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Learning under concept drift
Application

Traffic management Sensor network

Web logs
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Classical supervised learning
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Learning concept drift
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Learning under concept drift
Problem statement

Let every instance of the environment 𝜔 ∈ Ω has hidden
property 𝑦 ∈ {1,−1} and is presented by a point in a linear
feature space x(𝜔) =

(︀
𝑥1(𝜔), . . . , 𝑥𝑛(𝜔)

)︀
∈ R𝑛.

In the data stream concept we suppose that instances arrive
sequentially in time {︀

(X𝑡, Y𝑡, 𝑡)
}︀𝑇

𝑡=1
,

(X𝑡,Y𝑡) = {(x𝑘,𝑡, 𝑦𝑘,𝑡)}𝑁𝑡
𝑘=1 - subset of instances in moment 𝑡.
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Learning under concept drift
Problem statement
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Learning under concept drift
The state of the art: single classifier approach

Constant window(Widmer,
Kubat, 1996)

Changing window (Patist, 2007)

where
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Learning under concept drift
The state of the art: ensemble-based approach

Bagging & Boosting (Kolter,
2007)

Stacking (Street, 2001)

where
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Learning under concept drift
The state of the art

Existing data stream classification techniques can’t reduce the
amount of features being processed!!!
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Feature selection techniques in supervised learning
The state of the art
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Feature selection techniques in supervised learning
The state of the art
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Learning under concept drift
What it need to solve concept drift problem?

What it need to solve concept drift problem??
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Learning under concept drift
What it need to solve concept drift problem?

1. Observation model for instant concept
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Learning under concept drift
What it need to solve concept drift problem?

2. Concept drift model
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Learning under concept drift
What it need to solve concept drift problem?

3. Model estimation algorithm
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Observation model for instant concept
Discriminant function

Observation model for instant concept is the discriminant
function:
𝑓
(︀
x(𝜔)

)︀
= a𝑇x + 𝑏 > 0 if 𝑦(𝜔) = 1,and < 0 if 𝑦(𝜔) = −1.

Concept drift leads to undestanding the parameters a and 𝑏 as
time functions:
a𝑡 : 𝑇 → R𝑁 ; 𝑏𝑡 : 𝑇 → R
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Observation model for instant concept
Probabilistic model of data source

As the probabilistic model of the data
source, we shall consider two parametric
families of distribution densities
𝜙1 (x|at, 𝑏𝑡) and 𝜙−1 (x|at, 𝑏𝑡),
a𝑡 ∈ R𝑛, 𝑏𝑡 ∈ R, associated with two
class indexes 𝑦 = ±1.

𝜙1(x|at, 𝑏𝑡) =

{︂
1,at

𝑇x + 𝑏𝑡 > 1,
exp

[︀
−𝑐

(︀
1 − (at

𝑇x + 𝑏𝑡)
)︀]︀
,at

𝑇x + 𝑏𝑡 < 1,

𝜙−1(x|at, 𝑏𝑡) =

{︂
1,at

𝑇x + 𝑏𝑡 < −1,
exp

[︀
−𝑐

(︀
1 + (at

𝑇x + 𝑏𝑡)
)︀]︀
, (at

𝑇x + 𝑏𝑡) > −1.
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Observation model for instant concept
Probabilistic model of data source

A posterior probability density of classes 𝑦𝑗,𝑡 = ±1:

𝜙𝑦(x|at, 𝑏𝑡) =

{︂
1,at

𝑇x + 𝑏𝑡 > 1,
exp

[︀
−𝑐

(︀
1 − 𝑦(at

𝑇x + 𝑏𝑡)
)︀]︀
,at

𝑇x + 𝑏𝑡 < 1.

For the training subset X𝑡,Y𝑡 in the time moment 𝑡 joint
distribution function is:

Φ(Y𝑡|X𝑡,a𝑡, 𝑏𝑡) =

𝑁𝑡∏︁
𝑗=1

𝜙𝑦(x|at, 𝑏𝑡).
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Concept drift model

The key element of our approach to the concept drift problem
is treating the time-varying parameters of the hyperplane
w𝑡=(a𝑡, 𝑏𝑡) as a hidden random processes, that possesses the
Markov property:

w𝑡 = 𝑞w𝑡−1 + 𝜉𝑡 ∈ R𝑛+1, 𝐸 (𝜉𝑡) = 0,

𝐸(𝜉𝑡𝜉
𝑇
𝑡 ) = Diag(𝑑1, ..., 𝑑𝑛+1),

𝑑𝑖=(1−𝑞2)𝑟𝑖, 𝑖 = 1, ..., 𝑛, 𝑑𝑛+1=1−𝑞2.
(1)

Here 𝜉𝑡 =
(︀
𝜉𝑖,𝑡, 𝑖=1, ..., 𝑛+1

)︀
is the vector white noise.

