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Abstract—The relational approach to dependence estimation 

inevitably entails the necessity of choosing, at least, a sufficiently 
small relevance subset of training-set objects with which any newly 
occurring object will have to be compared for estimating its hidden 
target characteristic. If several comparison modalities are tenta-
tively supposed by the observer, a relevance subset of them is to be 
additionally chosen. To avoid multiple training repetitions 
concerned with the traditional explicit cross-validation when 
adjusting the appropriate selectivity level, we consider a principle of 
mentally emulating the cross-validation process on the basis of 
quite lenient assumptions on the nature’s unknown probability 
distribution having produced the training set. We call this principle 
the hypothetical non-enumerative cross-validation, and show that 
the classical Akaike Information Criterion is a particular case of it 
under some especially naïve assumptions. The effectiveness of the 
non-enumerative cross-validation is demonstrated on the well-
known chicken-pieces data set treated from the viewpoint of 
relational discriminant analysis.  

Keywords—relational dependence estimation; relevance vector 
machine; support vector machine; feature selection; selectivity 
adjustment; Akaike information criterion; hypothetical cross-
validation; non-enumerative model verification  

I.  INTRODUCTION  

Given a finite training set of real-world objects   rep-

resented by real-valued feature vectors  

  ( ) ( ),ix i   x n , | |n , {1,..., }n ,  (1) 

and labeled by some normally hidden numerical characteristic 

  ( , ) ( ) , ( ) , 1, , {1,..., }j j j j j jy y y or y j N        X y x x ,(2) 

then linear methods of dependence estimation yield a linear 

decision rule in the feature space  ( 1 ) n

ia ,i ,...,n ,  a  

b , which is applicable to any new object ( , )y x  

 ( , ),j jy jx :  

 
ˆ( ) ,

( )
ˆ0, ( ) 1 .

T
y regression estimation

d b
y pattern recognition

 
    

x
x a x

x
  (3) 

We consider here primarily the problem of pattern recogni-
tion, namely, one of several versions of the commonly adopted 
Support Vector Machine (SVM) [1,2]:  

 
 

2 2 ( )

1 0 {1 }

ˆ i j i ji j

ˆj i ij j ji

ˆa C min a ,i ,b, , j ,

y a x b , , j ,...,N .
 



      


       

 


  (4) 

Here ˆ {1,..., }n   is a subset of “active” features, ˆˆ | |n n  . 

If ˆ  is fixed, the major advantage of SVM is that it selects a 

relatively small subset of training-set feature vectors n̂

jx , 

ˆ ,

ˆ
C

j  , called support vectors, which completely deter-

mine the estimated direction vector of the discriminant hyper-

plane 
ˆ

ˆ ,
ˆ n

C
a . It is easy to prove [1,2] that the estimated di-

rection vector as a linear combination of only support vectors  

 
ˆ

ˆ ˆ, , ,

ˆˆ n

j jC C jj J
y


  a x .  (5) 

Here the variables ˆ , ,

ˆ( , )
C j

j   are the estimated nonnegative 

Lagrange multipliers at the inequality constraints 

( ) 1T

j j jy b  a x  in (4). If 0j  , the respective constraint 

is inactive ( ) 1T

j j jy b  a x  and 0j  ; contrarily, when 

0j  , the constraint is active ( ) 1T

j j jy b  a x , and the 

respective  training-set  object  is  said  to  be a support object.  
As a result, the final decision rule is typically much simpler 
than the full expression (3)  

 
ˆ ,

ˆ ˆˆ , , ,

ˆˆ( ) 0
C

T

j jC j Cj
d y b


   x x x , ˆ ˆ, , ,

ˆ ˆ{ : 0}
C C j

j    ,(6) 

and is completely defined by the subset of support vectors 

ˆ ,

ˆ
C

 along with their class-memberships  ˆ ,

ˆ( , ),j j C
y jx  

as well as the positive Lagrange multipliers associated with 

them ˆ ˆ, , ,

ˆ ˆ{ 0, }
C j C

j   .  

