Построение моделей обучения по предпочтениям с использованием порядковых экспертных оценок

М. П. Кузнецов

Диссертация на соискание ученой степени кандидата физико-математических наук 05.13.18 — Математическое моделирование, численные методы и комплексы программ научный руководитель д.ф.-м.н. В.В. Стрижов

Московский физико-технический институт 32 августа 2016 г.

Задача обучения по предпочтениям

Цели исследования

- 1. Разработка новых подходов к моделированию объектов, заданных порядковым описанием.
- 2. Разработка и обоснование эффективных вычислительных методов распознавания объектов, заданных линейным и порядковым описанием.

Задачи

- 1. Разработать подход к моделированию порядковых признаков с использованием полиэдрального представления порядковых данных.
- 2. Разработать алгоритм построения модели предпочтений на множестве объектов, заданных порядковым признаковым описанием.
- 3. Разработать метод решения задачи порядковой классификации объектов, заданных линейным и порядковым описанием.
- Разработать методы моделирования и согласования линейных и порядковых экспертных оценок.
- 5. Реализовать алгоритмы распознавания порядковых объектов и провести вычислительный эксперимент для установления границ применимости методов.

Постановка задачи восстановления предпочтений

Дано

- ▶ Набор объектов $x_1, ..., x_m \in X$.
- ▶ Набор предпочтений $z_1,...,z_n$ на $X\colon z_j(x_i,x_k)=\mathbb{I}[x_i\geq_j x_k]$
- ▶ Целевое отношение предпочтения $z_0(x_i, x_k) = \mathbb{I}[x_i \geq x_k]$.

Требуется

Построить отображение $f(x_i) \in \mathbb{R}$, задающее агрегированное отношение предпочтения z_f ,

ightharpoonup удовлетворяющее условию монотонности по всем $z_1,...,z_n,$

$$x_i \ge_1 x_k, ..., x_i \ge_n x_k \rightarrow f_i \ge f_k,$$

► наилучшим образом приближающее целевое предпочтение *z*₀:

$$S(X, z_f, z_0) \rightarrow \min,$$

где $S(X,z_f,z_0)$ — функция ошибки, описывающая различие между отношениями z_f и z_0 .

Предметная область

- Область социального выбора: X множество кандидатов, $z_1, ..., z_n$ избиратели.
- ▶ Задача комбинирования ранжирований: X множество документов, $z_1, ..., z_n$ ответы поисковых систем.
- Обучение ранжированию: z_0 оценки асессоров поисковой системы.
- ▶ Порядковая классификация: X множество объектов, целевое отношение z_0 задается конечным множеством меток классов.

Задача категоризации видов Красной книги РФ

Данные: экспертная анкета							
Вид	Численность	Площадь ареала	Генетическое разнообразие	Категория			
Зеленый осетр	2	2	0	1			
Ладожский сиг	0	2	1	2			
Длиннопёрая палия	3	1	0	3			
Полярный медведь	3	3	0	4			
Канадский песочник	2	1	0	3			
Азовская белуга	1	3	1	1			
Водяной орех	3	3	2	2			
Омфалина гудзонская	2	2	0	3			
Сахалинский осетр	1	2	1	1			
Гадюка Динника	3	3	2	2			
Амурский тигр	2	2	1	2			
Тропический лишайник	2	1	1	5			

Описание	признаков

Описание призна	
Признак	Шкала
	3 — высокая
Численность	2 — низкая
	1 — критически низкая
	0 — неизвестно
	3 — большая
Площадь	2 — ограниченная
ареала	1 — крайне ограниченная
	0 — неизвестно
Генетическое	3 — высокое
разнообразие	2 — низкое
	1 — неизвестно
	5 — наименее угрожаемые
	4 — в уязвимости
Категория	3 — под угрозой исчезновения
	2 — в критическом состоянии
	1 — вымершие в дикой природе

Попарное доминирование признаков

The state of the s	Численность	Площадь ареала	Генетическое разнообразие
Численность	1	1	<u>ā</u> ā
Площадь ареала	0	1	0
Генетическое разнообразие	0	0	1

