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Linear model selection problem

Consider a linear model

Y = Ψ>θ∗ + ε ∈ IRn

for an unknown parameter vector θ∗ ∈ IRp and a given p× n design matrix Ψ .

Suppose that a family of linear smoothers

θ̃m = SmY

is given, where Sm is for each m ∈M a given p× n matrix.

We also assume that this family is (partially) ordered by the complexity of the method.

The task is to develop a data based model selector m̂ which performs nearly as good as the

optimal choice which depends on the model and is not available.
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Ordered model selection

Examples:

� Kernel smoothing: bandwidth choice;

� Projection estimation: choice of projection dimension;

� Regularization: choice of the regularization parameter;

� Penalized model selection: choice of penalty parameter;

Problem: given a family of linear smoothers θ̃m = SmY , m ∈M , ordered by their

variance, select the tuning parameter m ∈M on the base of the available data Y .

Challenge: Reliability and confidence set for the data-driven selector m̂ .
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Subset selection

Multichannel model:

Yi = θ∗i + εi i = 1, . . . , p.

Problem: select a subset m∗ of
{

1, . . . , p
}

of significant features θ∗i 6= 0 .

Naive thresholding-procedure:

m̂ =
{
i : |Yi| ≥ τ

}
.

Main issue: a choice of threshold τ .

Other methods and approaches:

� higher criticism: (Tuckey, 1953), Donoho, Jin (2004);

� penalized model selection: LASSO (Candes and Tao 2009), SCAD, . . .

� Bayesian-Gibbs: George, McCulloch (1993);

� Bayesian - MAP: Abramovich and Grinshtein (2010);

� FDR: Benjamin and Hochberg (1995);

Challenge: reliability and significance.

� Destratification: Bühlmann (2013);

� postLASSO: Belounni and Chernozhukov (2014);
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Bootstrap-based analysis

Bootstrap tuning in model selection · September 18, 2015 · Page 6 (59)



Uncertainty analysis in subset selection
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Uncertainty analysis in subset selection
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Uncertainty analysis in subset selection
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Setup

We consider the following linear Gaussian model:

Yi = Ψ>i θ
∗ + εi , εi ∼ N(0, σ2) i.i.d. , i = 1, . . . , n. (1)

We also write this equation in the vector form

Y = Ψ>θ∗ + ε ∈ IRn

where Ψ is p× n deterministic design matrix and ε ∼ N(0, σ2IIn) .

In what follows, we allow the model (1) to be completely misspecified:

� True model: Yi are independent, the response f∗ = IEY ∈ IRn with entries fi :

Yi = fi + εi . (2)

� The linear parametric assumption f∗ = Ψ>θ∗ can be violated;

� The noise ε = (εi) can be heterogeneous and non-Gaussian.

For the linear model (2), define θ∗ ∈ IRp as the vector providing the best linear fit:

θ∗
def
= argmin

θ
IE‖Y − Ψ>θ‖2 =

(
ΨΨ>

)−1
Ψf∗.
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Linear smoothers

Below we assume a family
{
θ̃m
}

of linear estimators of θ∗ to be given:

θ̃m = SmY

Typical examples include

� projection estimation on a m -dimensional subspace:

θ̃m =
(
ΨmΨ

>
m

)−1
ΨmY ;

� regularized estimation with a regularization parameter αm ;

θ̃m =
(
ΨΨ> + αmR

)−1
ΨY

� penalized estimators with a quadratic penalty function;

θ̃m = arginf
θ

(∥∥Y − Ψ>θ∥∥2 +
∥∥Gmθ∥∥2)

� kernel estimation with a bandwidth hm

f̃m = h−1
m K(h−1

m ·) ∗ Y
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Examples of estimation problems

Introduce a weighting q × p -matrix W for some fixed q ≥ 1 and define quadratic loss and

risk with this weighting matrix W :

%m
def
= ‖W (θ̃m − θ∗)‖2, Rm

def
= IE‖W (θ̃m − θ∗)‖2.