The choice of the active feature subset ˆ  along with 

the value of the structural parameter 0C   in (4) completely 

determine the number of support vectors ˆ ˆ, ,

ˆˆ | |
C C

N  , and is 

thus a measure of the complexity of the decision rule (6). The 

pair of structural parameters ˆ( , )C  has, hence, a critical bear-

ing on the generalization performance of the resulting SVM.  
If no separate test set is available, the only way to adjust   

is via cross validation within the training set (2). However, 
traditional explicit cross-validation requires multiple training 

repetitions to choose the structural parameters ˆ( , )C .  

In this paper, we provide a mathematical justification of 
the suggestion made in [3] that the Akaike Information Crite-
rion (AIC) [4], originally developed as applied to regression 
estimation, can be viewed as hypothetical cross-validation. It 
has the advantage that an analytical expression can be ob-
tained for comparing models. We proceed from a more gen-
eral view of machine learning, and mathematically emulate the 
cross-validation process by exploiting certain conservative 
assumptions regarding the probability distribution giving rise 
to the training set. We call this principle “hypothetical non-
enumerative cross-validation”, and show that the classical 
AIC constitutes a particular case under certain assumptions. Its 
application to SVMs explicitly exploits the dependency of 
training results on the existence of support feature vectors.  

We apply the principle of non-enumerative hypothetical 
cross-validation not only to the classical SVM, with a fixed set 

of object features ˆ  (1), but also to the Relevance Vector 

Machine (RVM) [5,6,8] based on the assumption that the real-
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mailto:vmottl@yandex.ru
mailto:d.windridge@surrey.ac.uk


world objects   are perceptible only by an arbitrary 

measure ( , )S     of their pair-wise similarity or dissimilari-

ty. The idea is to treat the values of this function between an 
arbitrary object   and those of the training set 

{ , 1,..., }j j N   as the vector of secondary features  

 ( ) ( ) ( , ),i ix S i       x , {1,..., } {1,..., }n N  ,  (7) 

and apply then the standard SVM in n N . We consider a 

feature-selective generalization of SVM  

 
 

2 2 min( , , , , ),

1 , 0, {1,..., },

i i j i ji i j J

j i ij j ji

a a C a i b j

y a x b j N
  



         


       

  


  (8) 

which differs from that outlined in [7] under the name of Dou-
bly Regularized SVM or Elastic Net SVM only by the squared 

penalty 2

j , instead of j , for violation of the generic re-

quirement of SVM to provide a positive margin between two 

classes of training-set objects   1j i iji
y a x b


  .  

The presence of the 1L  regularization term with weighting 

parameter 0  , as distinct from (4), yields the intrinsic prop-

erty of the doubly regularized SVM to assign strictly zero val-

ues to redundant elements of the direction vector ia , thereby 

automatically finding the subset of informative secondary fea-

tures C ,
ˆ ˆ{ 0}C ia     , namely, of the training-set objects.  

These objects are said to be relevance objects, or relevance 

vectors if the comparison function ( , )S     possesses the 

properties of a kernel embedding the objects into a linear 
space [6]. If 0 , the method equates to the classical SVM 

retaining all the features ˆC  . Alternatively, if  , 

the criterion becomes excessively selective ˆC . Thus, as 

the structural parameter   grows, the training ranges from the 

full conservation of secondary features to extreme feature se-
lectivity.  

This fact is essentially exploited by our hypothetical non-
enumerative cross-validation, which allows to avoid the com-
putationally extremely expensive explicit cross validation 

when adjusting the structural parameters ( , )C  , primarily, the 

selectivity parameter  , providing the best generalization per-

formance of the doubly regularized SVM.  

II. THE PRINCIPLE OF HYPOTHETICAL CROSS VALIDATION  

Our principle of hypothetical cross validation is based on 
two heuristics to be formulated in Subsections II.B, II.C and 
II.D. To clarify terminology, we shall first briefly outline, in 
Subsection II.A, the problem of dependence estimation from 
empirical data.  

A. The general problem of dependence estimation  

Let   be a set of real-world objects   each of which 

is associated with two measurable characteristics in arbitrary 

domains ( ) x  and ( )y   , the former of which is given 

and the latter hidden during the test phase. Objects   are 

assumed to be repeatedly and independently drawn from a 

preexisting distribution, i.e., as a pair ( , )y  x . The dis-

tribution density  

 ( , ) 1f y d dy   x x , ( , ) g ( ) ( | )f x y y   x x   (9) 

is unknown to the observer who wishes to solve the problem 
ˆ( ):y x  , i.e., estimate the hidden dependence.  