Методы восстановления предпочтения

Для множества объектов X и отношения z_j определена матрица предпочтений \mathbf{Z}_j : $\mathbf{Z}_j(i,k)=z_j(x_i,x_k)$. Методы, основанные на построении комбинации матриц $\mathbf{Z}_1,...,\mathbf{Z}_n$:

- 1. [Cohen et al., 1999]: линейная оценка матрицы предпочтений $\hat{\mathbf{Z}} = \sum_{j=1}^n w_j \mathbf{Z}_j$, восстановление линейного порядка \mathbf{f} по матрице $\hat{\mathbf{Z}}$.
- 2. [Liu et al., 2007]: построение взвешенной комбинации $f(x_i) = \sum_{j=1}^n w_j r_{ij}$, $r_{ij} = \#\{k \mid x_i \succeq_j x_k\} = \sum_{k=1}^m \mathbf{Z}(i,k)$.
- 3. [Volkovs et al., 2012]: построение признакового пространства на основе SVD-разложения $\mathbf{Z}_j = \mathbf{U}_j \mathbf{\Sigma}_j \mathbf{V}_j^\mathsf{T}$.

Конусное представление предпочтений

Дано

- ▶ Набор объектов $x_1, ..., x_m \in X$.
- ▶ Набор предпочтений $z_1,...,z_n$ на $X\colon z_j(x_i,x_k)=\mathbb{I}[x_i\succeq_j x_k]$
- ▶ Целевое отношение предпочтения $z_0(x_i, x_k) = \mathbb{I}[x_i \succeq x_k].$

Определение: конус предпочтений

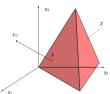
 ${\cal X}$ — конус предпочтений, задаваемый полиэдральным представлением с матрицей **A** размера $m^2 \times m$:

$$\mathcal{X} = \{\textbf{x} \mid \textbf{A}\textbf{x} \leq \textbf{0}\},$$

где строка матрицы **A** вида $[0,...,0,-1_i,0,...,0,1_k,0,...,0]$ соответствует неравенству $x_i \succeq x_k$.

- 1. $\mathcal{X}_1, ..., \mathcal{X}_n$ конусы, соответствующие предпочтениям $z_1, ..., z_n$.
- 2. \mathcal{Y}_0 конус, соответствующий целевому предпочтению z_0 .

Построение суммы конусов предпочтений


Конусная модель восстановления предпочтений

$$f\in \mathcal{X}_f=\mathcal{X}_1\oplus \mathcal{X}_2\oplus ...\oplus \mathcal{X}_n, \quad S(X,z_f,z_0)=d(\mathcal{X}_f,\mathcal{Y}_0)\to \text{min}\,.$$

Решение: проекция на допустимое множество значений

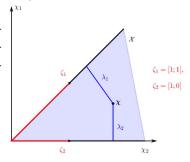
$$\label{eq:force_force} \boldsymbol{\hat{f}} = \mathop{\text{arg min}}_{\boldsymbol{f} \in \mathcal{X}_f, \ \boldsymbol{y}_0 \in \mathcal{Y}_0} \|\boldsymbol{f} - \boldsymbol{y}_0\|_2,$$

$$\hat{\mathbf{f}}=P_{\mathcal{X}_f}(\mathbf{y}_0).$$

Алгоритм построения суммы конусов

Суммой Минковского полиэдральных конусов $\mathcal{X}_1 \oplus \mathcal{X}_2 \oplus ... \oplus \mathcal{X}_n$, заданных матрицами $\mathbf{A}_1,...,\mathbf{A}_n$, является конус

$$\mathcal{X}_f = \{\mathbf{x} \mid \mathbf{A}^{(n)}\mathbf{x} \leqslant \mathbf{0}\},$$


задаваемый матрицей $\mathbf{A}^{(n)} = \mathbf{V}_{n-1}^{\mathsf{T}} \mathbf{A}^{(n-1)}$, где \mathbf{V}_{n-1} — часть ФСР для уравнения с матрицей $\binom{-\mathbf{A}^{(n-1)}}{\mathbf{A}_n}$.