Typical examples of W are as follows:

� Estimation of the whole vector θ∗ :

Let W be the identity matrix W = IIp with q = p . This means that the estimation loss

is measured by the usual squared Euclidean norm ‖θ̃m − θ∗‖2 .

� Prediction: Let W be the square root of the total Fisher information matrix, that is,

W 2 = F = σ−2ΨΨ> . Usually referred to as prediction loss.

� Semiparametric estimation: Let the target of estimation is not the whole vector θ∗ but

its subvector θ∗0 of dimension q . The matrix W can be defined as the projector Π0 on

the θ∗0 subspace.

� Linear functional estimation: The choice of the weighting matrix W can be adjusted to

the problem of estimating some functionals of the whole parameter θ∗ .

In all cases, the most important feature of the estimators θ̃m is linearity.
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Bias-variance decomposition

In all cases, the most important feature of the estimators θ̃m is linearity. It greatly simplifies

the study of their properties including the prominent bias-variance decomposition of the risk of

θ̃m . Namely, for the model (2) with IEε = 0 , it holds

IEθ̃m = θ∗m = Smf∗,

Rm = ‖W
(
θ∗m − θ∗

)
‖2 + tr

{
WSm Var(ε)S>mW>

}
= ‖W (Sm − S)f∗‖2 + tr

{
WSm Var(ε)S>mW>

}
. (3)

The optimal choice of the parameter m can be defined by risk minimization:

m∗
def
= argmin

m∈M
Rm.

The model selection problem can be described as the choice of m by data which mimics the

oracle, that is, we aim at constructing a selector m̂ leading to the adaptive estimate θ̂ = θ̃m̂
with the properties similar to the oracle estimate θ̃m∗ .
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Some literature

� unbiased risk estimation [Kneip, 1994];

� penalized model selection [Barron et al., 1999], [Massart, 2007]);

� Lepski’s method [Lepski, 1990], [Lepski, 1991], [Lepski, 1992],

[Lepski and Spokoiny, 1997], [Lepski et al., 1997], [Birgé, 2001]

� risk hull minimization [Cavalier and Golubev, 2006].

� Aggregation:

An alternative approach to adaptive estimation is based on aggregation of different

estimates; see [Goldenshluger, 2009] and [Dalalyan and Salmon, 2012];

� Linear inverse problems: [Tsybakov, 2000], [Cavalier et al., 2002].

All methods require to know the structure (variance) of the noise ε .

Challenge: a noise-adaptive procedure.
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Bootstrap tuning

� Resampling for noise estimation: For the penalized model selection, [Arlot, 2009]

suggested the use of resampling methods for the choice of an optimal penalization,

[Arlot and Bach, 2009] used the concept of minimal penalties from

[Birgé and Massart, 2007].

� Validity of a bootstrapping procedure for Lepski’s method has been studied in

[Chernozhukov et al., 2014] with applications to honest adaptive confidence bands.

� [Spokoiny and Vial, 2009] offered a propagation approach to calibration of the Lepski’s

method in the case of the estimation of a one-dimensional quantity of interest.

� A similar approach has been applied to local constant density estimation with sup-norm

risk in [Gach et al., 2013] and to local quantile estimation in [Spokoiny et al., 2013].
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Ordered case

Below we discuss the ordered case. The parameter m ∈M is treated as complexity of the

method θ̃m = SmY . In some cases the set M of possible m choices can be countable

and/or continuous and even unbounded. For simplicity of presentation, we assume that M is a

finite set of positive numbers, |M| stands for its cardinality.

Typical examples:

� the number of terms in the Fourier expansion;

� bandwidth in the kernel smoothing.

� regularization parameter;

� penalty coefficient.

In general, complexity can be naturally expressed via the variance of the stochastic term of the

estimator θ̃m : the larger m , the larger is the variance Var(W θ̃m) .

In the case of projection estimation with m -dimensional projectors, this variance is linear in

m , Var(θ̃m) = σ2m .