In particular, in the pattern-recognition problem { 1,1}  , 

the adoption of a conditional distribution density ( | )y x  in 

(9) is consistent with the binary essence of the class-
membership index because it is possible, in the case of two 
classes, to treat this as a real-valued random variable concen-
trated in two points and described by a singular density  

  ( | ) (1 ) ( 1) ( 1)y p y p y          x ,  (10) 

where ( )z  is Dirac delta function, ( 1| )p P y   x .  

Suppose the observer has obtained a finite set of independ-

ent random drawings, i.e., a training set ( , )X y  as in (2). Fur-

ther suppose that the observer proposes to employ a paramet-

ric class of decision rules ˆ( , )y x a , na , and a loss function  

    ( , , )q y x a , for instance,  ˆ( , , ) , ( , ) .q y Loss y yx a x a  (11) 

The optimal way to select parameter a  would be via minimi-

zation of the average risk ( , , ) ( , )q y f y dyd   x a x x  

min( )a , however this is impossible because the distribution is 

unknown. The commonly adopted compromise is to minimize 
the empirical risk computed from the available training set  

 
1

( , , ) ( , , ) min( )
N

j jj
Q q y


 y X a x a a .  (12) 

Let, further, the observer have a quite vague a priori sug-

gestion on the value of the main parameter na , which is 

expressed in the form of a parametric family of functions to be 

minimized ( , ) min( )V C a a . Here C  is an additional scalar 

or vector parameter, the so-called structural parameter, meant 
to control the undesirability of the deflection of a  from a sub-

set n  associated with “especially simple” decision rules.  

It is common practice to accept the regularized criterion as a 
trade-off  

  ˆ ( , ) argmin ( , ) ( , , )C V C Q 
a

a X y a y X a ,  (13) 

It is clear that the result of training will depend critically on 
the value of the structural parameter  , and its choice is, per-

haps, the central problem of the machine learning theory.  

B. The assumption of the tractability of the learning problem  

It is always possible to represent the unknown joint proba-
bility density of the hidden and observable characteristics of a 

random real-world object ( , )f y
x  as product of the marginal 

density of one variable and the conditional density of the other 
(9). Thus, the joint probability density of the training set as a 
whole can be represented as a product  

 
1

( , ) ( ) ( | ) ( ) ( | )
N

j j jj
F G g y    


   X y X y X x x . (14) 

Of course, both densities remain unknown here, but let the 
observer try to slightly temper his/her despair of complete 
ignorance, and mentally tie the nature’s conditional distribu-

tion ( | )y x  to the parameter a  that exists only in the ob-

server’s imagination ( | ) ( | , ) ( )
n

y y d    x x a a a . In 

terms of the assumed mechanism of forming the training set, 
this means the equality  



 ( | ) ( | , ) ( )
n

d    y X y X a a a ,   

where    
1

( | , ) ( | , )
N

j jj
y


  y X a x a   (15) 

is treated as the completely known parametric family of condi-

tional distributions, whereas ( ) a , on the contrary, is as-

sumed to be absolutely unknown. In other words, the observer 

considers ( | ) y X  in (14) as an unknown mixture within 

the known parametric family of conditional distributions.  

The treatment of the parametric family ( | , )y x a  via the 

exponential of the loss function  

 ( | , ) exp ( , , )y q y  x a x a ,  ( | , ) exp ( , , )Q  y X a y X a , (16) 

where the normalization coefficient   does not depend on a , 
is equivalent to an assumption of the non-viciousness of nature, 

i.e. it is implicitly assumed, for each na , that more random 

pairs ( , )yx  corresponding to low values of the accepted loss 

function ( , , )q y x a are produced than for the high values.  

C. Mental experiment  

Suppose, firstly, that a value of the hypothetical parameter 
na  has been randomly drawn by the nature in accordance 

with the unknown density ( ) a , as well as all the observa-

ble characteristics of the training-set objects 1( ,..., )NX x x   

in accordance with equally unknown density ( )G
X  (14).  

