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1. DENOISING PROBLEM

Today imaging science has an important development and has many applications in different
fields of life. The researched object of imaging science is digital image that can be created by many
digital devices. One of the limits of using digital devices to create digital images is noise. Noise
reduces the image quality. It appears in almost types of images, including biomedical and electronic
microscopy images. The type of noise in this case can be considered as combination of Gaussian and
Poisson noises.

In this paper we propose a method to remove noise by using total variation. Our method is
developed with the goal to combine two famous models: ROF for removing Gaussian noise and
modified ROF for removing Poisson noise. As a result, our proposed method can be also applied to
remove Gaussian or Poisson noise separately. The proposed method can be applied with
automatically evaluated parameters (unknown noise for real images).



1. DENOISING PROBLEM

Let in R* space, a bounded domain ) € R? be given. We call function u(x,y) € R?,v(x,y) €
R? respectively ideal image (without noise) and observed image (noisy image), where () € R?.

In practice, v is given and we have to find u. This is denoising problem.

If function u is smooth then its total variation is defined by:

Vrlul =f|\7u|dxdy,
Q

ou

du
where Tu = (uy, uy ), Uy = =5y |Vu| = \/u?c + us.

We consider in this case, total variation is always bounded.



1. DENOISING PROBLEM

The problem of noise removal is actual today and there are many different strong
approaches to solve it.

= Variational approach is one of them and it’s pioneered by Rudin.

= Rudin proposed the denoising model, that was called ROF:

.
u* = arg min] |Vu|dxdy
v Ja

] (u — v)?dxdy = o?,
L /0
where o — variance of Gaussian noise.Another simpler form:

A
u* = argminf |l7u|dxdy+—f (u — v)?dxdy,
v Ja 2 )



1. DENOISING PROBLEM

A
u* = argminf |l7u|dxdy+—f (u — v)?dxdy,
v Ja 2)q

where A — Lagrange multiplier.

= The first term — regularization term.The second term — data fidelity term.

= ROF model is only designed to remove Gaussian noise.

= In order to remove Poisson noise, Le T. developed the modified ROF model:
u* = arg min] |Vu|dxdy + ﬁ] (u — vin(u))dxdy,
) Q

where 8 — regularization coefficient.



1. DENOISING PROBLEM

= @Gaussian noise is popular and it always appears in digital image. Poisson noise, for example,
is a result of X-ray devices in medicine.

= Another type of noise — the combination of Gaussian and Poisson noises is also important.
This type of noise appears, for example, in biomedical images (electronic microscopy
images).

= Can we use ROF or modified ROF to treat this combination of noise? (Yes, but
ineffectively)

= Today, we design a new model to treat this combination of noises more effectively by
considering the proportion between Gaussian and Poisson noises.



2. MODEL TO REMOVE POISSON-GAUSSIAN NOISE

= We have to notice that: the total variation of noisy image is always
greater than total variation of smoothed image. So if we want to
denoise, we can use this characteristic:
Vrlu] = min.

= We need to add a constraint to above optimization problem. We
assume that with given image u, the mixed noise in image is fixed too
(because Poisson noise is unchangeable and Gaussian noise only
depends on noise variance):

f ln(p(vlu)) dxdy = const, (1)
Q

where p(v|u) is conditional probability.



2. MODEL TO REMOVE POISSON-GAUSSIAN NOISE

= We consider the Gaussian noise. Its probability density function is:
(v —u)?
2072

p,(vlu) = Py

= Analogously, we consider the Poisson noise. Its distribution
function is:

exp | —

exp(—u)uV

)

p,(v|u) = i

we have to notice that intensity levels of image colour are integer (for
example, 8-bit grayscale image), so we regard u as an integer value, but
this will ultimately be unnecessary.



2. MODEL TO REMOVE POISSON-GAUSSIAN NOISE

In order to treat the combination of Gaussian and Poisson noise, we
consider the following linear combination:

In(p(wlu)) = A1 In (p,whw)) + 22 In (p,(v|w)),
where A > 0,4, > 0,4 + 1, = 1.
So from (1) we obtain the following constraint:

f ( A (v —w?+ A (u— vln(u))) dxdy = k,
Q

202
where Kk — constant value.