In general, dependence of the variance term on m may be more complicated but the

monotonicity of Var(W θ̃m) has to be preserved.
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Ordered model selection

Consider a family θ̃m = SmY and φ̃m = KmY with Km = WSm : IRn → IRq ,

m ∈M , of linear estimators of the q -dimensional target parameter

φ∗ = Wθ∗ = WSf∗ = Kf∗ for K = WS .

Suppose that
{
φ̃m , m ∈M

}
is ordered by their complexity (variance):

Km Var(ε)K>m ≤ Km′ Var(ε)K>m′ , m′ > m.

One would like to pick up a smallest possible index m ∈M which still provides a reasonable

fit. The latter means that the bias component

‖bm‖2 = ‖φ∗m − φ
∗‖2 = ‖(Km −K)f∗‖2

in the risk decomposition (3) is not significantly larger than the variance

tr
{

Var
(
φ̃m
)}

= tr
{
Km Var(ε)K>m

}
.

If m◦ ∈M is such a “good” choice, then our ordering assumption yields that a further

increase of the index m over m◦ only increases the complexity (variance) of the method

without real gain in the quality of approximation.
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Pairwise comparison and multiple testing approach

This latter fact can be interpreted in term of pairwise comparison: whatever m ∈M with

m > m◦ we take, there is no significant bias reduction in using a larger model m instead of

m◦ .

Leads to a multiple test procedure: for each pair m > m◦ from M , we consider a hypothesis

of no significant bias between the models m◦ and m , and let τm,m◦ be the corresponding

test.

The model m◦ is accepted if τm,m◦ = 0 for all m > m◦ . Finally, the selected model is the

“smallest accepted”:

m̂
def
= argmin

{
m◦ ∈M : τm,m◦ = 0, ∀m > m◦

}
.

Usually the test τm,m◦ can be written in the form

τm,m◦ = 1I
{
Tm,m◦ > zm,m◦

}
for some test statistics Tm,m◦ and for critical values zm,m◦ .
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AIC vs norm of differences

The information-based criteria like AIC or BIC use the likelihood ratio test statistics

Tm,m◦ = σ−2
∥∥Ψ>(θ̃m − θ̃m◦)∥∥2 . A great advantage of such tests is that the test statistic

Tm,m◦ is pivotal (χ2 with m−m◦ degrees of freedom) under the correct null hypothesis,

this makes simple to compute the corresponding critical values.

Below we apply another choice based on the norm of differences φ̃m − φ̃m◦ :

Tm,m◦ = ‖φ̃m − φ̃m◦‖ = ‖Km,m◦Y ‖, Km,m◦
def
= Km −Km◦ .

The main issue for such a method is a proper choice of the critical values zm,m◦ . One can say

that the procedure is specified by a way of selecting these critical values.

Below we offer a novel way of doing this choice in a general situation by using a so called

propagation condition: if a model m◦ is “good” it has to be accepted with a high probability.

This rule can be seen as analog of the family-wise level condition in a multiple test problem.

Rejecting a “good” model is the family-wise error of first kind, and this error has to be controlled.
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Bais-variance decomposition for a pairwise test

To specify precisely the meaning of a good model, consider for m > m◦ the decomposition

Tm,m◦ = ‖φ̃m − φ̃m◦‖ = ‖Km,m◦Y ‖ = ‖Km,m◦(f
∗ + ε)‖ = ‖bm,m◦ + ξm,m◦‖,

where with Km,m◦ = Km −Km◦

bm,m◦
def
= Km,m◦f

∗, ξm,m◦
def
= Km,m◦ε.

It obviously holds IEξm,m◦ = 0 . Introduce q × q -matrix Vm,m◦ as the variance of

φ̃m − φ̃m◦ :

Vm,m◦
def
= Var

(
φ̃m − φ̃m◦

)
= Var

(
Km,m◦Y

)
= Km,m◦ Var(ε)K>m,m◦ .

Further,

IE T2
m,m◦ = ‖bm,m◦‖2 + IE‖ξm,m◦‖

2 = ‖bm,m◦‖2 + pm,m◦ ,

pm,m◦ = tr(Vm,m◦) = IE‖ξm,m◦‖
2.
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Oracle choice

The bias term bm,m◦
def
= Km,m◦f

∗ is significant if its squared norm is competitive with the

variance term pm,m◦ = tr(Vm,m◦) .

