s, 0);

Old(at | St) = W(at | St,g)

store probabilities of selected actions as 7
store critic output as V°!4(s;) := V7 (st)
e compute 1-step errors: W(y)(st, ar) = re +v(1 — donery1) VJ (Se1) — V()
e compute GAE advantage estimations: WEE (sy_q,ay_1) == W (1) (sy—1, an—1)
e for t from N — 2 to O:
o WOAB(s a0) i= W(q)(st,ar) + Ay(1 — donee 1) WEAF (sei1, ary1)
e compute critic targets: y(s;) := WEAE (s, a,) + V7 (st)

e construct dataset of (s, ar, VEAE (s, 1), y(st), 74(a; | s¢), VO'i(s:))
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Full Pipeline: pt.lI

Proximal Policy Optimization (PPO) —-- cont. ‘

e go through dataset n epochs times, sampling mini-batches of size B; for each mini-batch:
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Full Pipeline: pt.lI

Proximal Policy Optimization (PPO) —-- cont. ‘

e go through dataset n epochs times, sampling mini-batches of size B; for each mini-batch:
e normalize WSAE (s 2) in the batch by subtracting mean and dividing by std
e compute importance sampling weights:

m(a|s,0)
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p(s,a,0) =
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Full Pipeline: pt.lI

Proximal Policy Optimization (PPO) —-- cont. ‘

e go through dataset n epochs times, sampling mini-batches of size B; for each mini-batch:
e normalize WSAE (s 2) in the batch by subtracting mean and dividing by std
e compute importance sampling weights:

m(a|s,0)

woa(a[s)’ p°"(s,a,0) = clip(p(s,a,0),1 —€,1+¢)

p(s,a,0) =

e update actor:
Li(s, a,0) == p(s,a,0)WEAE(s, a), Ly(s, a,0) == pP(s,a,0) WO E(s, a)

1 .
00+ aV9§§ min(L1(s, a,0), La(s, a, ))
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Full Pipeline: pt.lI

Proximal Policy Optimization (PPO) —-- cont. ‘

e go through dataset n epochs times, sampling mini-batches of size B; for each mini-batch:
e normalize WSAE (s 2) in the batch by subtracting mean and dividing by std
e compute importance sampling weights:

m(a|s,0)

woa(a[s)’ p°"(s,a,0) = clip(p(s,a,0),1 —€,1+¢)

p(s,a,0) =
e update actor:
Li(s, a,0) == p(s,a,0)WEAE(s, a), Ly(s, a,0) == pP(s,a,0) WO E(s, a)
1 .
0 —0+aVog Z min(L1(s, a,0), La(s, a, ))

e update critic:
Lossi(s, @) == (y(s) — Vg(s))z

Lossa(s,8) = (y(s) — V*'4(s) — clip(VF (5) — V*M(s), , —e))2

¢ — ¢ — av¢% ZS: max(Lossi (s, ¢), Lossz(s, ¢)) "
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Reminder: Policy Gradient VS Value-based

Value-based (DQN+) Policy Gradient
o off-policy; ¥ on-policy;
(can use experience replay) (all data is useless after each SGD step)
X trains Q* (s, a); j trains policy directly;
(complicated intermediate stage) (requires only V™(s), which is much simpler)

K exploration-exploitation issues;

. . . . «natural» exploration;
(since Value Iteration works with deterministic I P

(sampling from stochastic policy 7(a | s))

policies)
x 1-step targets; f 00-step targets;
(can we do anything about it?) (can use GAE for both critic and actor)
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Off-policy Credit Assignment

Given rollout s, ro, s1, 1, S2, f2 - . . Sp from policy p and approximation of V7 (s)
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Off-policy Credit Assignment

Given rollout s, ro, s1, 1, S2, f2 - . . Sp from policy p and approximation of V7 (s)
perform credit assignment for state-action pair sg, ag in off-policy mode: p # 7

Would be great to use GAE:
Z(’y)\)tw(l) (st7 at)7

t=0

but W(;)(st, a:) depends on random variables: ao, 5o, a1, 52, - - - St 41
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Off-policy Credit Assignment

Given rollout s, ro, s1, 1, S2, f2 - . . Sp from policy p and approximation of V7 (s)
perform credit assignment for state-action pair sg, ag in off-policy mode: p # 7