(1)
!ln(p(vlu))dxdy = const
)



2. MODEL TO REMOVE POISSON-GAUSSIAN NOISE

Mixed noisefremoval problem can be displayed in following form:
u* = arg min f |Vu|dxdy
v Ja
A
f (—2 (v —u)?+ A, (u — vln(u))) dxdy = k.
Ja \20

We can transform this constrained optimization problem to the
unconstrained optimization problem by using Lagrange functional:

A
L(u,t) = f |Vu|dxdy + T (—12J (v —u)?dxdy + A, j (u — vin(w))dxdy — K) ,
Q0 20 Jq 0

to find
(u*,7*) = arg min L(u, ) ,where T > 0 — Lagrange multiplier.
u,t
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2. MODEL TO REMOVE POISSON-GAUSSIAN NOISE

L(u,1) = j |Vu|dxdy + 1 (j (2/17‘12 (v—w)?+ A, (u— vln(u))) dxdy — K),
Q Q

to find

(u*, %) = argmin L(u,7),where T — Lagrange multiplier.  (2)
u

= If Ay =0,8 = A,7, our proposed model become modified ROF model to treat Poisson
noise.

= If1, = 0,14 =21,/(20%), our proposed model become ROF model to treat Gaussian noise.

= IfA; > 0and A, > 0, our proposed model is used to treat mixed Poisson-Gaussian noise.
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3. MODEL DISCRETIZATION

Let function f(x,y) be defined in bounded domain Q € R*> and be the second-order
continuous differentiable one by x and y for (x,y) € Q.

We consider the special convex functional F(x,y,f, fx, fy), where f,, = gi,fy gf} The

solution of the optimization problem:
f F(x, v, f, fx,fy)dxdy - min
Q

satisfies the following Euler-Lagrange equation

d
Fr(x3. f for fy) = 52 P2 oo ) =

J0F
=57

d
nyy(x y}f fx»fy) — 0

where Ff = fo 6fx
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3. MODEL DISCRETIZATION

The Euler-Lagrange equation of problem (2) to find (u*, t*) is:
v

A d U d U
—G—;(v—u)+/12(1——) = y

—u —u
0 0
u x u,25+u32, Y /u,zc+u}2,

We can simplify this equation (3) to

A4 v U U — 2Uy Uy Uy, + USU,
?(v—u)—/lz(l——)+u - =

) (2 + )’

where u = 1/7.

9%°u 9%u d (ou 9 [ou
where u,, = u u = —)=u

ax2’ VY T a9y2’ XY T gx \ay) T ay \ox yx:

0,

(4)
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3. MODEL DISCRETIZATION

e v Upr U — 2Uy Uy Uy, + UG,
;(v—u)—/lz(l——)+u 3 =

) (12 +15)°

In order to discretize the equation (4), we add an artificial time parameter and consider the
function u = u(x, y, t). Then the equation (4) relates to the following diffusion equation:

0. (4)

A v U U2 — 20U U Uy + USU
ut=0_;(v—u)—az(1——)+u oy T SR T g, (5)

Y (u,zc + uf,)7
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3. MODEL DISCRETIZATION

The discretized form of the equation (5) can be written as following:

Al
u{j“ = ul] + f( (v — ul]) Ay (1 — u—) + ucpq) (6)
where

C) (Py(ul)) = 207, ()7, (1) Py () + (7, () 7, ()
b 2 2\ >/? '
((e:)) + (7 05))

k — ok .ok — ok ok — k.o k — gk = Ci—= :
Upj = U1 U, 41, = Unyjs Uio = Wit Uiny+1 = Uins 8= 1w, Nisj =1, .., Np;
k=01 . KAx=Ay=10<<<1
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4. FINDING OPTIMAL PARAMETERS

y) .
uftt =l + 5(0—; (vij —uf) = 4, (1 ——j{) +u<p{§-), (6)