We say that m◦ is a “good” choice if there is no significant bias bm,m◦ for any m > m◦ .

This condition can be quantified as “bias-variance trade-off”:

‖bm,m◦‖2 ≤ β2
pm,m◦ , m > m◦ (4)

for a given parameter β .

Define the oracle m∗ as the minimal m◦ with the property (4):

m∗
def
= min

{
m◦ : max

m>m◦

{
‖bm,m◦‖2 − β2

pm,m◦
}
≤ 0
}
.
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Choice of critical values zm,m◦ for known noise

Let the noise distribution be known. A particular example is the case of Gaussian errors

ε ∼ N(0, σ2IIn) . Then the distribution of the stochastic component ξm,m◦ is known as well.

Introduce for each pair m > m◦ from M a tail function zm,m◦(t) of the argument t such

that

IP
(
‖ξm,m◦‖ > zm,m◦(t)

)
= e−t. (5)

Here we assume that the distribution of ‖ξm,m◦‖ is continuous and the value zm,m◦(t) is

well defined. Otherwise one has to define zm,m◦(t) as a smallest value providing the

prescribing error probability e−t .

For checking the propagation condition, we need a uniform in m > m◦ version of the

probability bound (5). Let

M
+(m◦)

def
=
{
m ∈M : m > m◦

}
.

Given x , by qm◦ = qm◦(x) denote the corresponding multiplicity correction:

IP
( ⋃
m∈M+(m◦)

{
‖ξm,m◦‖ ≥ zm,m◦(x + qm◦)

})
= e−x.
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Bonferroni vs exact correction

A simple way of computing the multiplicity correction qm◦ is based on the Bonferroni bound:

qm◦ = log(#M+(m◦)) .

However, it is well known that the Bonferroni bound is very conservative and leads to very large

correction qm◦ , especially if the random vectors ξm,m◦ are strongly correlated.

As the joint distribution of the ξm,m◦ ’s is precisely known, define the correction

qm◦ = qm◦(x) just by condition

IP
( ⋃
m∈M+(m◦)

{
‖ξm,m◦‖ ≥ zm,m◦(x + qm◦)

})
= e−x.

Finally we define the critical values zm,m◦ by one more correction for the bias:

zm,m◦
def
= zm,m◦(x + qm◦) + β

√
pm,m◦ (6)

for pm,m◦ = tr(Vm,m◦) .

In practice x = 3 and β = 0 provide a reasonable choice.
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SmA selector

Define the selector m̂ by the “smallest accepted” (SmA) rule. Namely, with zm,m◦ from (6),

the acceptance rule reads as follows:{
m◦ is accepted

}
⇔
{

max
m∈M+(m◦)

{
Tm,m◦ − zm,m◦

}
≤ 0
}
.

The SmA rule is

m̂
def
= “smallest accepted”

= min
{
m◦ : max

m∈M+(m◦)

{
Tm,m◦ − zm,m◦

}
≤ 0
}
.

Our study mainly focuses on the behavior of the selector m̂ . The performance of the resulting

estimator φ̂ = φ̃m̂ is a kind of corollary from statements about the selected model m̂ . The

ideal solution would be m̂ ≡ m∗ , then the adaptive estimator φ̂ coincides with the oracle

estimate φ̃m∗ .
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Propagation

The decomposition

Tm,m◦ = ‖φ̃m − φ̃m◦‖ = ‖bm,m◦ + ξm,m◦‖ ≤ ‖bm,m◦‖+ ‖ξm,m◦‖,

and the bounds

IP
( ⋃
m∈M+(m◦)

{
‖ξm,m◦‖ ≥ zm,m◦(x + qm◦)

})
= e−x,

‖bm,m◦‖2 ≤ β2
pm,m◦ , m > m◦

automatically ensures the desired propagation property.

Theorem. Any good model m◦ will be accepted with probability at least 1− e−x :

IP
(
m∗ is rejected

)
≤ e−x.