Порождающее представление конуса

Порождающее представление конуса

Полиэдральный конус $\mathcal X$ допускает представление через конечный набор порождающих элементов $\zeta_1,...,\zeta_k$:

$$\mathcal{X} = \left\{ \sum_{k=1}^{r} \lambda_k \zeta_k \mid \lambda_k \ge 0 \right\}.$$

Теорема (о порождающем представлении конуса), [Кузнецов: 2013]

Столбцы матрицы предпочтений $\mathbf{Z}(i,k) = \mathbb{I}[x_i \succeq x_k]$ являются порождающими элементами конуса предпочтений,

$$\mathcal{X} \supset \{ \mathbf{Z} \boldsymbol{\lambda} \mid \boldsymbol{\lambda} \in \mathbb{R}_+^m \}.$$

Оценка параметров порождающего представления

Конусная модель восстановления предпочтений

$$\mathbf{f} \in \mathcal{X}_f = \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus ... \oplus \mathcal{X}_n, \quad S(X,z_f,z_0) = d(\mathcal{X}_f,\mathcal{Y}_0) \to \mathsf{min} \,.$$

Использование порождающего представления

Линейная конусная модель: $\mathcal{X}_j = \{\mathbf{Z}_j \pmb{\lambda}_j \mid \pmb{\lambda}_j \in \mathbb{R}_+^m\}$,

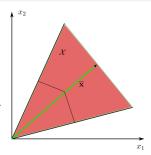
$$\mathbf{f}(x_1,...,x_m) = \sum_{j=1}^m \mathbf{Z}_j \lambda_j, \quad \lambda_j \geq \mathbf{0}.$$

Минимизация расстояния между конусами;

$$(\hat{\lambda}_1,...,\hat{\lambda}_n) = \mathop{\mathrm{arg\,min}}_{\lambda_1,...,\lambda_n \geq \mathbf{0}} \|\mathbf{Z}_0\mathbf{1} - \sum_{i=1}^n \mathbf{Z}_j\lambda_j\|_2.$$

Итеративный алгоритм оценки параметров

Шаг алгоритма — последовательное решение задач неотрицательной линейной регрессии


$$\hat{\pmb{\lambda}}_j^t = \arg\min_{\pmb{\lambda}_j \geq 0} \|\mathbf{Z}_0 \mathbf{1} - \sum\limits_{j'=1}^{j-1} \mathbf{Z}_{j'} \hat{\pmb{\lambda}}_{j'}^t - \sum\limits_{j'=j+1}^{m} \mathbf{Z}_{j'} \hat{\pmb{\lambda}}_{j'}^{t-1} - \mathbf{Z}_{j} \mathbf{\lambda}_j \|_{2 \cdot \epsilon_{\mathbb{R}}}$$

Регуляризация конусной модели

Линейная конусная модель:

$$\mathbf{f}(X) = \sum_{j=1}^n \mathbf{Z}_j \lambda_j, \quad \lambda_j \geq \mathbf{0}.$$

Рассмотрим в конусе \mathcal{X} центральную точку $\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{j}$.

Теорема (о регуляризации конусной модели), [Кузнецов: 2014]

В случае замены каждого конуса $\mathcal{X}_k = \{\sum \lambda_{jk} \mathbf{z}_{jk} \mid \boldsymbol{\lambda}_k \geq \mathbf{0}\}$ его центральной точкой конусная модель представима в виде

$$\mathbf{f}(\mathbf{x}_1,...,\mathbf{x}_m) = \hat{\mathbf{Z}}\boldsymbol{\lambda}, \quad \hat{\mathbf{Z}} = \sum_{i=1}^n w_i \mathbf{Z}_i,$$

при ограничениях
$$w_i \geq 0$$
, $\sum_{k=1}^m \lambda_k = 1$, $\lambda \geq 0$.