Suppose, further, that we imagine that we have randomly 
and independently drawn two versions of the object character-
istics 1( ,..., )Ny yy  and 1( ,..., )Ny yy . There are thus now 

two different hypothetical sets ( , )X y  and ( , )X y  with the 

same values of 1( ,..., )NX x x . We can imagine that these are 

used as the training set ( , )X y , which yields some estimate of 

the goal parameter ˆ ( , )Ca X y  (13), and the test set ( , )X y , 

which is used for computing the loss  ˆ, , ( , )CQ y X a X y . The 

essence of the hypothetical cross validation is minimization of 
the mathematical expectation of the loss:  

 
  ˆ, , ( , ) ( | , ) ( | , ) ( )

                                      ( ) min( ).

CQ d

G d d d C





   

 
   y X a X y y X a y X a a a

X y y X
 (17) 

In reality, we have one training set ( , )X y , and can only 

compute the loss on the same set already used for training. In 
this case we need to determine: 1) How large will be the de-
fect of the criterion subject to minimization in accordance to 
(17)? 2) What should be the penalty for using the estimate 
ˆ ( , )Ca X y  computed from the same set instead of an inde-

pendent estimate ˆ ( , )Ca X y ?  

Theorem 1. The equivalent form of criterion (17) is  

 ˆarg min , , ( , ) ( , )

                                  ( , , ) ( ) ( ) ,

{
}

m

C
C

C Q F d d

C G d d

 

  



 

 




y X a y X X y X y

X a a X X c
(18) 

   ˆ ˆwhere ( , , ) , , ( , ) , , ( , )

                                            ( | , ) ( | , ) .
CC Q Q

d d




   

 
 XX a y X a y y X a X y

y X a y X a y y
(19) 

For many typical loss functions ( , , )Q y X a  and regularization 

functions ( , )V Ca  (13) applicable to a wide class of practical 

problems, the penalty (19) does not depend on the parameter a :  

 
   ˆ ˆ, , ( , ) , , ( , )

                        ( | , ) ( | , ) ( , ).

C CQ Q

d d C


 

   

 y X a X y y X a X y

y X a y X a y y X
 (20) 

Theorem 2. In the case of parameter-independent penalty 
(19), the idea of hypothetical cross validation (17) lends itself 
to the simple representation: 

   ˆargmin , , ( , ) , ( , ) .C
C

C Q C F d d 
  

    
  
  y X a X y X X y y X (21) 

D. The criterion of hypothetical cross validation  

However, the criterion (21) is still unfit for practical use, 
because the joint probability distribution is unknown to the 
observer. The second heuristic idea is to substitute the mathe-
matical expectation (21) for its unbiased estimate:  

 

  ˆ ˆ( , ) arg min , , ( , ) ( , ) .
                                                                          C

C

empirical risk penalty

structural risk

C Q C  y X y X a X y X

  (22) 

This is just the criterion of hypothetical cross validation we 
consider in this paper.  

Its structure is analogous to the Vapnik-Chervonenkis cri-
terion of structural risk minimization [1], but differs from it in 

the interpretation of the penalty ( , )C X  (20). In Vapnik-

Chervonenkis theory, the penalty characterizes the upper 
bound of the unknown average risk, which is derived from 
general inequalities of the probability theory and parameter-
ized by the VC-dimension. It should be remembered that the 
notion of VC-dimension was formulated only for the simplest 
binary loss function in pattern recognition, and is inapplicable, 

for instance, to SVM. In contrast to this, the penalty ( , )  x  

(20) is applicable to a more wide class of loss functions, but is 
underlain by a potentially more restrictive heuristic assump-
tion regarding the data. As we shall see below in Section IV, it 
is compatible with the SVM framework.  

In accordance with the first heuristic assumption (16), we 

have ( , , ) ln ( | , )Q const  y X a y X a . The hypothetical 

cross validation  ˆln | , ( , ) ( | , ) maxC d     y X a X y y X a y  

thus amounts to maximizing the Kullback information on the un-

known distribution ( | , ) y X a  contained in the estimate from 

another sample  ˆ| , ( , )C y X a X y . Therefore, it is appropriate to 

regard our criteria of hypothetical cross validation as implicitly 
information-theoretic and consider it as a generalization of the 
classical idea of Hirotugu Akaike set out in [4].  