Corollary. By definition, the oracle m∗ is also a “good” choice, thus accepted.
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Zone of insensitivity

The oracle m∗ is also a “good” choice, this yields

IP
(
m∗ is rejected

)
≤ e−x.

Therefore, the selector m̂ typically takes its value in M−(m∗) , where

M
−(m∗) =

{
m ∈M : m < m∗

}
is the set of all models in M smaller than m∗ .

Zone of insensitivity: a subset M◦ of M−(m∗) of possible m̂ -values.

The definition of m∗ implies that there is a significant bias for each m ∈M−(m∗) .

Intuition: Zone of insensitivity is composed of m -values for which the bias is significant but not

very large.
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Oracle bound

Theorem. For any subset Mc ⊆M−(m∗) s.t.

‖bm∗,m‖ > zm∗,m + zm∗,m(xs), m ∈M
c,

for xs
def
= x + log(|Mc|) with |Mc| being the cardinality of Mc , it holds

IP
(
m̂ ∈M

c) ≤ e−x.

The SmA estimator φ̂ = φ̃m̂ satisfies the following bound:

IP
(∥∥φ̂− φ̃m∗∥∥ > zm∗

)
≤ 2e−x ,

where zm∗ is defined with M◦
def
= M−(m∗) \Mc as

zm∗
def
= max

m∈M◦
zm∗,m .
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Naive bootstrap

Consider the bootstrap estimates φ̃m = W θ̃
[

m in the form

φ̃
[

m = W
(
ΨmΨ

>
m

)−1
ΨmW

[Y = KmW
[Y .

Here W[Y means the vector with entries w[iYi for i ≤ n , where w[i are i.i.d. bootstrap

weights with IE[w[i = Var(w[i ) = 1 . We are interested if the distribution of the differences

φ̃
[

m − φ̃
[

m◦ = Km,m◦W
[Y , ,m > m◦

mimics their real world counterparts.

The identity IE[W[ = IIn yields IE[φ̃
[

m,m◦ = φ̃m,m◦ , and the natural idea would be to

use the difference

φ̃
[

m,m◦ − φ̃m,m◦ = Km,m◦
(
W
[ − IIn

)
Y

as a proxy for the stochastic component ξm,m◦ = Km,m◦ε .

Unfortunately, this can only be justified if the bias component bm,m◦ of φ̃m,m◦ is small

relative to its stochastic variance pm,m◦ . But this is exactly what we would like to test!
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Presmoothing

To avoid this problem we apply a presmoothing which removes a pilot prediction of the

regression function from the data. This presmoothing requires some minimal smoothness of

the regression function, and this condition seems to be unavoidable if no information about

noise is given: otherwise one cannot separate between signal and noise.

Suppose that a linear predictor f̃0 = ΠY is given where Π is a sub-projector in the space

IRn . In most of cases one can take Π = Ψ>m†
(
Ψm†Ψ

>
m†
)−1

Ψm† where m† is a large

index, e.g. the largest index M in our collection.

Idea: computes the residuals Y̆ = Y −ΠY and uses them in place of the original data.

This allows to remove the bias while keeping the noise variance only slightly changed.

For each bootstrap realization w[ = (w[i ) , we apply the procedure to the data vector W[Y̆

with entries Y̆iw
[
i for i ≤ n . The bootstrap stochastic components ξ[m,m◦ are defined as

ξ[m,m◦
def
= Km,m◦E

[Y̆ , m > m◦,

where E[ = W[ − IIn is the diagonal matrix of bootstrap errors ε[i = w[i − 1 ∼ N(0, 1) .
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Calibration in bootstrap world

The bootstrap quantiles z[m,m◦(t) are given by the analog of (5):

IP [
(
‖ξ[m,m◦‖ > z[m,m◦(t)

)
= e−t.

The multiplicity correction q[m◦ = q[m◦(x) is specified by the condition

IP [
( ⋃
m∈M+(m◦)

{
‖ξ[m,m◦‖ ≥ z

[
m,m◦(x + q[m◦)

})
= e−x.