Would be great to use GAE:
2 (N Wy (st ar),

t=0

but W(;)(st, a:) depends on random variables: ao, 5o, a1, 52, - - - St 41

Danger!
If 7(ao|so) = O than we can't do anything. ‘



Importance Sampling Correction

\&/ Use importance sampling correction!
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Importance Sampling Correction

\&/ Use importance sampling correction!

t=t
V=Y (3 <”i
t
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Importance Sampling Correction

¢

Use importance sampling correction!

t=t
7(a; | 5) P(3; 2, 33
‘“_Z(%)t( Ef f;p L | Wy (s ae) =
>0 3o P8t | S5t) PAStET a
5 (122120 w520
¢, a
= o Ma | st) (e =
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Importance Sampling Correction

Use importance sampling correction!

t=0

= Z(Wt( W(az)

Impractical: extremely high variance!
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Importance Sampling Correction

\%/ Use importance sampling correction!

-
m(a; | s) PSTTTH-Ses2:
\Uzg YA)! Wy (s, ap) =
%) ( 1(az | s3) PSErTt-Se-as el

t=0
=t 7r(aA ‘ SA)
= YAt 8% 1SH )y (s, 2
é( ) (20 wiaz | s3) (1) (st, ar)

Impractical: extremely high variance!

e vanishing trace: pu(als) » w(als)

e typical situation: p making stupid random moves that 7 rarely does now. No cure.
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Importance Sampling Correction

\%/ Use importance sampling correction!

-
m(a; | s) PSTTTH-Ses2:
\Uzg YA)! Wy (s, ap) =
%) ( 1(az | s3) PSErTt-Se-as el

t=0
=t 7r(aA ‘ SA)
= YAt 8% 1SH )y (s, 2
é( ) (20 wiaz | s3) (1) (st, ar)

Impractical: extremely high variance!

e vanishing trace: pu(als) » w(als)

e typical situation: p making stupid random moves that 7 rarely does now. No cure.
e exploding trace: u(als) « w(als)

o i selected action with small u(als), but probable for m. Is the reason of high variance.

28



Credit Assignment: General Form

Let's rewrite credit in the following way:

s
V= Z od (H Ci) V(1) (st; ar),
i=0

t=0

where ¢; are coefficients of «trace annealing»:

Name Coefficients ¢; Issue

GAE A on-policy only
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i=0

t=0

where ¢; are coefficients of «trace annealing»:

Name Coefficients ¢; Issue
GAE A on-policy only
One-step 0 high bias
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Credit Assignment: General Form

Let's rewrite credit in the following way:

s
V= Z od (H Ci) V(1) (st; ar),
i=0

t=0

where ¢; are coefficients of «trace annealing»:

Name Coefficients ¢; Issue
GAE A on-policy only
One-step 0 high bias
)\7‘((3,‘5_,)

Importance Sampling easily explodes

=
b
L
0
<
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Retrace: Main Theorem

W= Z o4 (1:[ Ci) V1) (st;ar),

t=0 i=0

Retrace Theorem

While in on-policy mode you could select any coefficient ¢; € [0, 1], in off-policy mode you can
select any coefficient

Ci € 0,
[ w(ai | si)



Retrace: Main Theorem

V=39 (H Ci) V() (st, at),

t=0 i=0

Retrace Theorem

While in on-policy mode you could select any coefficient ¢; € [0, 1], in off-policy mode you can
select any coefficient

Ci € 0,
[ w(ai | si)

e vanishing trace: can't do anything;



Retrace: Main Theorem

i=t
VY = Z ’Yt (H C,-) W(l)(st, at):
i—0

t=0

Retrace Theorem

While in on-policy mode you could select any coefficient ¢; € [0, 1], in off-policy mode you can
select any coefficient

Ci € 0,
[ w(ai | si)

e vanishing trace: can't do anything;

e exploding trace: if importance sampling is more than 1, JUST CLIP IT!

30




Retrace: final result
w Z ’7 (1_[ CI) 5t7 at

t=0

where
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Retrace: final result

i=t
V= :E]fyt I_I i | Viy(se, ar),
0

t=0 i

where

Used in:

e off-policy RL algorithms for theoretically correct multi-step targets;
e (A =1 because it vanishes fast)
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Retrace: final result

i=t
V= :E]fyt I_I i | Viy(se, ar),
0

t=0 i

where

Used in:

e off-policy RL algorithms for theoretically correct multi-step targets;
e (A =1 because it vanishes fast)
e distributed on-policy RL systems where data about gradient from some servers can be
several updates late.
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