III. SIMPLEST INSTANTIATION OF THE METHOD: LINEAR 

REGRESSION AND THE AKAIKE INFORMATION CRITERION  

Linear regression. Let the unobservable variable take val-
ues along the real axis y  , and the observable one be a 

real vector, i.e., n x . We shall assume the loss function 

(11)-(12) to be linear and quadratic  

 

2

1
2

( , , ) ( ) , ( ) ( ),

( , , ) ( ) ( ),

T

N

T T T T

q y y n N

Q

   

    

x a x a X x x

y X a y X a y X a y X a
  (23) 

thus, the assumed conditional distribution (16) to be normal 
2( | , ) ( | , )Ty y  x a x a  with fixed variance 2 1 2  . This 

is hence the problem of linear regression estimation.  



In the case of the simplest quadratic regularization function 

( , ) T

CV C a a B a , where symmetric positive semidefinite ma-

trix CB ( )n n  depends on the structural parameter C , the 

trade-off training criterion (13) will yield the estimated vector 
of regression coefficients  

 2
1ˆ ( , ) arg min ) .T T T

C C C

    X y
a

a a B a y X a XX B Xy (24) 

Theorem 3. For the linear-quadratic los function (23) and, 
hence, the normal conditional density of the hidden variable 

( | , ) y X a  (16), the penalty (19) for using the estimate 

ˆ ( , )Ca X y  (24) computed from the same set instead of an in-

dependent estimate ˆ ( , )Ca X y  does not depend on the un-

known parameter a  (20):  

 1( , ) ( )T T

CC Tr     X XX XX B .  (25) 

Thus, the criterion of hypothetical cross validation (22) for 
the linear regression model has the form  

 
2

1ˆ ˆ( , ) arg min ( , ) ( ) .T T T

C C
C

C Tr      y X y X a X y XX XX B (26) 

The Akaike information criterion. Let us additionally as-
sume that the elements of the vector of regression coefficients 

are a priori ordered 1( )na aa , and that the integer structur-

al parameter 0 C n   corresponds to the number of non-zero 

regression coefficients:  

 1 1( , ) ( ,..., , 0,..., 0)C n C C C na a a a    a a a .   

This assumption can be expressed as the simplest quadratic 
regularization function  

 

1 1
( , ) , , .

                                                                

T

C C

n CC

V C Diag



 
     

  
a a B a B

  (27) 

Theorem 4. Under the assumption (27)  

 
1lim ( , ) lim ( )T T

CC Tr C

 
     X XX XX B ,   

Thus, the criterion of hypothetical cross validation (26) re-
duces to an especially simple form:  

  
2ˆ ˆ( , ) arg min ( , ) .T

C
C

C C  y X y X a X y   (28) 

This is just the idea of the Akaike information criterion [4].  
Comparison of (28) and (22) allows us to interpret the pen-

alty term ( , )  X  in the criterion of hypothetical cross valida-

tion as a generalized real-valued dimensionality of the data 
model.  

IV. SECOND INSTANTIATION:  
THE SUPPORT VECTOR MACHINE  

A. The subset of support vectors as a self-contained non-
numeric structural parameter  

Let us consider a parametric family of discriminant hyper-

planes 0T b a x  in an n̂ -dimensional feature space  
ˆ ˆˆ ˆ ˆ ˆ( , ) , , {1,..., } , , | | ,( )n n

i ix i a i n b n         x a (29) 

distinguishing between two classes of objects 1y    repre-

sented by feature vectors n̂x . The goal of classification is  

then to select a hyperplane such that the feature vectors of 
objects of different classes would fall primarily in different 

half-spaces. Let the loss function ( , , , )q y bx a  (11) applicable 

to any object ( , )yx  be chosen in the form  

 
 

2

0,                         if ( ) 1,
( , , , )

1 ( ) , if ( ) 1,

T

T T

y b
q y b

y b y b

  
 

   

a x
x a

a x a x
  (30) 

which penalizes the feature vector x  if it is located on the 

wrong side of the hyperplane, but also penalizes proximities 
on the correct side of the hyperplane of less than 1  assuming a 
Euclidean metric. The respective empirical risk of the training 
set (2) will be the sum  

 
2

: ( ) 1

( , , , ) ( , , , ) ( )
T

j j

T

j j j j

j j y b

Q b q y b y b
  

    
a x

y X a x a a x . (31) 