If |𝑞|<1, each elementary random process 𝑤𝑖,𝑡 is stationary
and ergodic and

𝐸(𝑤1,𝑡)=𝐸(𝑤𝑛+1,𝑡)=0,

𝑉 𝑎𝑟(𝑤𝑖,𝑡)=𝑉 𝑎𝑟(𝑎𝑖,𝑡)= 𝑑𝑖
1−𝑞2 =𝑟𝑖, 𝑖=1, ..., 𝑛,

𝑉 𝑎𝑟(𝑤𝑛+1,𝑡)=𝑉 𝑎𝑟(𝑏𝑡)=
𝑑𝑛+1

1−𝑞2
=1.

(2)
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Concept drift model

Under the assumption that the white noise is assumed to be
normally distributed, the conditional probability density of each
hyperplane parameter vector w𝑡 with respect to its immediately
previous value w𝑡−1 will be normal, too:

𝜓(w𝑡|w𝑡−1, r) ∝ 𝒩 (w𝑡|𝑞w𝑡−1,Dr) =
1

|Dr|1/2(2𝜋)𝑛/2
exp

(︂
−1

2
(w𝑡 − 𝑞w𝑡−1)

𝑇D−1
r (w𝑡 − 𝑞w𝑡−1)

)︂
.

The a priori distribution density of the hidden sequence of
hyperplane parameters:

Ψ(w𝑡, 𝑡 = 1, ..., 𝑇 |r) =
∏︁𝑇

𝑡=2
𝜓(w𝑡|w𝑡−1, r).
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Feature selection model

We shall consider independent a priori gamma distributions of
inverse variances

𝛾
(︀
(1/𝑟𝑖)|𝛼, 𝜃

)︀
∝ (1/𝑟𝛼−1

𝑖 ) exp
(︀
− 𝜃(1/𝑟𝑖)

)︀
.

Joint a priori distribution density of inverse variances 1/𝑟𝑖 is

𝐺(1/𝑟1, . . . , 1/𝑟𝑝|𝛼, 𝜃) ∝
(︁ 𝑝∏︁

𝑖=1

(1/𝑟𝛼−1
𝑖 ) exp

(︀
− 𝜃(1/𝑟𝑖)

)︁
.

𝛼 = 1 + 1/(2𝜇), 𝛽 = 1/(2𝜇),
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Feature selection model: properties

if 𝜇→ 0 , the values 1/𝑟𝑖 are nonrandom 1/𝑟𝑖 ∼= ... ∼= 1/𝑟𝑛 ∼= 1
because

[︀
𝐸(1/𝑟𝑖)→1, 𝑉 𝑎𝑟(1/𝑟𝑖)→0

]︀
, and all the squared

elements of the direction vector 𝑎2𝑖 are equally penalized.
But the growing parameter 𝜇→ ∞ allows the independent
nonnegative values 1/𝑟𝑖 to arbitrarily differ from each other[︀
𝐸(1/𝑟𝑖)→∞, 𝑉 𝑎𝑟(1/𝑟𝑖)→∞

]︀
, and the requirements[︀

ln𝐺(r|𝜇)→ max, ln Ψ(a|r)→ max
]︀
enforce their growth

1/𝑟𝑖→ ∞.
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The training criterion for estimating the concept drift model
parameters

The joint distribution of the traning sample, concept drift model
and feature selection model:

𝑝
(︁
w𝑡, 𝑡 = 1, ..., 𝑇, r|(X𝑡,Y𝑡), 𝑡 = 1, ..., 𝑇 |𝑐, 𝜇

)︁
∝

Φ
(︀
X𝑡, 𝑡 = 1, ..., 𝑇 |Y𝑡,w𝑡, 𝑡 = 1, ..., 𝑇, 𝑐

)︀⏟  ⏞  
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒

×

Ψ(w𝑡, 𝑡 = 1, ..., 𝑇 |r)⏟  ⏞  
𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑑𝑟𝑖𝑓𝑡

× 𝐺(r|𝜇)⏟  ⏞  
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

.