Оценка параметров регуляризованной модели

Следствие: минимизация расстояния между конусами

Для регуляризованной модели задача минимизация расстояния между конусами $ho(\mathcal{X}_f,\mathcal{Y}_0)$ сводится к минимизации нормы разности матриц $\hat{\mathbf{Z}}$, \mathbf{Z}_0 :

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\hat{\mathbf{Z}} - \mathbf{Z}_0\|_F^2 \propto -\tau(z_f, z_0).$$

Алгоритм восстановления предпочтения

Алгоритм основывается на построении взвешенного графа предпочтений, описываемого матрицей смежности $\hat{\mathbf{Z}}$:

- 1. Оценка весов w_j в модели $\hat{\mathbf{Z}} = \sum\limits_{j=1}^n w_j \mathbf{Z}_j.$
- 2. Оценка параметров λ и построение оценок объектов $\mathbf{f}(x_1,...,x_n)=\hat{\mathbf{Z}}\lambda$.

Согласование экспертных оценок

Дано

- ▶ Набор объектов $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$.
- ▶ Матрица плана **X** размера $m \times n$, m > n, полного ранга.
- ightharpoonup Линейная модель построения оценок объектов $f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$.
- Экспертные оценки целевой переменной и параметров w.
 - 1. Линейные экспертные оценки: $\mathbf{y}_0 \in \mathbb{R}^m, \ \mathbf{w}_0 \in \mathbb{R}^n$.
 - 2. Порядковые экспертные оценки: $\mathcal{Y}_0 \subset \mathbb{R}^m, \ \mathcal{W}_0 \subset \mathbb{R}^n$.

Определение согласованности оценок

Оценки у и w называются согласованными, если для них выполняются следующие условия:

$$y = Xw, \quad w = X^+y.$$

Задача согласования оценок

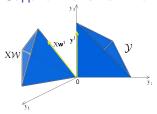
Требуется получить согласованную пару оценок $\hat{\mathbf{y}}$, $\hat{\mathbf{w}}$, 4□ > 4回 > 4 = > 4 = > = 900 ближайшую к паре экспертных оценок.

Согласование линейных экспертных оценок

Линейные экспертные оценки: $\mathbf{y}_0 \in \mathbb{R}^m, \ \mathbf{w}_0 \in \mathbb{R}^n, \ \mathbf{y}_0' = \mathbf{X}\mathbf{X}^+\mathbf{y}_0.$ Методы получения согласованных оценок

▶ Метод α -согласования:

$$\mathbf{w}_{\alpha} = \alpha \mathbf{w}_0 + (1 - \alpha) \mathbf{X}^+ \mathbf{y}_0', \quad \mathbf{y}_{\alpha} = (1 - \alpha) \mathbf{y}_0' + \alpha \mathbf{X} \mathbf{w}_0.$$


▶ Метод γ -согласования:

$$\mathbf{w}_{\gamma} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma^2 I_n)^{-1} (\mathbf{X}^{\mathsf{T}}\mathbf{y}_0' + \gamma^2 \mathbf{w}_0), \quad \mathbf{y}_{\gamma} = \mathbf{X}\mathbf{w}_{\gamma}. \quad \mathbf{y}_{\gamma} = \mathbf{X}\mathbf{w}_{\gamma}.$$

Согласование порядковых экспертных оценок

Порядковые экспертные оценки: $\mathcal{Y}_0 \subset \mathbb{R}^m, \ \mathcal{W}_0 \subset \mathbb{R}^n.$

Задача: поиск ближайших векторов в конусах \mathcal{Y}_0 и \mathcal{W}_0

$$\begin{split} & \left(\hat{\boldsymbol{w}}, \boldsymbol{y}_1\right) = \underset{\boldsymbol{w} \in \mathcal{W}_0, \boldsymbol{y} \in \mathcal{Y}_0}{\text{arg min}} \ \|\boldsymbol{X}^+ \boldsymbol{y} - \boldsymbol{w}\|_2, \\ & \|\boldsymbol{X}^+ \boldsymbol{y}\|_2 = 1, \ \|\boldsymbol{w}\|_2 = 1. \end{split}$$

Методы получения согласованных оценок, [Кузнецов: 2013]

▶ Полиэдральное представление конусов:

Задача
$$2k$$
: Задача $2k+1$: minimize $\|\mathbf{X}^+\mathbf{a} - \mathbf{w}^{(2k)}\|_2$ minimize $\|\mathbf{X}^+\mathbf{y}^{(2k+1)} - \mathbf{b}\|_2$ subject to $\mathbf{b}^T\mathbf{b} = 1$, $\mathbf{A}^m\mathbf{a} \leqslant 0$. $\mathbf{A}^n\mathbf{b} \leqslant 0$.