Finally, the bootstrap critical values are fixed by the analog of (6):

z[m,m◦
def
= z[m,m◦(x + q[m◦) + β

√
p[m,m◦

for p[m,m◦ = IE[‖ξ[m,m◦‖2 . Remind that all these quantities are data-driven and depend

upon the original data. Now we apply the SmA procedure with such defined critical values

z[m,m◦ .
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Conditions

� Design Regularity is measured by the value δΨ

δΨ
def
= max

i=1,...,n
‖S−1/2Ψi‖σi , where S

def
=

n∑
i=1

ΨiΨ
>
i σ

2
i ; (7)

Obviously

n∑
i=1

‖S−1/2Ψi‖2σ2
i = tr

( n∑
i=1

S−2ΨiΨ
>
i σ

2
i

)
= tr IIp = p,

and therefore in typical situations the value δΨ is of order
√
p/n .

� Presmoothing bias for a projector Π is described by the vector

B = Σ−1/2(f∗ −Πf∗).

We will use the sup-norm ‖B‖∞ = maxi |bi| and the squared `2 -norm

‖B‖2 =
∑
i b

2
i to measure the bias after presmoothing.
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Conditions. 2

� Stochastic noise after presmoothing is described via the covariance matrix Var(ε̆) of

the smoothed noise ε̆ = Σ−1/2(ε−Πε) . Namely, this matrix is assumed to be

sufficiently close to the unit matrix IIn , in particular, its diagonal elements should be close

to one. This is measured by the operator norm of Var(ε̆)− IIn and by deviations of the

individual variances IEε̆2i from one:

δ1
def
= ‖Var(ε̆)− IIn‖op,

δε
def
= max

i
|IEε̆2i − 1|.

In particular, in the case of homogeneous errors Σ = σ2IIn and the smoothing operator

Π as a p -dimensional projector, it holds

Var(ε̆) = (IIn −Π)2 = IIn −Π ≤ IIn ,

δ1 = ‖Var(ε̆)− IIn‖op = ‖Π‖op = 1,

δε = max
i
|IEε̆2i − 1| = max

i
|Πii|.
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Conditions. 3

� Regularity of the smoothing operator Π is required in Theorems 2, 3, and 4. This

condition will be expressed via the norm of the rows Υ>i of the matrix

Υ
def
= Σ−1/2ΠΣ1/2 fulfill

‖Υ>i ‖ ≤ δΨ , i = 1, . . . , n. (8)

This condition is in fact very close to the design regularity condition (7). To see this,

consider the case of a homogeneous noise with Σ = σ2IIn and

Π = Ψ>
(
ΨΨ>

)−1
Ψ . Then Υ = Π and (7) implies

‖Υ>i ‖ = ‖Ψ>
(
ΨΨ>

)−1
Ψi‖ = ‖

(
ΨΨ>

)−1/2
Ψi‖ ≤ δΨ .

In general one can expect that (8) is fulfilled with some other constant which however, is

of the same magnitude as δΨ . For simplicity we use the same letter.
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Main results

Let Y = f∗ + ε ∼ N(f∗, Σ) for Σ = diag(σ2
1 , . . . , σ

2
n) .

δΨ
def
= max

i=1,...,n
‖S−1/2Ψi‖σi , where S

def
=

n∑
i=1

ΨiΨ
>
i σ

2
i ;

δε = max
i
|IEε̆2i − 1|, B = Σ−1/2(f∗ −Πf∗).

Consider

Q = L
(
ξm,m◦ ,m,m

◦ ∈M
)
, Q[ = L

[(ξ[m,m◦ ,m,m◦ ∈M
)
.