(ŵ𝑡, 𝑡 = 1, ..., 𝑇, r̂|𝑐, 𝜇) =

arg max
w𝑡,𝑡=1,...,𝑇,r

𝑝
(︁
w𝑡, 𝑡 = 1, ..., 𝑇, r|(X𝑡,Y𝑡), 𝑡 = 1, ..., 𝑇, 𝑐, 𝜇

)︁
=

arg max
w𝑡,𝑡=1,...,𝑇,r

[︁
ln Ψ(w𝑡, 𝑡 = 1, ..., 𝑇 |r) + ln𝐺(r|𝜇) +

ln Φ
(︀
X𝑡, 𝑡=1, ..., 𝑇 |Y𝑡,w𝑡, 𝑡=1, ..., 𝑇, 𝑐

)︀]︁
.
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The training criterion for estimating the concept drift model
parameters

(ŵ𝑡, 𝑡=1, ..., 𝑇, r̂|𝑐, 𝜇) = arg min
w𝑡,𝑡=1,...,𝑇,r

𝐽(w𝑡, 𝑡=1, ..., 𝑇, r|𝑐, 𝜇),

𝐽(w𝑡, 𝑡=1, ..., 𝑇, r|𝑐, 𝜇) = (𝑇−1) ln |Dr|+∑︁𝑇

𝑡=2
(w𝑡−𝑞w𝑡−1)

𝑇D−1
r (w𝑡−𝑞w𝑡−1) − 2 ln𝐺(r|𝜇)+

2𝑐
∑︁𝑇

𝑡=1

∑︁𝑁𝑡

𝑗=1
max

(︀
0, 1−𝑦𝑗,𝑡w𝑇

𝑡 x𝑗,𝑡

)︀
.

We use the group coordinate descent method for two groups of
variables, namely, hyperplane parameters (w𝑡, 𝑡=1, ..., 𝑇 ) and
variances r=(1, ..., 𝑛).
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An approximate dynamic programming procedure for
estimation of the drifting hyperplane

The criterion is pairwise separable, i.e., may be considered as a sum
of elementary functions each of which is that of one vector variable
w𝑡 or two variables (w𝑡−1,w𝑡) immediately adjacent in discrete
time.

𝐽(w𝑡, 𝑡=1, ..., 𝑇 |r, 𝑐) =∑︁𝑇

𝑡=2
(w𝑡−𝑞w𝑡−1)

𝑇D−1
r (w𝑡−𝑞w𝑡−1)+

2𝑐
∑︁𝑇

𝑡=1

∑︁𝑁𝑡

𝑗=1
max

(︀
0, 1−𝑦𝑗,𝑡w𝑇

𝑡 x𝑗,𝑡

)︀
→min,
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An approximate dynamic programming procedure for
estimation of the drifting hyperplane

We use for solving optimization problems of such a kind the
well-known principle of dynamic programming. We consider the
partial criterion with respect only to the initial part of the entire
time interval 𝑠=1, ..., 𝑡:

𝐽𝑡(w𝑠, 𝑠=1, ..., 𝑡|r, 𝑐) =
∑︁𝑡

𝑠=2
(w𝑠−𝑞w𝑠−1)

𝑇D−1
r (w𝑠−𝑞w𝑠−1)+

2𝑐
∑︁𝑡

𝑠=1

∑︁𝑁𝑠

𝑗=1
max

(︀
0, 1−𝑦𝑗,𝑡w𝑇

𝑠 x𝑗,𝑠

)︀
→min,
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An approximate dynamic programming procedure for
estimation of the drifting hyperplane

If we minimize partial criterion by all the precedent variables
(w1, ...,w𝑡−1), the result will be function of w𝑡:

𝐽𝑡(w𝑡|r, 𝑐) = min
w𝑠,𝑠=1,...,𝑡−1

𝐽𝑡(w𝑠, 𝑠=1, ..., 𝑡|r, 𝑐) =

min
w1,...,w𝑡−1

𝐽𝑡(w1, ...,w𝑡−1,w𝑡|r, 𝑐).