If we assume the quadratic regularization function 

( , ) TV b a a a , then training criterion (13) will have the form  

 
2ˆ ,

ˆ , : ( ) 1,

ˆ ( , )
arg min ( ) ,ˆ ( , )

{ }
T

j j

C T T

j j
b j y bC

C y b
b

 

 
    

 
 


a a x

a X y
a a a x

X y
 (32) 

which equates to the standard SVM criterion (4).  
It will be convenient to us to eliminate the double notation 

of the parameters of the discriminant hyperplane ( , )ba  by 

adding an extra element 1 to the feature vector and an extra b  

to the direction vector, so that 
ˆ 1( ,1) n x x , 

ˆ 1( , ) nb  a a . 

In this case, the SVM problem (4) will have the form  
2 ( )

1 0 {1 },

T
ˆ j j,C j

T

j j j j

min , , j ,

y , , j ,...,N


     


     

a B a a

a x
 ( 1) ( 1)

(1 )

0
n̂

ˆ T,C
ˆ ˆn n

C
.

  

 
 
 

0
B

0

I
(33) 

The solution of the respective dual problem yields the optimal 

discriminant hyperplane ( )ˆ ,C
ˆ ,a X y , i.e., ( )ˆ ˆ,C ,C

ˆˆ ,ba , which is 

applicable to feature vectors of new objects (3), and the subset 

of support objects of the training set ˆ
C  :  

  2 2

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆˆ ˆ: ( , ) 1 , 0 , ( ) .T T

j j j j j j jC C C
j y y        x a x aX y (34) 

Traditionally, to choose the appropriate values of the structur-

al parameters ˆ( , )C , the user has to repeat training (33) for a 

series of tentative values, and accept the result ( )ˆ ,C
ˆ ,a X y  that 

provides the minimum cross-validation error.  
In order to make the notion of hypothetical non-enumerative 

cross validation applicable to SVM, we associate the value of 

the numerical structural parameter ˆ( , )C  with the resulting 

subset of support vectors ˆ ,

ˆ
C
 . Only the feature vectors and 

class indices of the support objects affect the result of training:  

 ˆ1 ˆ ,

ˆ1 ˆ ,

ˆ ˆ ˆ ˆ ˆ, , , , ,

ˆˆ ˆ ˆˆˆ 1) , ( ) , | |. 1  1
N

C

N
C

j j T

j jC C C C C
n N y y N

 
     
 
 

X
x x

y (35) 

In accordance with (33), (34) and (35), the subset of sup-
port vectors completely defines the direction vector of the 
optimal discriminant hyperplane:  

 

2

2
1

( )= ( ; )=argmin ( )

argmin ( + )

{ }T T
ˆ ˆ ˆ ˆ j j,C ,C ,C ,C

ˆj

T T T
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,C ,C ,C ,C ,C ,C ,C ,C

ˆˆ ˆ, , y

ˆ ˆ ˆ ˆˆ ˆ .




  

  

a a a B a x a

a B a X a X X B X

X y X y

y y
(36) 

We treat this subset as a self-contained structural parameter of the 

decision rule. Our approach is hence to consider the subset ˆ ,

ˆ
C

 

as the structural parameter which is subject to cross validation in a 

tentative series 
1 1
ˆ ˆ1 1 , ,

ˆ ˆ ˆ ˆ( , ),..., ( , ) ,...,[ ] [ ]
m m

m m C C
C C  .  



B. Application of a heuristic tractability assumption  

By mathematical formulation, the problem (36) seems to 
coincide with that of regression estimation (24). However, the 

fundamental distinction is that the variables 
jy  take in (36) 

only two values 1jy  , whereas in (24) these are real varia-

bles jy  . As a consequence, an attempt to apply the as-

sumption (16) results in inevitable dependence of the normali-
zation coefficient   on the unknown value of a , and the sub-

sequent mathematical framework in sections II.B and II.C be-
comes inapplicable.  