Theorem 2. It holds on a random set Ω2(x) with IP
(
Ω2(x)

)
≥ 1− 3e−x :

‖Q−Q[‖TV ≤
1

2
∆2(x),

∆2(x)
def
= 2

√
δ2Ψ p xn +

√
δ2ε p+

√
‖B‖4∞ p+ 4 δ2Ψ ‖B‖

(
1 +
√
x
)
.

where xn = x + log(n) .
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Main results. 2

Theorem 3. (Bootstrap validity) Assume the conditions of Theorem 2, and let the rows Υ>i of

the matrix Υ
def
= Σ−1/2ΠΣ1/2 fulfill (8). Then for each m◦ ∈M

IP

(
max
m>m◦

{
‖ξm,m◦‖ − z

[
m,m◦(x + q[m◦)

}
≥ 0

)
≤ 6e−x +

√
p∆0(x),

where with xn = x + log(n) and xp = x + log(2p)

∆0(x)
def
= ‖B‖2∞ + δ2Ψ‖B‖

√
2x + 2δΨxn + δ2Ψxn + 2δΨ

√
xp + 2δ2Ψxp.
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Main results. 3

The SmA procedure also involves the values pm,m◦ which are unknown and depend on the

noise ε . The next result shows the bootstrap counterparts p[m,m◦ can be well used in place

of pm,m◦ .

Theorem 4. Assume the conditions of Theorem 2. Then it holds on a set Ω1(x) with

IP
(
Ω1(x)

)
≥ 1− 3e−x for all pairs m < m◦ ∈M

∣∣∣∣p[m,m◦pm,m◦
− 1

∣∣∣∣ ≤ ∆p ,

∆p
def
= ‖B‖2∞ + 4 x

1/2
M δ2n ‖B‖+ 4x

1/2
M δn + 4 xM δ2n + δε,

where p[m,m◦ = IE[‖ξ[m,m◦‖2 , pm,m◦ = IE‖ξm,m◦‖2 , and xM = x + 2 log(|M|) .

The above results immediately imply all the oracle bounds for probabilistic loss with the obvious

correction of the error terms.
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Outline

1 Introduction

2 SmA procedure for known noise variance

3 Bootstrap tuning

4 Numerical results

5 Extensions
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Simulation setup

Consider a regression problem for an unknown univariate function on [0, 1] with unknown

inhomogeneous noise. The aim is to compare the bootstrap-calibrated procedure with the SmA

procedure for the known noise and with the oracle estimator. We also check the sensitivity of

the method to the choice of the presmoothing parameter m† .

We use a uniform design on [0, 1] and the Fourier basis {ψj(x)}∞j=1 for approximation of

the regression function f which is modelled in the form

f(x) = c1ψ1(x) + . . .+ cpψp(x),

where the (cj)1≤j≤p are chosen randomly: with γj i.i.d. standard normal

cj =

{
γj , 1 ≤ j ≤ 10,

γj/(j − 10)2, 11 ≤ j ≤ 200.

The noise intensity grows from low to high as x increases to one. We use

nsim-bs = nsim-theo = nsim-calib = 1000 samples for computing the bootstrap marginal quantiles

and the theoretical quantiles and for checking the calibration condition. The maximal model

dimension is M = 34 and we also choose m† = M . The calibration is run with x = 2 and

β = 1 .
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Prediction loss W = Ψ>n
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Figure : True functions and observed values plotted with oracle estimator, the known-variance
SmA-Estimator (SmA-Est.) and the Bootstrap-SmA-Estimator (SmA-BS-Est.) for 3 different functions with
different noise structure going from low noise to high noise. The numbers in parentheses indicate the
chosen model dimension.
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Dependence on m†

The oracles are respectively m∗ = 12 for n = 100, 200 and m∗ = 10 for n = 50 .
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Figure : The first three plots show an exemplary function with n = 50, 100, 200 observations. The right
plot shows the m̂ chosen by the Bootstrap-SmA-Method as a function of the calibration dimension m†

and the number of observations.
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Dependence on m†

Figure 3 again demonstrates the dependence of the ratios on m† . It is remarkable that the

ratio is varying very slowly above m∗ = 12 .
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Figure : Maximal, minimal and mean ratio of the bootstrap and theoretical tail functions at x = 2 ,
|z[m1,m2