Порождающее представление конусов:

Задача
$$2k$$
 :
 $\hat{\boldsymbol{\lambda}}_0 = \min_{\boldsymbol{\lambda}_0 \geq 0, \ \|\boldsymbol{\lambda}_0\| = 1} \|\mathbf{Z}_0 \boldsymbol{\lambda}_0 - \mathbf{X}_w \hat{\boldsymbol{\lambda}}_w\|_2^2$ $\hat{\boldsymbol{\lambda}}_w = \min_{\boldsymbol{\lambda}_w \geq 0, \ \|\boldsymbol{\lambda}_w\| \equiv 1} \|\mathbf{Z}_0 \hat{\boldsymbol{\lambda}}_0 - \mathbf{X}_w \boldsymbol{\lambda}_w\|_2^2$

Задача категоризации видов Красной книги РФ

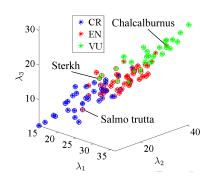
Данные: экспертная анкета							
Вид	Численность	Площадь ареала	Генетическое разнообразие	Категория			
Зеленый осетр	2	2	0	1			
Ладожский	_			-			
сиг	0	2	1	2			
Длиннопёрая							
палия	3	1	0	3			
Полярный							
медведь	3	3	0	4			
Канадский	_		_	_			
песочник	2	1	0	3			
Азовская							
белуга	1	3	1	1			
Водяной	_	_					
opex	3	3	2	2			
Омфалина	2	2	0	3			
гудзонская Сахалинский	-		U	3			
осетр	1	2	1	1			
Гадюка							
Динника	3	3	2	2			
Амурский							
тигр	2	2	1	2			
Тропический							
лишайник	2	1	1	5			

Описание признаков

Описание призна	
Признак	Шкала
	3 — высокая
Численность	2 — низкая
	1 — критически низкая
	0 — неизвестно
	3 — большая
Площадь	2 — ограниченная
ареала	1 — крайне ограниченная
	0 — неизвестно
Генетическое	3 — высокое
разнообразие	2 — низкое
	1 — неизвестно
	5 — наименее угрожаемые
	4 — в уязвимости
Категория	3 — под угрозой исчезновения
·	2 — в критическом состоянии
	1 — вымершие в дикой природе

Попарное доминирование признаков

	Численность	Площадь ареала	Генетическое разнообразие
Численность	1	1	1
Площадь ареала	0	1	0
Генетическое разнообразие	0	0	1
	2 E N	4 = 5	


Результаты категоризации

Ошибка — средняя потеря Хэмминга

$$L_H(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{m} \sum_{i=1}^m |y_i - \hat{y}_i|_H.$$

Категоризация Красной книги: сравнение алгоритмов. OW — регуляризованная конусная модель.

Алгоритм	L _H
OW	0.52*
Копулы	0.59
CR	0.71
Trees	0.55
SVM	0.66
kNN	0.72

Порядковая классификация, данные UCI

Функция ошибки:

- 1. Средняя абсолютная ошибка, $L_a(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{m} \sum_{i=1}^m [y_i \neq \hat{y}_i],$
- 2. Средняя ошибка Хэмминга, $L_H(\mathbf{y}, \hat{\mathbf{y}})$.

Результаты на данных UCI: линейные признаки

	Средняя абсолютная ошибка (± 0.01)					Средняя ошибка Хэмминга (±0.01)				
Данные	SVM	POF	Trees	OW	KŃN	SVM	POF	Trees	OW	KNN
Pyr	0.50*	0.62	0.61	0.54	0.55	0.64*	0.90	0.84	0.75	0.75
CPU	0.44	0.44	0.47	0.42*	0.51	0.53	0.53	0.53	0.49*	0.61
Boston	0.38*	0.48	0.41	0.39*	0.47	0.46*	0.65	0.47*	0.46*	0.62
Computer	0.32*	0.71	0.38	0.34	0.60	0.35*	1.36	0.41	0.39	0.90
Abalone	0.53*	0.59	0.57	0.56	0.60	0.78*	0.92	0.77*	0.81	0.88