We can use the procedure (6) to perform image denoising. In this procedure, values of
parameters A;,A,,iu,0 nheed to be given. In some cases, we have to define these
parameters to perform image denoising automatically. Then parameters A,,A,, u in process
(6) need to be changed into A¥, A%, uk for each step k. So we obtain new procedure that
alows us to calculate values of these parameters automatically in iteration steps.
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4. FINDING OPTIMAL PARAMETERS

Optimal parameters 44 and A4,

Let (u, T) be a solution of the problem (2). Then we get the conditon:
OL(u, 1) — o
ou -
This condition gives us the optimal parameters A; and A,:

fo (1 —7) dxdy

2.1=

1 ” ,Az =1 — 2,1.
Ffﬂ(v —wydxdy + [ (1 — ﬂ) dxdy
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4. FINDING OPTIMAL PARAMETERS

Optimal parameters 44 and A4,
And their discretized forms:

ZN1 N3 1 — Vij
i=144j=1 K

A =

where k = 0,1, ..., K.

s e (DT g
i=1 j=1 0'2
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4. FINDING OPTIMAL PARAMETERS

Optimal parameter u

In order to find an optimal parameter u, we multiply (3) by (u — v) and

integrate by parts over (). Finally, we obtain the formula to find the
optimal parameter u;

fﬂ (_ﬂ (u—v)*— 2, (u _uv)z) dxdy

u, v, +u,v
Ja \/uazc+u321 == XY \ dxdy
\/u,zc+u32,
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4. FINDING OPTIMAL PARAMETERS

Optimal parameter u

Its discretized form:

N, «N, /11 2 (u{cj — vij)z
Q=1 2jzq (uu ”ij) — Az K

k tu
ut = »
DAID WL 1]

where
T e
(ul)) + (% u{‘j
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4. FINDING OPTIMAL PARAMETERS

Optimal parameter u

Its discretized form:

k 2
YN 2 _E( k _ ..)2 _ )k (uij_vij)
i=1&j=1| T 52 \Wij — Vij 2 k
ij
K
‘Ll —
where
K K K
B z+1,] — Uj_q,j K\ Wi+ T U1
b) (ul]) 2 Ax ’ VJ’(uij) _ ZAy ’
k .k k .k k ..k K

uO] = UjpUN,+1,j = UnpUjo = Ui Ui ny+1 = UiN,
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4. FINDING OPTIMAL PARAMETERS

Optimal parameter u

Its discretized form:

2

k k _ o).
i=14&j=1 g2 \"ij l 2 uk.
i

)M Z, M5

(vij) _ l+1,]2Ax 1—1,j (vij) _ l,]+12Ay L] 1,

Voj = V1j»VUNy+1,j = UnNy,j» Vio = Vi Viny,+1 = VinN,»
i=1,..,N;;j=1,...,N,; k=01, ..., K;Ax = Ay = 1.
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4. FINDING OPTIMAL PARAMETERS

Optimal parameter o

In order to evaluate this parameter o, we use the result of Immerker:

7T 6N, — ;azvz - 2)2 Z Jugj * A

=1 j=

where

1 -2 1
A=|-2 4 —2|-isthe mask of an image,
1 -2 1

Operator * - convolution operator.

We just evaluate this parameter at first time of the iteration process.
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5. IMAGE QUALITY EVALUATION

where

Ny N

NyN, L2
oun =gt = (gt s)
Yimg 2 — vy)

i=1j= = Z}:l(uij
Cuv+ C) 2oy, + C5)

@ +70° +C) (02 + a2 + Cy)’

Ny N; N Ny
U= NlNZZZu”’v_Nl ZZ ”"’“_NNZ—1ZZ(“” %),
] — =

i=1 i=1j=

o = NN, — 122(% 7). 0wy = NN, — 122(”” w(Wij =),

i=1j= i=1j=
Cl - (KlL)z, Cz = (KzL)z, Kl < 1, Kz < 1,

Qssim =

For example, K; = K, = 107%,L —image intensity, L = 28 — 1 = 255.
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6. LINEAR COMBINATION vs SUPERPOSITION

In practice, the mixed Poisson-Gaussian noise is usually their superposition. This is caused
by natural physical processes of image formation: in many cases Poisson noise is added into

image first and Gaussian noise is added later.