(ŵ𝑡|r, 𝑞, 𝑐) = min
w𝑡∈R𝑛+1

𝐽𝑡(w𝑡|r, 𝑞, 𝑐).
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A trick: Bellman function quadratic approximation

Let’s replace the original piece-wise quadratic function 𝐽𝑡 on its
quadratic approximation

𝐽𝑡(w𝑡) ∼= 𝐽𝑡(w𝑡) = (w𝑡 − w̄𝑡)
𝑇 Q̄𝑡(w𝑡 − w̄𝑡),

with the preserving
the minimum point w̄𝑡 = arg min 𝐽(wt)

the hessian Q̄𝑡 = ∇2𝐽(w̄𝑡)

Then Bellman function can be presented in such form:

𝐽𝑡(w𝑡) = (w𝑡 − w̃𝑡)
𝑇 Q̃𝑡(w𝑡 − w̃𝑡) + 𝑐𝑡.
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Re-estimation of feature weights for the fixed hyperplane
drift

𝐽(r|w𝑡, 𝑡=1, ..., 𝑇, 𝜇) =

(𝑇−1) ln |D−1
r |+

∑︀𝑇
𝑡=2(w𝑡−𝑞w𝑡−1)

𝑇D−1
r (w𝑡−𝑞w𝑡−1)−

2 ln𝐺(r|𝜇)→min,

The summands are convex functions, and their differentiation
𝜕/𝜕(1/𝑟𝑖)

[︀
...
]︀
=0 yields simple formulas for the solution(︀

r̂|w1, ...,w𝑇 , 𝜇
)︀

(︀
𝑟𝑖|w1, ...,w𝑇 , 𝜇

)︀
=

∑︁𝑇

𝑡=2
(𝑤𝑖,𝑡)

2 + (1/𝜇)

𝑇−1 + (1/𝜇)
, 𝑖=1, ..., 𝑛.
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Experiments: “ground-truth” data
The data description

The synthetic data were generated by two normal distributions.
Two informative features had been generated by two
class-dependent normal distributions.
98 synthetic "redundant" features were added to this set. So
each entity was characterized by 𝑛=100 features, but only two
of them were relevant to its class-membership.
With time the centers of distributions rotated around the
origin of coordinates in the two-dimensional feature space.
We generated 100 consecutive data batches (X𝑡,Y𝑡), 𝑇 =100
each containing 20 instances
To compare the obtained results, we used the concept drift
algorithms realized in the software environment Massive Online
Analysis (MOA). A. Bifet, G. Holmes, R. Kirkby, and B.
Pfahringer, MOA: Massive Online Analysis
http://sourceforge.net/projects/moa-datastream/. Journal
of Machine Learning Research (JMLR), 2010.
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Experiments: “ground-truth” data
Variances
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Experiments: “ground-truth” data
Classification error

Algorithm Classification error, %

OzaBagAdwin 12.45
SingleClassifierDrift 17.81
AdaHoeffdingOptionTree 7.22
DriftFeatureSelection 5.7
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Experiments: real-world data
Data description

The KDDCup’99 dataset (the Third International Knowledge
Discovery and Data Mining Tools Competition) is a collection
of TCP dumps taken over nine weeks in the framework of
DARPA Intrusion Detection Evaluation Program in 1998.
Each connection has 41 features and is labelled either as
normal, or as an attack
We solve the classification problem of attack detection
This data set exists in two variants: full with about 5 millions
records and its 10-percentage subset.In the current work, we
used the 10-percentage set which was normalized and divided
into about 10000 batches each containing 20 dumps.
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Experiments: real-world data
Data description

In the process of online classifier evaluation, before training on
the next batch, we computed the error rate on it with the
current decision rule. The total error was calculated as the
average value of error rates in all the successive batches.
For comparative some algoritms from the software Massive
Online Analysis are used.

28/29 P. Turkov, O. Krasotkina, V. Mottl Estimation of arbitrary nonstationary dependencies



Experiments: real-world data
The result

Algorithms Classification
error, %

OzaBagAdwin 6,144
SingleClassifierDrift 7,12
AdaHoeffdingOptionTree 1,056
DriftFeatureSelection 0,782
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Experiments: real-world data
Variances
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Thank you!

Questions?
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