Результаты на данных UCI: порядковые признаки

	Средняя абсолютная ошибка (± 0.01)					Средняя ошибка Хэмминга (± 0.01)				0.01)
Данные	SVM	POF	Trees	OW	KNN	SVM	POF	Trees	OW	KNN
Pyr	0.57	0.58	0.60	0.62	0.49*	0.71*	0.77	0.79	0.79	0.76
CPU	0.51	0.39*	0.47	0.40*	0.43	0.65	0.45*	0.56	0.47	0.51
Boston	0.40*	0.48	0.40*	0.43	0.41*	0.49	0.68	0.46*	0.50	0.51
Computer	0.44	0.69	0.41	0.37*	0.45	0.53	1.38	0.45*	0.44*	0.55
Abalone	0.78	0.59*	0.57*	0.58*	0.59*	1.78	0.92	0.76*	0.85	0.89
Cars	0.19	0.19	0.08	0.16	0.06*	0.24	0.26	0.08*	0.19	0.07*
RedBook	0.56	0.61	0.50*	0.49*	0.59	0.66	0.74	0.55*	0.59	0.72

Результаты, выносимые на защиту

- 1. Предложен метод моделирования объектов, заданных порядковым описанием, с использованием полиэдрального представления предпочтений на множестве объектов.
- 2. Разработан метод построения модели предпочтений объектов на основе суммы конусов предпочтений.
- 3. Предложен численный метод решения задачи порядковой классификации объектов на основе оценивания матрицы попарного доминирования объектов.
- 4. Разработаны методы моделирования и согласования порядковых экспертных оценок объектов, заданных линейным признаковым описанием.
- 5. Разработан программный комплекс, включающий в себя методы распознавания объектов, заданных линейным и порядковым описанием. Проведены вычислительные эксперименты, подтверждающие адекватность методов.

Список работ автора по теме диссертации

Публикации ВАК

- M.M. Stenina, M.P. Kuznetsov, V.V. Strijov. Ordinal classification using Pareto fronts. Expert Systems with Applications, 42 (2015), pp. 5947-5953.
- M.P. Kuznetsov and V.V. Strijov. Methods of expert estimations concordance for integral quality estimation // Expert Systems with Applications, 41(4):1988-1996, 2014.
- A. M. Katrutsa, M. P. Kuznetsov, V. V. Strijov, K. V. Rudakov. Metric concentration search procedure using reduced matrix of pairwise distances // Intelligent Data Analysis, 19(5), 2015.
- М. П. Кузнецов, В. В. Стрижов и М.М Медведникова. Алгоритм многоклассовой классификации объектов, описанных в ранговых шкалах. // Научно-технический вестник СПб ГПУ. Информатика. Телекоммуникации. Управление, 5, 2012.
- М. М. Медведникова, В. В. Стрижов и М. П. Кузнецов. Алгоритм многоклассовой монотонной парето-классификации с выбором признаков. // Известия Тульского государственного университета, Естественные науки, 3:132-141, 2012.
- В. В. Стрижов, М. П. Кузнецов и К. В. Рудаков. Метрическая кластеризация последовательностей аминокислотных остатков в ранговых шкалах. // Математическая биология и биоинформатика, 7(1):345-359, 2012.

Выступления с докладом

- Математические методы распознавания образов ММРО-17, 2015. Комбинирование отношений порядка для восстановления предпочтения на наборе объектов.
- 20th Conference of the International Federation of Operational Research Societies, Barcelona, Spain, 2014. Partial orders combining for object ranking problem.
- European Conference on Operational Research. July 1-4, 2013. Rome, Italy. The IUCN Red List threatened speices categorization algorithm.
- 25th European Conference on Operational Research. July 8-11, 2012. Vilnius, Lithuania. Rank-scaled Integral Indicators of Ecological Impact.
- International Conference on Operational Research. August 30 to September 2, 2011. Zurich, Switzerland. Integral Indicators and Expert Estimations of Ecological Impact.