In order to remove the mixed noise, we assume the superposition is equivalent to some
unknown linear combination of Poisson and Gaussian noises. In series of experiments before,
we showed our model “feels” well the wide range of proportion of two types of noises in linear
combination including Poisson and Gaussian noises separately. Our model proves to be better
than some other models (Wiener and median filters, Beltrami regularization, ROF, modified

ROF).

In fact, the linear model appears to be the good basis to remove superposition of noises.
Additionally, this model stays relevant to reversed superposition of noises in some other real
situations of light radiation (%), since it doesn’t matter what superposition to evaluate.

(1) Klauder, J.R., Sudarshan, E.C.G. 2006. Fundamentals of Quantum Optics (Dover Books on Physics). Dover Publications.
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7. COMPARISON WITH PURE-LET METHOD

The PURE-LET method is designed to remove the mixed noise (superposition of
Poisson and Gaussian noises) based on the strong theoretical basis by Lusier F., Blu T.,

Unser M. (Image Denoising in Mixed Poisson—Gaussian Noise//IEEE Transactions on
image processing, Vol. 20, No. 3, 2011, P. 696-708).

We compare denoising results for two cases: the linear combination of Poisson and
Gaussian noises and the superposition of noises. The tests will be applied for artificial
images and real images with artificial noises.
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7. COMPARISON WITH PURE-LET METHOD

f)

Figure 1. Denoising of the artificial image for linear
combination of noises:
a) original image, b) zoomed in part of original image,
c) with Poisson noise, d) with Gaussian noise, e) with mixed
noise, f) image after denoising
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7. COMPARISON WITH PURE-LET METHOD

1. EXPERIMENTS FOR ARTIFICIAL IMAGE WITH ARTIFICIAL NOISE

= We use artificial image with artificial mixed noise for the first test. The image size is 256x256, it includes eight
bars (Figures 1a, 2a). Other images (Figures 1b-1f, 2b-2f) show the zoomed in part of it.

» The artificial noise will generated by two methods: by linear combination of Poisson and Gaussian noises; by
superposition of Poisson and Gaussian noises.

= For both cases, we add Poisson noise first. The variance of Poisson noise is calculated as average value g, =

1/4(\/110 ++/130 + /150 + \/170)=11.7939. If the value of pixel after adding Poisson noise is out of the

interval from 0 to 255, it needs to be reset to %) = u; ;. For this image, there is no number of pixels, that are out

ij
of this interval.




7. COMPARISON WITH PURE-LET METHOD

1. EXPERIMENTS FOR ARTIFICIAL IMAGE WITH ARTIFICIAL NOISE

For Gaussian noise. We consider that the variance of Gaussian noise is four times greater than the variance of
Poisson noise o; = 40, = 47.1757.

For linear combination, we denote the intensity function of this Gaussian noisy image as v, As we explain

above, the values of intensity function v(D also need to be between 0 to 255. If the value of pixel after adding

Gaussian noise is out of the interval from 0 to 255, it needs to be reset to vl-(jl) = u;;. In this case, there are 1075
pixels out of this interval (1.6403%). For final noisy image (Figure 1e), we use linear combination to combine
Gaussian noisy image v and Poisson noisy image v @) with the coefficients of linear combination that are 0.6

for Gaussian noisy image and 0.4 for Poisson noisy image: v = 0.6v1) 4+ 0.4v2), Then we obtain the proportion
>\41/>\,2=(0.6*47.1757)/(0.4*11.7939)=6/1. That means }\.1=0.8571, }\42=0.1429. The Va|ueS Of QPSNRI QMSEI and QSS/M
of final noisy image are, respectively, 19.4291, 741.5963, and 0.1073.
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7. COMPARISON WITH PURE-LET METHOD

Figure 2. Denoising of the artificial image for superposition
of noises:
a) original image, b) zoomed in part of original image,
c) with Poisson noise, d) with superposition of Gaussian
noise, e) after denoising, f) zoomed in part of denoised
image
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7. COMPARISON WITH PURE-LET METHOD

