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Everything is great except it is on-policy!
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More e Lcieht Policy Gradient?
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data generated by
Suppose we:

= want to optimize ~ (compute gradient for current );
 have data (trajectory samples) from policy °;

- i.e. we can estimate Eg g qpsq and E5  oldpgysg;
. . old . old
e i.e. we can train V. psq and thus estimate A "~ ps;aq;

TRPO: use more efficient optimization procedure than SGD!
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collect data with
(wrong! we don’t have it!)

We performed reward shaping us-
ing another policy’s value function!
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e we can work with it;
e directs to policy improvement of

« optimizing  with fixed °9 will learn argmax A ““ps; ag
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Minorization-maximization algorithm

We discovered aariational lower bound for our objective:

Jp q Jp%9g¥Lwpg CKL™Ppk q

Minorization : construct a new
lower bound; in our case simply
use % p

Maximization : optimize lower
bound (as long as you want).

guarantees monotonic improvement!
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The End?
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Trust Region Policy Optimization (TRPO)

$ ~
&L w p qN max

%KLp old k qua

critic and actor can't share backbone;
computationally costly;

complicated :(
X robust: prevents large changes;
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Given rollout s;r;s';r!;s2;r2:::sPMd from policy and approximation of V psq
perform credit assignment for state-action pair s;a (was this decision good or bad?)

For Actor: For Critic:

r: pgr log palsqpnad lofaon ps;ag  V psq

advantage target

estimator for regression

ps; aq Bias Variance
Monte Carlo oggps;aq: rrt o 2r2 V' psq 0 high

N-step ongPS;aq: ror! NV psPNdg Vv psq | intermediate | intermediate
1-step pighS;aq: r V pslg VvV psq high low

Problem: hard to choose N.
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Backward view: idea

N-step update:

¥ (w)
V psq—V psq pNgPS; ad r *
How to turn 1-step update into 2-step?
' "
N-step error is a sum of l-step errors §18 |
v S W W Wy w—
pNgPS; &g p1gPs™Y; @ Ty Y

bk Rk kkkie hkkkkkkkkkkkkkkklﬂ%“ﬁ(lkﬁﬁﬁkkkkkkkkkkkkj
V psq—V psq rVopslg V psq rl 2V ps?q  V pslg
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Define eligibility trace epsq as a coe Lcieht of
update:

@s:V psq—V psq  epsq pig

Online «Monte-Carlo» updates:
e @s:epsq: O at the start of each episode
e epsq—epsq 1 after visiting s
e @s: epsq— epsq after each step
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TD(1) and TD(0)

TD(1) \ TD(0)

Input: policy Input: policy

Initialize V psq arbitrarily Initialize V psq arbitrarily

Initialize epsq 0 Initialize epsq 0

observe so observe sg

fork 0;1;2::: fork 0;1;2:::
- take action ax  , observe ry;sk 1 - take action ax ~ , observe r; sk 1
* og- Tk Vopsk 10V opskq © gt Tk Vopsc 10V opsig
© epskq—epskq 1 e epskq—epskq 1
© @s:V psg—V psq  epsq pig ® @s:V psqg—V psq €psq  piq
e @s:epsq— epsq e @s:epsq— 0 epsq

16



17



e(s)
0 >
Time
1 .... ‘ ff(S)
0 >
Time

17



17



TD( )
Input: policy
Initialize V psq arbitrarily
Initialize epsq 0

observe sg

fork 0;1;2:::
* take action ai , observe r; sk 1
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outcome?»
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Backward view vs Forward view

Forward View
Give credit to present from known future

«Is this decision good or bad based on the
outcome?»

Backward View
Update past credits with present information

«which decisions in the past to blame?>
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Step Update p1aPS; @0 | p2gPS;aq p3qPS; aq pNgPS; ag
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2 p1gPS; aq i p12qp ) q 1 o1 q 5 0
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Equivalent forms of TD( ) updates

=
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q
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8
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future until the end of episode, but only T
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GAE in Advantage Actor-Critic

Longer rollouts produce richer GAE ensemble.

21



GAE in Advantage Actor-Critic

Longer rollouts produce richer GAE ensemble.

21



GAE in Advantage Actor-Critic

Longer rollouts produce richer GAE ensemble.

In A2C rollouts are usually short, so 1 is common choice.
(sometimes called max-trace estimation) 21



Combining all together




Proximal Policy Optimization: implementation matters

Key elements:
X Clipped policy loss
X Clipped critic loss
X GAE

Pipeline details:
I Advantage normalization in mini-batches
= No KL regularization
e Entropy loss

divided by running std of collected cumulative rewards
2can be critical in continuous control

Other hacks:
I Reward normalization® and clipping
= Observations normalization and clipping?
= Orthogonal initialization of layers
e (clipping parameter) annealing

Standard tricks:
= Adam, learning rate annealing
e Tanh activation functions

I Gradient clipping

22



Full Pipeline: pt.I

Proximal Policy Optimization (PPO)
Initialize pa|s; q;V psq;
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= compute critic targets: ypseq:  SABpsi;arg Vopsiq
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Full Pipeline: pt.lI

Proximal Policy Optimization (PPO) -- cont.
= go through dataset n__epochs times, sampling mini-batches of size B; for each mini-batch:
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|
= go through dataset n__epochs times, sampling mini-batches of size B; for each mini-batch:

e normalize  ©“Eps;aq in the batch by subtracting mean and dividing by std
e compute importance sampling weights:

o q. _PA[ST Q. clipe. . ; P :
ps;a; q: oidpa [ 5q° ps;a; g clipp ps;a; ;1 ;1
e update actor:

Lips;a; q: ps;a; q S Fps;aq;  Lops;a; q:  “™Pps;a; g GASps;ag
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-
e update critic:

Lossips; q: ypsq V psq”

2
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