/zm1,m2 |2 as a function of m† .
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True and bootstrap quantiles
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Figure : Ratio of quantiles |z[m1,m2
/zm1,m2 |2 for m† = 20 and n = 200 with the data and true

function as in Fig. 2.
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One realization
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Figure : In the left plot, the true function and observed values are plotted for one realization together with
the oracle estimator, the known-variance SmA-Estimator (SmA-Est.) and the Bootstrap-SmA-Estimator
(SmA-BS-Est.). The numbers in parentheses indicate the chosen model dimension. In the right plot,
histograms for the selected model are given for the bootstrap (BS) and the known-variance method (MC)
for repeated observations of the same underlying function with a simulation size nhist = 100 .
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Estimation of derivative
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Figure : The upper left plot shows the true derivative, the oracle estimator, the known-variance
SmA-Estimator (SmA-Est.) and the Bootstrap-SmA-Estimator (SmA-BS-Est.). The upper right plot shows
the true function and the observations and in the lower plot one can find the standard deviation of the errors.
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Partial ordering and anisotropic classes

Example: anisotropic bandwidth in kernel smoothing.

Yi = f(Xi) + εi , Xi ∈ IRd

Kernel estimator:

f̃(x) =

∑
i YiKh(x,Xi)∑
iKh(x,Xi)

where for a kernel K and a anisotropic bandwidth h = diag(h1, . . . , hd) ,

Kh(x,Xi) = K
(
‖h−1(Xi − x)‖2

)
.

Anisotropic bandwidth selection: h(m) = diag(h1(m), . . . , hd(m)) , m ∈M ,

m∗
def
= arginf

m
R(f̃h(m), f).
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SmA for anisotropic classes

Partial ordering:

h(m◦) ≤ h(m) if hj(m
◦) ≤ hj(m) ∀j ≤ d.

m◦ is accepted if it is “not rejected” against any larger model m > m◦

Tm,m◦ ≤ zm,m◦(x) ∀m > m◦.

SmA method:

m̂
def
= smallest accepted = arginf

m◦∈M

{
tr(Vm◦) : m◦ is “accepted”

}
.

Calibration by “propagation” + bootstrap: for any “good” model m◦ , ensure

IP
(
m◦ “is rejected”

)
≤ e−x.
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Subset selection

Linear regression:

Yi = X>i θ
∗ + εi , Xi ∈ IRp.

Sparse representation:

X>i θ
∗ ≈ X>i θ

∗
m∗

where θ∗m∗ has non-zero entries only for active subset m∗ .

Problem: identify m∗ by data.

� Complexity penalization: m̂ = arginfm
{
‖Y − Ψ>θ̃m‖2 + λ‖m‖

}
.

� Sparse penalty (LASSO, SCAD, Danzig, etc): θ̂ = arginfθ
{
‖Y −Ψ>θ‖2 +λ‖θ‖1

}
.

Challenge: inference on m̂ . Is m̂ a good estimator of m∗ ?
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SmA subset selection

Partial ordering: m ⊂
{

1, . . . , p
}
m◦ < m ⇔ m◦ ⊂ m.

Acceptance rule:

Tm,m◦ ≤ zm,m◦ ∀m > m◦.

Calibration of zm,m◦ by “propagation”: for any good model m◦

IP
(
m◦ is rejected

)
≤ e−x.

SmA choice:

m̂
def
= argmin

{
m◦ : m◦ is accepted

}
.

Challenge: is m̂ a good proxy for m∗ ?

Approach: use bootstrap to quantify the following probability:

IP (m̂j is significant).
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Bootstrap-based analysis
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Uncertainty analysis in subset selection
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Uncertainty analysis in subset selection
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Uncertainty analysis in subset selection
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Summary and outlook

� A unified fully adaptive procedure for ordered model selection.

� Sharp oracle bounds

� Impact of the bias in the size of bootstrap confidence sets.

In progress:

� Model selection for unordered case like anisotropic classes. Theory applies but has to be

extended;

� Active set selection. Theory applies but the problem of algorithmic efficient

implementation.

� Large p s.t. p2/n large; Use of sparse or complexity penalty.

� Extension to other problems like Hidden Markov Chain modeling;

� Multiscale change-point detection.
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