1. EXPERIMENTS FOR ARTIFICIAL IMAGE WITH ARTIFICIAL NOISE

For superposition of noises, we add Gaussian noise into Poisson noisy image. We denote the intensity function of

this Gaussian noisy image as v, As we explain above, the values of intensity function v also need to be
between 0 to 255. If the value of pixel after adding Gaussian noise is out of the interval from 0 to 255, it needs to

be reset to vi(jl) = vl-(jz). In this case, there are 1220 pixels out of this interval (1.8616%). The final noisy image

(Figure 2e) is also the Gaussian noisy image v = v, The calculation for A, and A, is very difficult, so we use the
algorithm with automatically defined parameters to find them. The values of Qpsyr, Quise, and Qgqpy, Of final noisy

image are, respectively, 14.9211, 2093.9827, and 0.0439.

Tables 1 and 2 show the denoising result for linear combination of noises and the superposition of noises for the
artificial image with artificial mixed noise.
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7. COMPARISON WITH PURE-LET METHOD

Table 1. Quality comparison of noise removal methods for the
image with linear combination of noises.

Table 2. Quality comparison of noise removal methods for the
image with superposition of noises.

Artificial Image Opsnr Ossng Ousz
Noisy 19.4291 0.1073 741.5963
ROF 34.1236 0.8978 25.1606
Modified ROF 324315 0.8703 37.8791
PURE-LET for 33.0309 0.9277 32.3587
mixed noise
Proposed method
with automatically
defined parameters
2=0.8414, 41.0998 0.9840 5.0478
22=0.1586,
n=05112,

c=41.0314

Artificial Image Opsnr Ossings Ouse
Noisy 149211 0.0439 2093.983
ROF 31.2913 0.8346 48.3008
Modified ROF 30.5471 0.8232 56.5601
PURE-LET for 33.9889 0.9298 25.9534
mixed noise
Proposed method
with automatically
defined parameters
21=0.8014, 37.3366 0.9677 12.0066
2=0.1986,
n=0.4812,
c=40.0314
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7. COMPARISON WITH PURE-LET METHOD

2. EXPERIMENTS FOR REAL IMAGE WITH ARTIFICIAL NOISE

We use real image with artificial mixed noise for the second test. The image is human’s skull image with size is
256x256 (Figures 3a, 4a). Other images (Figures 3b-3f, 4b,-4f) show the zoomed out part of it.

The artificial noise will generated by two methods: by linear combination of Poisson and Gaussian noises; by
superposition of Poisson and Gaussian noises.

For both cases, we add Poisson noise first. The variance of Poisson noise is calculated as average value

0,=9.0882. If the value of pixel after adding Poisson noise is out of the interval from 0 to 255, it needs to be reset

to v

i = Uije For this image, there is no number of pixels, that are out of this interval.
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7. COMPARISON WITH PURE-LET METHOD

Figure 3. Denoising of the real image for linear combination of
noises:
a) original image, b) zoomed in part of original image,
c¢) with Poisson noise, d) with Gaussian noise, e) with mixed
noise, f) image after denoising
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7. COMPARISON WITH PURE-LET METHOD

2. EXPERIMENTS FOR REAL IMAGE WITH ARTIFICIAL NOISE

For Gaussian noise we consider that the variance of Gaussian noise is four times greater than the variance of
Poisson noise 07 = 40, =36.3529.

For linear combination, we denote the intensity function of this Gaussian noisy image as v, As we explain

above, the values of intensity function v(D also need to be between 0 to 255. If the value of pixel after adding

Gaussian noise is out of the interval from 0 to 255, it needs to be reset to vl-(jl) = u,;;. In this case, there are 5355

pixels out of this interval (8.1711%). For final noisy image (Figure 3e), we use linear combination to combine
Gaussian noisy image v and Poisson noisy image v @) with the coefficients of linear combination that are 0.6
for Gaussian noisy image and 0.4 for Poisson noisy image: v = 0.501) 4+ 0.50(2), Then we obtain the proportion
A/A,=(0.5*36.3529)/(0.5%9.0882)=4/1. That means A,=0.8, A,=0.2. The values of Qpsnr, Quise, and Qs Of final
noisy image are, respectively, 23.6878, 278.1619, and 0.5390.
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7. COMPARISON WITH PURE-LET METHOD