The heuristic way out we propose here is to maximally ex-
ploit the formal analogy between (36) and (24), and literally 
treat the SVM problem with fixed subset of support objects as 
though it would be that of regression estimation. Such a sub-
stitution leads to usage of expression (25) as the penalty for 

using the estimate ( )ˆ ,C
ˆ ,a X y  (36) computed from the same 

set instead of an independent estimate ( )C
ˆ ,a X y :  

 1

ˆ ˆ ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ ˆ ˆ( , , ) ( + )T T

C C C C C
C Tr   

 
X X X X BX .  (37) 

Theorem 5. ˆ ,C

ˆ ˆˆlim ( , , ) min , 1{ }C C n N   X , where 

ˆˆ | |n  , ˆ ˆ,C ,

ˆˆ | |
C

N   in accordance with (29) and (35).  

The latter theorem shows that the penalty (37) should be 
understood as effective dimension of the hyperplane’s parame-

ter 
ˆ

( , )n b a , which is often smaller than ˆˆ 1 | | 1n   .  

As applied to the choice of the feature subset ˆ  with a 

sufficiently large value of C , our criterion of hypothetical 

cross validation for SVM (4) and (33), in accordance with 
notations (35), becomes the form:  

   
ˆ ,

2

ˆ ˆˆ , , ,C
ˆ

ˆ ˆ ˆˆ( , ) arg min min , 1 .{ }
C

C C jj
n N




   y X  (38) 

However, the huge number 2n  of all the feature subsets 
ˆ {1,..., }n   prevents direct usage of the “naive” rule (38).  

C. The Relevance Vector (Object) Machine  

The additional regularization term ii
a


  in (8) gives 

rise to characteristics that are significantly different from the 
standard SVM. This term serves to automatically select the 
most informative subset of secondary features, relevance ob-

jects ˆC  , whose role has much in common with that of 

support objects (vectors) in the classical SVM in that only 
relevance objects are associated with the non-zero coefficients 
at the solution of the convex training problem. Since the dou-
bly regularized criterion is convex, it does not matter, for the 
outcome, which algorithm is used to obtain the solution. In 
particular, the algorithm proposed in [8] efficiently determines 

the optimal subset of relevance objects ˆC .  

Heuristic evaluation has indicated that it is reasonable to 
fix the parameter C  at a sufficiently large value while varying 

only the selectivity parameter  .  

Once the subset of secondary features is found 

 ˆ
C , ˆˆ | |C Cn   ,  (39) 

it appears expedient to apply the usual SVM (4) to this subset:  
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ˆ i j i C ji j

ˆj i ij j ji

ˆa C min a ,i ,b, , j ,

y a x b , , j ,...,N .





 



      



       

 


  (40) 

Application of any standard training algorithm yields the sub-
set of support objects  

 
,

ˆ ˆ{ : 0}C C jj    , ˆˆ | |C CN   , (41) 

i.e., such objects that 1( )
C

ˆj C ,i ij C C , ji

ˆ ˆˆy a x b


  
   . As 

distinct of (6), the subset of support objects will, first, depend 
on both structural parameters ( , )C   and, second, define the 
decision rule that takes into account only the relevance sec-
ondary features of any new object (7)  

   1

,
ˆ ˆ

( )| , ( ),..., ( ) | ,
ˆˆ 0, ( ) ( , ), .

C C

N

j C j ij i C i i i

j i

d C d x x C

y x x b x x S i

  

      

         
x

 (42) 

The training at each of the points 1( ... )m     yields the 

respective succession of the relevance sets 
1

ˆ ˆ( ,..., )
mC C   of 

sizes 
1

ˆ ˆ( ,..., )
mC Cn n 

, which generally show the tendency to 

form diminishing subsets 
1 2

ˆ ˆ( ...C C   ˆ )
mC , however,  

the latter characteristic is not always strongly evident. It is in 
this context that we wish to determine the most appropriate 
selectivity setting via hypothetical cross validation.  

Our treatment of the doubly regularized SVM (8), which we 
regard as a Relevance Vector Machine with supervised selectiv-
ity, is eligible to the same heuristic trick that we applied to the 
usual SVM in section IV.B. The penalty (37) for the incorrect 
estimate is completely applicable to the SVM formulation (40) 

with fixed subset of secondary features ˆC   previously 

estimated by the doubly regularized SVM (8). The only distinc-

tion is that matrices CB  and ˆ CX  are now of smaller dimen-

sion than (33) and (35) in accordance with (39) and (41):  
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Respectively, the criterion of hypothetical cross-validation (38), 
as applied to the choice of   with fixed C , will take the form  

 
  

2 1
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X X X X By X
(43) 

This criterion works extremely well in practice.  