Figure 4. Denoising of the real image for superposition of noises:
a) original image, b) zoomed in part of original image, c) with
Poisson noise, d) with mixed noise, e) after denoising, f) zoomed
in part of denoised image
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7. COMPARISON WITH PURE-LET METHOD

2. EXPERIMENTS FOR REAL IMAGE WITH ARTIFICIAL NOISE

For superposition of noises, we add Gaussian noise into Poisson noisy image. We denote the intensity function of

this Gaussian noisy image as v, As we explain above, the values of intensity function v, also need to be
between 0 to 255. If the value of pixel after adding Gaussian noise is out of the interval from 0 to 255, it needs to

be reset to vi(jl) = vi(jz). In this case, there are 5621 pixels out of this interval (8.5770%). The final noisy image

(Figure 4e) is also the Gaussian noisy image v = v, The calculation for A, and A, is very difficult, so we use the
algorithm with automatically defined parameters to find them. The values of Qpsyr, Quise, and Qgqpy, Of final noisy

image are, respectively, 17.8071, 1077.3831, and 0.3242.

Tables 3 and 4 show the denoising result for linear combination of noises and the superposition of noises for the
real image with artificial mixed noise.

37



7. COMPARISON WITH PURE-LET METHOD

Table 3. Quality comparison of noise removal methods for the
image with linear combination of noises.

Table 4. Quality comparison of noise removal methods for the
image with superposition of noises.

Real Image Opsnr Ossng Quse
Noisy 23.6878 0.5390 278.1619
ROF 27.3974 0.8295 118.3975
Modified ROF 25.5644 0.7513 197.5403
PURE-LET for 25.7781 0.8105 | 191.0341
mixed noise
Proposed method
with automatically
defined parameters
21=0.7804, 27.6039 0.8325 112.8984
22=0.2196,
n=0.0512,
c=34.2311

Real Image Opsnr Ossiu Ouse
Noisy 17.8077 0.3242 1077.3831
ROF 23.1936 0.7062 311.6856
Modified ROF 23.0413 0.7033 319.3831
PURE-LET for 23.6278 0.7072 | 282.0349
mixed noise
Proposed method
with automatically
defined parameters
21=0.7704, 23.7292 0.7094 275.5229
20=0.2296,
n=0.1102,

c=36.3412




REAL NOISE DATA (ALBERTA UNIVERSITY, CANADA)

Original No Reference Image Denoised Image (BRISQUE)
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Original No Reference Image Denoised Image (BRISQUE)
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REAL NOISE DATA (ALBERTA UNIVERSITY, CANADA)

Original No Reference Image Denoised Image (BRISQUE)




REAL NOISE DATA (ALBERTA UNIVERSITY, CANADA)

Original No Reference Image Denoised Image (BRISQUE)




RGB-IMAGE (MATLAB DB)
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Original Noised by P-G superposition Denoised




RGB-IMAGE (MATLAB DB)

Original Noised by P-G superposition Denoised




CONCLUSION

In this report, we proposed a novel method that can effectively remove the mixed Poisson-Gaussian
noise. Furthermore, our proposed method can be also used to remove Gaussian or Poisson noises
separately. This method is based on variational approach.

The denoising result depends on values of coefficients of linear combination A; and A,. These values
can be set manually or can be defined automatically. When processing real images, we can use the
proposed method with automatically defined parameters. The proposed model “feels” well the wide
range of proportion of two noises.

In fact, the linear model appears to be the good basis to remove superposition of noises.
Additionally, this model stays relevant to reversed superposition of noises in some other real situations
of light radiation, since it doesn’t matter what superposition to evaluate. We consider the superposition
of noises is equivalent to some unknown linear combination.

Our simple low-parametric model gives better results than PURE-LET in many real cases, because the
strong theoretically based PURE-LET is the multiple-parametric model, depending on the quality of its
parameters evaluating. Additionally, PURE-LET isn’t relevant to reversed case of superposition.
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