V. EXPERIMENTAL ILLUSTRATION  

A. Chicken Pieces Silhouettes Database  

The Chicken Pieces Silhouettes Database [9] consists of 
446 images of chicken pieces. Each piece belongs to one of 
five categories, which represent specific parts of the chicken. 
Each image is in binary format containing the silhouette of a 
particular piece. The dataset lends itself to kernelisation over 
standard pattern recognition via embedding shape characteriz-
ers in a uniform-dimension pattern-recognition space (difficul-



ties that e.g. edit-distance kernels naturally overcome, being 
able to compare silhouettes of differing size).  

Pieces are placed in a natural way without considering ori-
entation and represented by 44 pair-wise real-valued similarity 

measures ( , )iS    , 1,..., 44i  , derived from different pa-

rameterizations of the edit-distance kernel. We thus consider a  

binary class problem with 172 entities:  ,j j     

1,..., 172N  , 1jy   .  

B. Secondary object features and the process of training  

We represent each entity 
j  by the N -dimensional vector 

of its secondary features, i.e., similarities with all the elements 
of the training set  

  1 1( ,..., ) ( , ),..., ( , ) N

j j jN j j Nx x S S      x     

and solve the RVM problem (8) with a large value of the ridge 
parameter 0C   and increasing values of selectivity parame-

ter 0  .  

The solution of this problem is denoted as 

,1 ,
ˆˆ ˆ( ,..., , ,C C N Ca a b   ,1 ,

ˆ ˆ,..., )C C N    defining a discriminant 

hyperplane in the respective N -dimensional feature space 

,1

ˆˆ 0
N

C i i Ci
a x b 

  .  

C. Illustrative Experimental Comparison  

For each conjectural value of  , the procedure determines 

the subset of relevance secondary features ,
ˆ ˆ{ 0}C C ia    , 

namely, of the relevance training-set entities.  
To provide a baseline for the proposed method of hypo-

thetical cross-validation, we applied standard leave-one-out 
cross validation to each value of  . The result is shown in 

Figure 1.  
In particular, it is evident that the leave-one-out estimate of 

the generalization performance does not significantly depend 
on the selectivity level for this data set in practice. This im-
plies that a standard SVM, which is obtained from the RVM 
formulation when 0  , is not liable to overfitting on the 

dataset, and further that features do not contain complemen-
tary information. This makes it an ideal test bed to determine 
the practical behavior of the non-enumerative cross-validation 
approach.  

We thus applied the non-enumerative hypothetical cross-
validation technique for the RVM, as outlined in Section IV.C. 
The plot of the criterion (43) is shown in Figure 2.  

Note, in particular, that the selectivity setting exhibits a 
strong peak at 0.9, even in an experimental context chosen to 
exhibit relatively little structural risk over the majority of the 
tested range. Crucially, the peak coincides with the region of 
maximum generalization performance in the leave-one-out 
scenario. This is indicative that the employed heuristic as-
sumptions are sufficient to bring about a strong instantiation of 
selectivity parameter even in scenarios where weaker selection 
would be viable. Note that a strong instantiation of selectivity 
has potential advantages in reducing overall training times, 
and may be considered analogous to the rapid tending to zero 
of a non-support object’s Lagrange coefficients in an efficient 
implementation of the standard SVM formulation.  

VI. CONCLUSIONS  

In order to avoid the multiple training repetitions required 
by traditional cross-validation when adjusting structural-risk 
related parameters, we propose a novel non-enumerative hy-
pothetical cross validation approach. In particular, we demon-
strate that by making certain mild heuristic assumptions re-
garding the underlying distribution of the data we can derive a 
quantity that is analogous to VC dimensionality, albeit within 
a strictly information theoretic context (we show that the clas-
sical Akaike Information Criterion is a particular case).  

We demonstrate the effectiveness of the non-enumerative 
cross-validation method on the chicken-pieces data set, and 
establish the method’s strong instantiation tendencies with 
regard to the selectivity parameter of a doubly-regularized 
SVM variant.  
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Figure 1. Leave-one-out cross validation of RVM with 

increasing selectivity.  
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Figure 2. The criterion of hypothetical cross validation 

for choosing the selectivity level (43).  
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